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AFTER VAR: THE THEORY, ESTIMATION,
AND INSURANCE APPLICATIONS OF QUANTILE-BASED
RISK MEASURES

Kevin Dowd
David Blake

ABSTRACT

We discuss a number of quantile-based risk measures (QBRMs) that have
recently been developed in the financial risk and actuarial/insurance litera-
tures. The measures considered include the Value-at-Risk (VaR), coherent risk
measures, spectral risk measures, and distortion risk measures. We discuss
and compare the properties of these different measures, and point out that
the VaR is seriously flawed. We then discuss how QBRMs can be estimated,
and discuss some of the many ways they might be applied to insurance risk
problems. These applications are typically very complex, and this complex-
ity means that the most appropriate estimation method will often be some
form of stochastic simulation.

INTRODUCTION

The measurement of financial risk has been one of the main preoccupations of actuaries
and insurance practitioners for a very long time. Measures of financial risk manifest
themselves explicitly in many different types of insurance problems, including the
determination of reserves or capital, the setting of premiums and thresholds (e.g.,
for deductibles and reinsurance cedance levels), and the estimation of magnitudes
such as expected claims, expected losses, and probable maximum losses; they also
manifest themselves implicitly in problems involving shortfall and ruin probabilities.
In each of these cases, we are interested, explicitly or implicitly, in quantiles of some
loss function or, more generally, in quantile-based risk measures (QBRMs).

Interest in these measures has also come from more recent developments, most par-
ticularly from the emergence of Value-at-Risk (VaR) in the mainstream financial risk
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management (FRM) area, and from the development of a number of newer risk meas-
ures, of which the best known are coherent and distortion risk measures. Increased
interest in risk measurement also arises from deeper background developments, such
as: the impact of financial engineering in insurance, most particularly in the emerg-
ing area of alternative risk transfer (ART); the increasing securitization of insurance-
related risks; the increasing use of risk measures in regulatory capital and solvency
requirements; the trend toward convergence between insurance, banking, and securi-
ties markets, and the related efforts to harmonize their regulatory treatment; and the
growth of enterprise-wide risk management (ERM).

This article provides an overview of the theory and estimation of these measures, and
of their applications to insurance problems. We focus on three key issues: the differ-
ent types of QBRMs and their relative merits; the estimation of these risk measures;
and the many ways in which they can be applied to insurance problems.1 We draw
on both the mainstream FRM literature and the actuarial/insurance literature. Both
literatures have witnessed important developments in this area, but the amount of
cross-fertilization between them has also been curiously imbalanced, as the actuar-
ial/insurance community has tended to pick up on developments in financial risk
management much more quickly than financial risk managers have picked up on
developments in actuarial science. Indeed, important developments in the actuarial
field—such as the theory of distortion risk measures—are still relatively little known
outside actuarial circles.2

In comparing the various risk measures and discussing how they might be estimated
and applied, we wish to make three main arguments, which will become clearer as we
proceed. (1) There are many QBRMs that have respectable properties and are demon-
strably superior to the VaR, but the choice of “best” risk measure(s) is a subjective one
that can also depend on the context. (2) The estimation of any QBRM is a relatively
simple matter, once we have a good VaR estimation system. This is because the VaR is
itself a quantile, and any calculation engine that can estimate a single quantile can also
easily estimate a set of them, and thence estimate any function of them. This implies,
in turn, that it should be relatively straightforward for institutions to upgrade from
VaR to more sophisticated risk measures. (3) Insurance risk measurement problems
are often extremely complex. This complexity is due to many different factors (which

1 For reasons of space, we restrict ourselves to QBRMs and ignore other types of risk meas-
ure (e.g., the variance, semivariance, mean absolute deviation, entropy, etc.). We also have
relatively little to say on closely related risk measures that are well covered in the actuarial
literature, such as premium principles, stop-loss measures, and stochastic ordering. For more
on these, see e.g., Denuit et al. (2005).

2 It is also sometimes the case that important contributions can take a long time to become
widely accepted. A good case in point here is the slowness with which axiomatic theories
of financial risk measurement—of which the theory of coherent risk measures is the most
notable example—have been accepted across the FRM community, despite highly persuasive
arguments that coherent measures are superior to the VaR. This slowness to adopt superior
risk measures seems to be due to the fact that many FRM practitioners still do not understand
the axiomatic theories of financial risk measures, and has led to the patently unsustainable
situation that the VaR continues to be the most widely used risk measure despite the fact that
it is now effectively discredited as a risk measure.
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we will address in due course), and implies that the overwhelming majority of in-
surance risk measurement problems need to be handled using stochastic simulation
methods.

This article is organized as follows. “Quantile-Based Measures of Risk” discusses and
compares the main types of QBRMs, focusing mainly on the VaR, coherent measures
(including those familiar to actuaries as CTE or tail VaR), spectral measures, and distor-
tion measures. “Estimation Methods” looks at the estimation of QBRMs, i.e., it shows
how to estimate our risk measure, once we have decided which risk measure we wish
to estimate. This section reviews the standard “VaR trinity” of parametric methods,
nonparametric methods, and stochastic simulation methods. “Complicating Factors
in Insurance Risk Measurement Problems” investigates some of the complicating fea-
tures of insurance risk-measurement problems: these include valuation problems,
“badly behaved” and heterogeneous risk factors, nonlinearity, optionality, parameter
and model risk, and long forecast horizons. “Examples of Insurance Risk Measure-
ment Problems” then discusses some example applications and seeks to illustrate
the thinking behind these applications. After this, “Further Issues” briefly addresses
some additional issues that often arise in insurance risk measurement problems: these
include issues of capital allocation and risk budgeting, risk-expected return analysis
and performance evaluation, long-run issues, problems of model evaluation, the is-
sues raised by enterprise-wide risk management, and regulatory issues (including
regulatory uses of QBRMs). “Conclusion” concludes.

QUANTILE-BASED MEASURES OF RISK

Value at Risk

For practical purposes, we can trace the origins of VaR back to the late 1970s and
1980s, when a number of major financial institutions started work on internal risk-
forecasting models to measure and aggregate risks across the institution as a whole.3

They started work on these models for their own risk management purposes—as
firms became more complex, it was becoming increasingly difficult, but yet also in-
creasingly important, to be able to aggregate their risks taking account of how they
interact with each other, and institutions lacked the methodology to do so. The best
known of these systems was that developed by JP Morgan, which was operational
by around 1990. This system was based on standard portfolio theory using estimates
of the standard deviations and correlations between the returns to different traded
instruments, which it aggregated across the whole institution into a single firm-wide
risk measure. The measure used was the hitherto almost unknown notion of daily
value-at-risk (or VaR)—the maximum likely loss over the next trading day. The term

3 The roots of the measure go further back. One can argue that the VaR measure was at least
implicit in the initial reserve measure that appears in the classical probability of ruin problem
that actuaries have been familiar with since the early twentieth century. The VaR can also be
attributed to Baumol (1963, p. 174), who suggested a risk measure equal to μ − kσ , where
μ and σ are the mean and standard deviation of the distribution concerned, and k is a
subjective confidence-level parameter that reflects the user’s attitude to risk. This risk measure
is equivalent to the VaR under the assumption that losses are elliptically distributed. However,
the term “value at risk” did not come into general use until the early 1990s. For more on the
history of VaR, see Guldimann (2000) or Holton (2002, pp. 13–19).
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“likely” was interpreted in terms of a 95-percent level of confidence, so the VaR was
the maximum loss that the firm could expect to experience on the “best” 95 days out of
100. However, different VaR models differed in terms of the horizon periods and con-
fidence levels used, and also in terms of their estimation methodologies: some were
based on portfolio theory, some were based on historical simulation (HS) methods,
and others were based on stochastic simulation methods.

Once they were operational, VaR models spread very rapidly, first among securities
houses and investment banks, then among commercial banks, pension funds, insur-
ance companies, and nonfinancial corporates. The VaR concept also became more
familiar as the models proliferated, and by the mid 1990s, the VaR had already estab-
lished itself as the dominant measure of financial risk in the mainstream financial risk
area. Since then, VaR models have become much more sophisticated, and VaR meth-
ods have been extended beyond market risks to measure other risks such as credit,
liquidity (or cashflow), and operational risks.

To consider the VaR measure more formally, suppose we have a portfolio that gen-
erates a random loss over a chosen horizon period.4 Let α be a chosen probability
and qα be the α-quantile of the loss density function. The VaR of the portfolio at the α

confidence level is then simply the qα quantile of the loss distribution, i.e.:5

VaRα = qα. (1)

The rapid rise of VaR was due in large part to the VaR having certain characteristics,
which gave it an edge over the more traditional risk assessment methods used in
capital markets contexts:� The VaR provides a common measure of risk across different positions and risk

factors. It can be applied to any type of portfolio, and enables us to compare the
risks across different (e.g., fixed-income and equity) portfolios. Traditional methods
are more limited: duration measures apply only to fixed-income positions, Greek
measures apply only to derivatives positions, portfolio-theory measures apply only
to equity and similar (e.g., commodity) positions, and so forth.

4 We use the term “portfolio” as a convenient label. However, it could in practice be any
financial position or collection of positions: it could be a single position, a book or collection
of positions, and it could refer to assets, liabilities, or some net position (e.g., as in asset-
liability management).

5 The VaR is thus predicated on the choice of two parameters, the holding or horizon period
and the confidence level. The values of these parameters are (usually) chosen arbitrarily, but
guided by the context. For example, if we are operating in a standard trading environment
with marking-to-market, then the natural horizon period is a trading day; if we are dealing
with less liquid assets, a natural horizon might be the period it takes to liquidate a position
in an orderly way. However, an insurance company will sometimes want a much longer
horizon. The other parameter, the confidence level, would usually be fairly high, and banks
and securities firms often operate with confidence levels of around 95–98 percent. But if we
are concerned with extreme (i.e., low-probability, high-impact) risks, we might operate with
confidence levels well above 99 percent.
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� VaR enables us to aggregate the risks of positions taking account of the ways in which
risk factors correlate with each other, whereas most traditional risk measures do
not allow for the “sensible” aggregation of component risks.� VaR is holistic in that it takes full account of all driving risk factors, whereas many
traditional measures only look at risk factors one at a time (e.g., Greek measures) or
resort to simplifications that collapse multiple risk factors into one (e.g., duration-
convexity and CAPM (Capital Asset Pricing Model) measures). VaR is also holistic
in that it focuses assessment on a complete portfolio, and not just on individual
positions in it.� VaR is probabilistic, and gives a risk manager useful information on the probabilities
associated with specified loss amounts. Many traditional measures (e.g., duration,
Greeks, etc.) only give answers to “what if?” questions and do not give an indication
of loss likelihoods.� VaR is expressed in the simplest and most easily understood unit of measure, namely,
“lost money.” Many other measures are expressed in less transparent units (e.g.,
average period to cashflow, etc.).

These are very significant attractions.

However, the VaR also suffers from some serious limitations. One limitation is that the
VaR only tells us the most we can lose in good states where a tail event does not occur;
it tells us nothing about what we can lose in “bad” states where a tail event does occur
(i.e., where we make a loss in excess of the VaR). VaR’s failure to consider tail losses can
then create some perverse outcomes. For instance, if a prospective investment has a
high expected return but also involves the possibility of a very high loss, a VaR-based
decision calculus might suggest that the investor should go ahead with the investment
if the higher loss does not affect the VaR, regardless of the sizes of the higher expected
return and possible higher losses. This undermines “sensible” risk-return analysis,
and can leave the investor exposed to very high losses.

The VaR can also create moral hazard problems when traders or asset managers
work to VaR-defined risk targets or remuneration packages. Traders who face a VaR-
defined risk target might have an incentive to sell out-of-the-money options that lead
to higher income in most states of the world and the occasional large hit when the firm
is unlucky. If the options are suitably chosen, the bad outcomes will have probabilities
low enough to ensure that there is no effect on the VaR, and the trader will benefit
from the higher income (and hence higher bonuses) earned in “normal” times when
the options expire out of the money. The fact that VaR does not take account of what
happens in “bad” states can distort incentives and encourage traders to “game” a VaR
target (and/or a VaR-defined remuneration package) to promote their own interests
at the expense of the institutions that employ them.6

The Theory of Coherent Risk Measures

More light was shed on the limits of VaR by some important theoretical work by
Artzner, Delbaen, Eber, and Heath in the 1990s (Artzner et al., 1997, 1999). Their
starting point is that although we all have an intuitive sense of what financial risk

6 Some further, related, problems with the VaR risk measure are discussed in Artzner et al.
(1999, pp. 215–218) and Acerbi (2004).
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entails, it is difficult to give a good assessment of financial risk unless we specify what
a measure of financial risk actually means. For example, the notion of temperature
is difficult to conceptualize without a clear notion of a thermometer, which tells us
how temperature should be measured. Similarly, the notion of risk itself is hard to
appreciate without a clear idea of what we mean by a measure of risk. To clarify these
issues, Artzner et al. proposed to do for risk what Euclid and others had done for
geometry: they postulated a set of risk-measure axioms—the axioms of coherence—
and began to work out their implications.

Suppose we have a risky position X and a risk measure ρ(X) defined on X.7 We now
define the notion of an acceptance set as the set of all positions acceptable to some
stakeholder (e.g., a financial regulator). We then interpret the risk measure ρ(·) as the
minimum extra cash that has to be added to a risky position and invested prudently
in some reference asset to make the risky position acceptable. If ρ(·) is positive, then a
positive amount must be added to make the position acceptable; and if ρ(·) is negative,
its absolute value can be interpreted as the maximum amount that can be withdrawn
and still leave the position acceptable. An example might be the minimum amount of
regulatory capital specified by (i.e., “acceptable to”) a financial regulator for a firm to
be allowed to set up a fund management business.

Now consider any two risky positions X and Y, with values given by V(X) and V(Y).
The risk measure ρ(·) is then said to be coherent if it satisfies the following properties:� Monotonicity: V(Y) ≥ V(X) ⇒ ρ(Y) ≤ ρ(X)� Subadditivity: ρ(X + Y) ≤ ρ(X) + ρ(Y)� Positive homogeneity: ρ(h X) = hρ(X) for h > 0� Translational invariance: ρ(X + n) = ρ(X) − n for some certain amount n.

The first, third, and fourth properties can be regarded as “well-behavedness” condi-
tions. Monotonicity means that if Y has a greater value than X, then Y should have
lower risk: this makes sense, because it means that less has to be added to Y than
to X to make it acceptable, and the amount to be added is the risk measure. Positive
homogeneity implies that the risk of a position is proportional to its scale or size,
and makes sense if we are dealing with liquid positions in marketable instruments.
Translational invariance requires that the addition of a sure amount reduces pari passu
the cash still needed to make our position acceptable, and its validity is obvious.

The key property is the second, subadditivity. This tells us that a portfolio made up
of subportfolios will risk an amount that is no more than, and in some cases less
than, the sum of the risks of the constituent subportfolios. Subadditivity is the most
important criterion we would expect a “respectable” risk measure to satisfy. It reflects
our expectation that aggregating individual risks should not increase overall risk, and
this is a basic requirement of any “respectable” risk measure, coherent or otherwise.8

7 X itself can be interpreted in various other ways, e.g., as the random future value of the
position or as its random cashflow, but its interpretation as the portfolio itself is the most
straightforward.

8 Although we strongly agree with the argument that subadditivity is a highly desirable prop-
erty in a risk measure, we also acknowledge that it can sometimes be problematic. For
example, Goovaerts et al. (2003a) suggest that we can sometimes get situations where the
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It then follows that the VaR cannot be a “respectable” measure in this sense, because
VaR is not subadditive.9 In fact, VaR is only subadditive in the restrictive case where the
loss distribution is elliptically distributed, and this is of limited consolation because
most real-world loss distributions are not elliptical ones. The failure of VaR to be
subadditive is a fundamental problem because it means, in essence, that VaR has no
claim to be regarded as a “true” risk measure at all. The VaR is merely a quantile.
There is also a deeper problem:

the main problem with VaR is not its lack of subadditivity, but rather the
very fact that no set of axioms for a risk measure and therefore no un-
ambiguous definition of financial risk has ever been associated with this
statistic. So, despite the fact that some VaR supporters still claim that sub-
additivity is not a necessary axiom, none of them, to the best of our knowl-
edge, has ever tried to write an alternative meaningful and consistent set
of axioms for a risk measure which are fulfilled also by VaR. (Acerbi, 2004,
p. 150)

Given these problems, we seek alternative risk measures that retain the benefits of
VaR—in terms of globality, universality, probabilistic content, etc.—while avoiding
its drawbacks.10 Furthermore, if it is to retain the benefits of the VaR, it is reasonable
to suppose that any such risk measures will be “VaR-like” in the sense that they will

“best” risk measure will violate subadditivity (see the last bullet point in “Other Risk Meas-
ures” below): we therefore have to be careful to ensure that any risk measure we use makes
sense in the context in which it is to be used. There can also be problems in the presence
of liquidity risk. If an investor holds a position that is “large” relative to the market, then
doubling the size of this position can more than double the risk of the position, because bid
prices will depend on the position size. This raises the possibility of liquidity-driven viola-
tions of homogeneity and subadditivity. A way to resolve this difficulty is to replace coherent
risk measures with convex ones. An alternative, suggested by Acerbi (2004, p. 150), is to add
a liquidity charge to a (strongly) coherent risk measure. This charge would take account of
relative size effects, but also have the property of going to zero as size/illiquidity effects
become negligible.

9 The nonsubadditivity of the VaR is most easily shown by a counter-example. Suppose that
we have two identical bonds, A and B. Each defaults with probability 4 percent, and we
get a loss of 100 if default occurs, and 0 if no default occurs. The 95 percent VaR of each
bond is therefore 0, so VaR0.95(A) = VaR0.95(B) = VaR0.95(A) + VaR0.95(B) = 0. Now suppose
that defaults are independent. Elementary calculations then establish that we get a loss of
0 with probability 0.962 = 0.9216, a loss of 200 with probability 0.042 = 0.0016, and a loss
of 100 with probability 1 − 0.9216 − 0.0016 = 0.0768. Hence VaR0.95(A + B) = 100. Thus,
VaR0.95(A + B) = 100 > 0 = VaR0.95(A) + VaR0.95(B), and the VaR violates subadditivity.

10 In this context, it is also worth noting that coherent risk measures also have another important
advantage over VaR: the risk surface of a coherent risk measure is convex (i.e., any line drawn
between two coherent risk measures lies above the coherent risk surface), whereas that of
a VaR might not be. This is a very important advantage in optimization routines, because
it ensures that a risk minimum is a unique global one. In contrast, if the risk surface is
not guaranteed to be convex (as with a VaR surface), then we face the problem of having
potentially multiple local mimina, and it can be very difficult to establish which of these
is the global one. For optimization purposes, a convex risk surface is therefore a distinct
advantage. For more on this issue, see, e.g., Rockafellar and Uryasev (2002) or Acerbi (2004,
pp. 186–197).
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reflect the quantiles of the loss distribution, but will be nontrivial functions of those
quantiles rather than a single quantile on its own.

Expected Shortfall

One promising candidate is the expected shortfall (ES), which is the average of the
worst 1 − α losses. In the case of a continuous loss distribution, the ES is given by:

ESα = 1
1 − α

∫ 1

α

q p dp. (2)

If the distribution is discrete, then the ES is the discrete equivalent of (2):

ESα = 1
1 − α

1∑
p=α

(pth worst outcome ) × (probability of pth worst outcome). (3)

This ES risk measure is very familiar to actuaries, although it is usually known in
actuarial circles as the Conditional Tail Expectation (in North America) or the Tail
VaR (in Europe).11 In mainstream financial risk circles, it has been variously labeled
Expected Tail Loss, Tail Conditional Expectation, Conditional VaR, Tail Conditional
VaR, and Worst Conditional Expectation. Thus, there is no consistency of terminology
in either actuarial or financial risk management literatures. However, the substantive
point here is that this measure (whatever we call it) belongs to a family of risk measures
that has two key members. The first is the measure we have labeled the ES, which is
defined in terms of a probability threshold. The other is its quantile-delimited cousin,
the average of losses exceeding VaR, i.e., E[X | X > qα(X)]. The two measures will
always coincide when the loss distribution is continuous. However, this latter measure
can be ambiguous and incoherent when the loss distribution is discrete (see Acerbi,
2004, p. 158), whereas the ES is always unique and coherent. As for terminology, we
prefer the term “expected shortfall” because it is clearer than alternatives, because
there is no consensus alternative, and because the term is now gaining ascendancy in
the financial risk area.

It is easy to establish the coherence of ES. If we have N equal-probability quantiles in
a discrete distribution, then

ESα(X) + ESα(Y)

= Mean of Nα worst cases of X + Mean of Nα worst cases of Y

≥ Mean of Nα worst cases of (X + Y)

= ESα(X + Y). (4)

11 This measure has also been used by actuaries for a very long period of time. For example,
Artzner et al. (1999, pp. 219–220) discuss its antecedents in German actuarial literature in the
second third of the nineteenth century. Measures similar to the ES have been long prominent
in areas of actuarial science such as reserving theory.
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A continuous distribution can be regarded as the limiting case as N gets large. In
general, the mean of the Nα worst cases of X plus the mean of the Nα worst cases of
Y will be bigger than the mean of the Nα worst cases of (X + Y), except in the special
case where the worst X and Y occur in the same Nα events, and in this case the sum of
the mean will equal the mean of the sum. This shows that ES is subadditive. It is easy
to show that the ES also satisfies the other properties of coherence, and is therefore
coherent (Acerbi, 2004, proposition 2.16).

The ES is an attractive risk measure for a variety of reasons besides its coherence. It
has some very natural applications in insurance (e.g., it is an obvious measure to use
when we wish to estimate the cover needed for an excess-of-loss reinsurance treaty, or
more generally, when we are concerned with the expected sizes of losses exceeding a
threshold). It also has the attraction that it is very easy to estimate: the actuary simply
generates a large number of loss scenarios and takes the ES as the average of the
100(1 − α) percent of largest losses.

Scenarios and Generalized Scenarios

The theory of coherent risk measures has some radical (and sometimes surprising)
implications. For example, it turns out that the results of scenario analyses (or stress
tests) can be interpreted as coherent risk measures. Suppose that we consider a set
of loss outcomes combined with a set of associated probabilities. The losses can be
regarded as tail drawings from the relevant distribution function, and their expected
(or average) value is the ES associated with this distribution function. Since the ES is
a coherent risk measure, this means that the outcomes of scenario analyses are also
coherent risk measures. The theory of coherent risk measures therefore provides a
risk-theoretical justification for the practice of stress testing.

This argument can also be generalized in some interesting ways. Consider a set of
“generalized scenarios”—a set of n loss outcomes and a family of distribution functions
from which the losses are drawn. Take any one of these distributions and obtain the
associated ES. Now do the same again with another distribution function, leading to
an alternative ES. Now do the same again and again. It turns out that the maximum
of these ESs is itself a coherent risk measure: if we have a set of m comparable ESs,
each of which corresponds to a different loss distribution function, then the maximum
of these ESs is a coherent risk measure.12 Furthermore, if we set n = 1, then there is
only one tail loss in each scenario and each ES is the same as the probable maximum
loss or likely worst-case scenario outcome. If we also set m = 1, then it immediately

12 A good example of a standard stress testing framework whose outcomes qualify as coherent
risk measures is the SPAN system used by the Chicago Mercantile Exchange to calculate
margin requirements. As explained by Artzner et al. (1999, p. 212), this system considers
sixteen specific scenarios, consisting of standardized movements in underlying risk factors.
Fourteen of these are fairly moderate scenarios, and two are extreme. The measure of risk
is the maximum loss incurred across all scenarios, using the full loss from the first fourteen
scenarios and 35 percent of the loss from the two extreme ones. (Taking 35 percent of the losses
on the extreme scenarios can be regarded as an ad hoc adjustment allowing for the extreme
losses to be less probable than the others.) The calculations involved can be interpreted as
producing the maximum expected loss under sixteen distributions. The SPAN risk measures
are coherent because the margin requirement is equal to this maximum expected loss.
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follows that the highest expected loss from a single scenario analysis is a coherent
risk measure; and if m > 1, then the highest expected of m worst case outcomes is
also a coherent risk measure. In short, the ES, the highest expected loss from a set of
possible outcomes (or loss estimates from scenario analyses), the highest ES from a set
of comparable ESs based on different distribution functions, and the highest expected
loss from a set of highest losses, are all coherent risk measures.

The foregoing shows that the outcomes of (simple or generalized) scenarios can be
interpreted as coherent risk measures. However, the reverse is also true, and coherent
risk measures can be interpreted as the outcomes of scenarios. This is useful, because
it means that we can always estimate coherent risk measures by specifying the rel-
evant scenarios and then taking (as relevant) their (perhaps probability-weighted)
averages or maxima: in principle, all we need to know are the loss outcomes (which
are quantiles from the loss distribution), the density functions to be used (which give
us our probabilities), and the type of coherent risk measure we are seeking. However,
in practice, implementation is even more straightforward: we would often work with
a (typically stochastic) scenario generation program, take each generated scenario as
equally likely (which allows us to avoid any explicit treatment of probabilities) and
then apply the weighing function of our chosen risk measure to the relevant set of
loss scenarios.

Spectral Risk Measures

If we are prepared to “buy into” risk-aversion theory,13 we can go on to relate coherent
risk measures to a user’s risk aversion. This leads us to the spectral risk measures
proposed by Acerbi (2002, 2004). Let us define more general risk measures Mφ that
are weighted averages of the quantiles of our loss distribution:

Mφ =
∫ 1

0
φ(p)q p dp, (5)

where the weighting function, φ(p), also known as the risk spectrum or risk-aversion
function, remains to be determined.

The ES is a special case of Mφ obtained by setting φ(p) to the following:

φ(p) =
{

1/(1 − α) if p > α

0 if p ≤ α.
(6)

As the name suggests, the ES gives tail-loss quantiles an equal weight of 1/(1 − α),
and other quantiles a weight of 0.

13 Risk-aversion theory requires us to specify a user risk-aversion function, and this can provide
considerable insights (as shown in the following text) but can also be controversial. Among
the potential problems it might encounter are: (1) the notion of a risk-aversion function can
be hard to motivate when the user is a firm, or an employee working for a firm, rather than,
say, an individual investor working on their own behalf; (2) one might argue with the type
of risk-aversion function chosen; and (3) one might have difficulty specifying the value that
the risk aversion parameter should take.
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However, we are interested here in the broader class of coherent risk measures. In
particular, we want to know what conditions φ(p) must satisfy in order to make Mφ

coherent. The answer is the class of (nonsingular) spectral risk measures, in which
φ(p) takes the following properties:14� Nonnegativity: φ(p) ≥ 0 for all p belong in the range [0, 1].� Normalization:

∫ 1
0 φ(p) dp = 1.� Increasingness: φ(p1) ≤ φ(p2) for all 0 ≤ p1 ≤ p2 ≤ 1.

The first condition requires that the weights are nonnegative, and the second requires
that the probability-weighted weights should sum to 1. Both are obvious. The third
condition is more interesting. This condition is a direct reflection of risk-aversion, and
requires that the weights attached to higher losses should be bigger than, or certainly
no less than, the weights attached to lower losses. The message is clear: the key to
coherence is that a risk measure must give higher losses at least the same weight as lower
losses. This explains why the VaR is not coherent and the ES is; it also suggests that
the VaR’s most prominent inadequacies are closely related to its failure to satisfy the
increasingness property.

It is important to appreciate that the weights attached to higher losses in spectral
risk measures are a direct reflection of the user’s risk aversion. If a user has a “well-
behaved” risk-aversion function, then the weights will rise smoothly, and the more
risk-averse the user, the more rapidly the weights will rise.

To obtain a spectral risk measure, we must specify the user’s risk-aversion function.
This decision is subjective, but can be guided by the economic literature on risk-
aversion theory. For example, we might choose an exponential risk-aversion function
that would lead to the following weighting function:

φ(p) = ke−k(1−p)

1 − e−k
, (7)

where k > 0 is the user’s coefficient of absolute risk aversion. This function satisfies
the conditions of a spectral risk measure, but is also attractive because it is a simple
well-behaved function of a single parameter k. To obtain our risk measure, we then
specify the value of k and plug equation (7) into equation (5).

14 See Acerbi (2004, proposition 3.4). Strictly speaking, the set of spectral risk measures is the
convex hull (or set of all convex combinations) of E Sα for all α belonging to [0, 1]. There is
also an “if and only if” connection here: a risk measure Mφ is coherent if and only if Mφ is
spectral and φ(p) satisfies the conditions indicated in the text. There is also a good argument
that the spectral measures so defined are the only really interesting coherent risk measures:
Kusuoka (2001) and Acerbi (2004, pp. 180–182) show that all coherent risk measures that
satisfy the two additional properties of comonotonic additivity and law invariance are also
spectral measures. The former condition is that if two random variables X and Y are comono-
tonic (i.e., always move in the same direction), then ρ(X + Y) = ρ(X) + ρ(Y); comonotonic
additivity is an important aspect of subadditivity, and represents the limiting case where
diversification has no effect. Law-invariance is equivalent to the (for practical purposes es-
sential) requirement that a measure be estimable from empirical data.
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The connection between the φ(p) weights and user risk-aversion sheds further light
on our earlier risk measures. We saw earlier that the ES is characterized by all losses
in the tail region (i.e., the 100(1 − α) percent largest losses) having the same weight.
If we interpret the weights as reflecting the user’s attitude toward risk, this can only
be interpreted as the user being risk-neutral, at least between tail-region outcomes.
So the ES is appropriate if the user is risk-neutral at the margin in this region. Since
we usually assume that agents are risk-averse, this would suggest that the ES might
not always be such a good risk measure, notwithstanding its coherence. If we believe
that a particular user is risk-averse, we should have a weighting function that rises as
p gets bigger, and this rules out the ES.15

The implications for the VaR are much worse. With the VaR, we give a large weight
to the loss associated with a p-value equal to α, and we give a lower (indeed, zero)
weight to any greater loss. The implication is that the user is actually risk-loving (i.e.,
has negative risk-aversion) in the tail loss region, and this is highly uncomfortable.16

To make matters worse, since the weight drops to zero, we are also talking about risk-
loving of a rather extreme sort. If the ES is an inappropriate measure for a risk-averse
user, then the VaR is much more so.

Distortion Risk Measures

Distortion risk measures are closely related to coherent measures. They were in-
troduced by Denneberg (1990) and Wang (1996) and have been applied to a wide
variety of insurance problems, most particularly to the determination of insurance
premiums.17

A distortion risk measure is the expected loss under a transformation of the cumula-
tive density function (cdf) known as a distortion function, and the choice of distortion
function determines the risk measure. More formally, if F (x) is some cdf, the trans-
formation F ∗(x) = g(F (x)) is a distortion function if g : [0,1] → [0,1] is an increasing
function with g(0) = 0 and g(1) = 1. The distortion risk measure is then the expectation
of the random loss X using probabilities obtained from F ∗(x) rather than F (x). Like

15 The downside risk literature also suggests that the use of the ES as the preferred risk measure
indicates risk-neutrality (see, e.g., Bawa, 1975; Fishburn, 1977). Coming from within an ex-
pected utility framework, these articles suggest that we can think of downside risk in terms
of lower-partial moments (LPMs), which are probability-weighted deviations of returns r
from some below-target return r∗: more specifically, the LPM of order k ≥ 0 around r∗ is
equal to E[max(0, r − r∗)k]. The parameter k reflects the degree of risk aversion, and the user
is risk-averse if k > 1, risk-neutral if k = 1, and risk-loving if 0 < k < 1. However, we would
only choose the ES as our preferred risk measure if k = 1 (Grootveld and Hallerbach, 2004,
p. 36). Thus the use of the ES implies that we are risk-neutral.

16 Following on from the last footnote, the expected utility-downside risk literature also indi-
cates that we obtain the VaR as the preferred risk measure if k = 0. From the perspective of
this framework, k = 0 indicates an extreme form of risk-loving. Hence, two very different
approaches both give the same conclusion that VaR is only an appropriate risk measure if
preferences exhibit extreme degrees of risk-loving.

17 The roots of distortion theory can be traced further back to Yaari’s dual theory of risk (Yaari,
1987), and in particular the notion that risk measures could be constructed by transforming the
probabilities of specified events. Going further back, it also has antecedents in the risk neutral
density functions used since the 1970s to price derivatives in complete markets settings.
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coherent risk measures, distortion risk measures have the properties of monotonic-
ity, positive homogeneity, and translational invariance; they also share with spectral
risk measures the property of comonotonic additivity. To make good use of distorted
measures, we would choose a “good” distortion function, and there are many distor-
tion functions to choose from. The properties we might look for in a “good” distortion
function include continuity, concavity, and differentiability; of these, continuity is nec-
essary and sufficient for the distortion risk measure to be coherent, and concavity is
sufficient (Wang, Young, and Panjer, 1997; Darkiewicz, Dhaene, and Goovaerts, 2003).

The theory of distortion risk measures also sheds further light on the limitations of
VaR and ES. The VaR can be shown to be a distortion risk measure obtained using the
binary distortion function:

{
g(u) = 1
g(u) = 0

for

{
u ≥ α

u < α.
(8)

This is a poor function because it is not continuous, due to the jump at u = α; and since
it is not continuous, it is not coherent. Thus, from the perspective of distortion theory,
the VaR is a poor risk measure because it is based on a “badly behaved” distortion
function. For its part, the ES is a distortion risk measure based on the distortion
function: {

g(u) ≥ (u − α)/(1 − α)
g(u) = 0

for
{

u ≥ α

u < α.
(9)

This distortion function is continuous, which implies that the ES is coherent. However,
this distortion function is still flawed: it throws away potentially valuable information,
because it maps all percentiles below α to a single point u; and it does not take full
account of the severity of extremes, because it focuses on the mean shortfall. As a result
of these weaknesses, the ES can fail to allow for the mitigation of losses below VaR,
can give implausible rankings of relative riskiness, and can fail to take full account of
the impact of extreme losses (Wirch and Hardy, 1999; Wang, 2002a).

Various distortion functions have been proposed to remedy these sorts of problems,
but the best known of these is the following, the famous Wang Transform (Wang,
2000):

g(u) = �[�−1(u) − λ], (10)

where �(·) is the standard normal distribution function and λ is a market price of risk
term that might be proxied by something like the Sharpe ratio. The Wang Transform
has some attractive features: for example, it recovers CAPM and Black-Scholes under
normal asset returns, and it has proven to be very useful for determining insurance
premiums. However, for present purposes what we are most interested in here is that
this distortion function is everywhere continuous and differentiable. The continuity
of this distortion function means that it produces coherent risk measures, but these
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measures are superior to the ES because they take account of the losses below VaR,
and also take better account of extreme losses (Wang, 2002a).

Wang (2002b) also suggests a useful generalization of the Wang Transform:

g(u) = �[b�−1(u) − λ], (11)

where 0 < b < 1. This second transform provides for the volatility to be distorted
as well, and Wang suggests that this is good for dealing with extreme or tail risks
(e.g., those associated with catastrophe losses). Another possible transformation is
the following, also due to Wang (2002b):

g(u) = Q[�−1(G(u)) − λ], (12)

where Q is a Student’s t-distribution with degrees of freedom equal to our sample
size minus 2, and G(u) is our estimate of the distribution function of u. He suggests
that this transformation would be good for dealing with the impact of parameter
uncertainty on premium pricing or risk measurement.18

Other Risk Measures

There are also many other types of QBRM (and related risk measures) that we have
not had space to discuss at any length. These include:� Convex risk measures (e.g., Heath, 2001; Fritelli and Gianin, 2002): These risk meas-

ures are based on an alternative set of axioms to the coherent risk measures, in
which the axioms of subadditivity and linear homogeneity are replaced by the
weaker requirement of convexity.� Dynamic risk measures (e.g., Wang, 1999; Pflug and Ruszczyński, 2004 ): These are
multi-period axiomatic risk measures and that are able to take account of interim
cash flows, which most coherent measures are not. These risk measures are therefore
potentially more useful for longer-term applications where interim income issues
might be more important.� Comonotonicity approaches (e.g., Dhaene et al., 2003a,b): These apply to situations
where we are interested in the sums of random variables and cannot plausibly as-
sume that these random variables are independent. An example might be insurance
claims that are driven off the same underlying risk factors (e.g., earthquakes). In
such cases, the dependence structure between the random variables might be cum-
bersome or otherwise difficult to model, but we can often work with comonotonic
approximations that are more tractable.� Markov bounds approaches (e.g., Goovaerts et al., 2003b): These approaches derive
risk measures based on the minimization of the Markov bound for a tail probability.
This leads to a risk measure π that satisfies E[φ(S, π ) = αE[v(S)], where S is a
random variable, φ(S) and v(S) are functions of that random variable, and α ≤ 1
is some exogenous parameter. These approaches provide a unified framework that

18 Many other distortion functions have also been proposed, and a useful summary of these is
provided by Denuit et al. (2005, pp. 84–95).
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permits the derivation of well-known premium principles and other risk measures
that arise as special cases by appropriate specifications of φ and v.19� “Best practices” risk measures (Goovaerts et al., 2003a): These are based on the
argument that there are no sets of axioms generally applicable to all risk prob-
lems. The most appropriate risk measure sometimes depends on the economics
of the problem at hand and the use to which the risk measure is to be put. They
give as an example the case of the insurance premium for two buildings in the
same earthquake zone, where good practice would suggest that the insurer charge
more than twice what it would have charged for insuring either building on its
own. In such a case, the “best” premium is not even subadditive. Their work sug-
gests that actuaries might need to pay more attention to the context of a prob-
lem, and not just focus on the theoretical properties of risk measures considered a
priori.20

Some Tentative Conclusions

All these measures are indicative of the wide variety of risk measures now avail-
able, but there is as yet little agreement on any major issues other than that the VaR
is a poor risk measure. Various (in comparison, minor) problems have also been
pointed out regarding the ES (i.e., that it is not consistent with risk-aversion, and
that it is inferior to the Wang Transformation). Going beyond these, the broader fam-
ilies of risk measures—in particular the families of coherent, spectral, and distortion
risk measures—give us many possible risk measures to choose from. However, in
some respects, we are spoilt for choice and it is generally not easy to identify which
particular one might be best. Nor is there any guarantee that an arbitrarily chosen
member of one of these families would necessarily be a “good” risk measure: for ex-
ample, the outcome of a badly designed stress test would be a coherent risk meas-
ure, but it would not be a good risk measure. We therefore need further criteria to
narrow the field down and (hopefully) eliminate possible bad choices, but any cri-
teria we choose are inevitably somewhat ad hoc. At a deeper level, there is also no
straightforward way of determining which family of risk measures might be best:
all three families have different epistemological foundations, even though they have
many members in common, and there is no clear way of comparing one family with
another.

Under these circumstances, the only solid advice we can offer at the moment is: in
general, avoid the VaR as a risk measure, and try to pick a risk measure that has good
theoretical properties and seems to fit in well with the context at hand.

19 These include the mean value, Swiss, zero-utility, mixture of Esscher premium principles,
Yaari’s dual theory of risk (Yaari, 1987) and the ES. For more on these premium principles,
see, e.g., Bühlmann (1970), Gerber (1974), Gerber and Goovaerts (1981), and Goovaerts et al.
(1984).

20 And this list is by no mean exhaustive. For example, there are additional approaches based
on one-sided moments (e.g., Fischer, 2003), Bayesian Esscher scenarios (Siu, Tong, and
Yang, 2001a), imprecise prevision approaches (Pelessoni and Vicig, 2001), entropy-based
approaches (McLeish and Reesor, 2003), consistent risk measures (Goovaerts et al., 2004), etc.
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ESTIMATION METHODS

We now turn to the estimation of our risk measures. This requires that we estimate all
or part of the loss distribution function. In doing so, we can think of a set of cumulative
probabilities p as given, and we seek to estimate the set of quantiles q p associated with
them. The distribution function might be continuous, in which case we would have a
function giving q p in terms of a continuously valued p, or it might be discrete, in which
case we would have N different values of q p for each p equal to, say, 1/N, 2/N, etc.

Once we have estimated the quantile(s) we need, obtaining estimates of the risk mea-
sures is straightforward:� If our risk measure is the VaR, our estimated risk measure is the estimated quan-

tile (1).� If our risk measure is a coherent or spectral one, we postulate a weighting function
φ(p), discretize (5), estimate the relevant quantiles, and take our coherent risk
estimate as the suitably weighted average of the quantile estimates. The easiest
way to implement such a procedure is to break up the cumulative probability
range into small, equal, increments (e.g., we consider p = 0.001, p = 0.002, etc.). For
each p, we estimate the corresponding quantile, q p, and our risk estimate is their
φ(p)-weighted average.21� If our risk measure is a distortion one, we first discretize the “original” probabili-
ties (to get p = 0.001, p = 0.002, etc.) and estimate their matching quantiles, the q p.

We then distort the probabilities by running them through the chosen distortion
function, and our estimated risk measure is the weighted average of the quantile es-
timates, where the weights are equal to the increments in the distorted (cumulative)
probabilities.

From a practical point of view, there is very little difference in the work needed to
estimate these different types of risk measure. This is very helpful as all the building
blocks that go into quantile or VaR estimation—risk drivers, databases, calculation
routines, etc.—are exactly what we need for the estimation of the other types of risk
measures as well. Thus, if an institution already has a VaR engine, then that engine
needs only small adjustments to produce estimates of more sophisticated risk meas-
ures: indeed, in many cases, all that needs changing is the last few lines of code in
a long data processing system. This means that the costs of upgrading from VaR to
more sophisticated risk measures are very low.

We can now focus on the remaining task of quantile (or equivalently, density) estima-
tion. However, this is not a trivial matter, and the literature on quantile/VaR/density
estimation is vast. Broadly speaking, there are three classes of approach we can take:� Parametric methods.

21 In cases where the risk measure formula involves an integral, we also have to solve the
relevant integral, and might do so using analytical methods (where they can be applied) or
numerical methods (e.g., quadrature methods such as the trapezoidal rule or Simpson’s rule,
Gauss-Legendre, pseudo- or quasi-random number integration methods, etc.).
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� Nonparametric methods.� Stochastic (Monte Carlo) simulation methods.

We now briefly consider each of these in turn.22

Parametric Methods

Parametric approaches estimate quantiles based on the assumption that a loss dis-
tribution takes a particular parametric form, and the first task is to determine what
this might be. The choice of distribution would be guided by informal diagnostics
(e.g., use of quantile–quantile plots, mean excess function plots, etc.) in which we
informally check the goodness-of-fit of a variety of possible distributions. The choice
of distribution might also be guided by theoretical considerations if there are reasons
to think that the distribution might take a particular form: for example, if we were
dealing with extremes, we would use an extreme-value distribution.23 It would also
be guided by past experience (e.g., knowledge that particular distributions tend to
provide good fits for similar data sets). In choosing a distribution, we would also
have to take account of any conditionality in the loss process: losses might follow a
temporal pattern (i.e., depend on past losses), or might be driven off some other ran-
dom variables (e.g., losses might depend on the processes driving, say, earthquakes).
In such cases, we would fit the loss distribution conditional on the relevant driving
factors rather than unconditionally. The key is to ensure (as best we can!) that we
choose the “right” parametric (conditional or unconditional) distribution—the one
that best fits the characteristics (e.g., the sample moments) of the distribution we are
trying to model. Depending on the problem, the distribution chosen might be any
of a large number, including: normal, lognormal, t, log − t, stable Paretian, elliptical,
hyperbolic, Pareto, normal-mixture, jump-diffusion, Pearson-family, Johnson-family,
skew-t, extreme-value, etc.

Having identified the distribution, we can then look up that distribution’s quan-
tile formula. However, the quantile formula will involve parameters that need to
be estimated, and we would estimate these parameters using a method suitable to
the selected distribution: this method might be maximum-likelihood, least-squares,
method-of-moments, semiparametric, etc. We then plug the parameter estimates into
our quantile equation to obtain our quantile estimates.

22 The foregoing summary is inevitably brief. More detailed treatments of quantile estimation
are to be found, e.g., in Duffie and Pan (1997), Crouhy, Galai, and Mark (2001a) or Dowd
(2005a).

23 If we are dealing with extreme events (e.g., catastrophes, large claims, ruin probabilities
for solvent institutions, extreme mortality risks, etc.), then it is important to use an extreme
value (EV) method. Typically, this would be based on some version of Generalized EV theory
(which models extremes using Weibull, Gumbel, or Fréchet distributions) or peaks-over-
threshold theory (which models exceedances over a high threshold using a Generalized
Pareto distribution). For more on EV theory and its implementation and/or some illustrative
discussions of its insurance applications, see Embrechts, Klüppelberg, and Mikosch (1997),
Embrechts, Resnick, and Samorodnitsky (1999), Reiss and Thomas (1997), Cotter (2001), and
Cebrián, Denuit, and Lambert (2003).



210 THE JOURNAL OF RISK AND INSURANCE

Where we are dealing with multiple distributions (e.g., a collection of loss distributions
applying to different positions), we would want to model a multivariate distribution.24

Multivariate approaches require us to either specify a particular multivariate distri-
bution (e.g., multivariate normal, multivariate t, etc.) with the dependence structure
between the random variables modeled by a correlation matrix, or to specify a cop-
ula function, in which case we would choose marginal distributions for each random
variable and a suitable copula function to model their dependence structure. Corre-
lation approaches are more familiar and easier to work with, but can (usually) only
be applied to elliptical distributions; on the other hand, copula approaches are much
more flexible because they allow us to fit different marginal distributions to different
risk factors and also allow us a much wider range of possible dependence structure.25

However, they are also harder to work with and, in practice, usually require stochastic
simulation.

Parametric methods are suited to risk measurement problems where the distributions
concerned are known or reliably estimated. However, this condition is often not met in
practice, especially when we have small sample sizes, and in such circumstances they
can be very unreliable. Furthermore, they are generally only appropriate for relatively
“simple” risk measurement problems, which few insurance problems are.

Nonparametric Methods

Nonparametric methods seek to estimate risks without making strong assumptions
about the distribution under consideration. Instead of imposing some parametric dis-
tribution on the data, they let the data speak for themselves as much as possible,
and estimate risk measures from the empirical distribution. Relative to parametric ap-
proaches, nonparametric approaches have the major attraction that they avoid the
danger of misspecifying the distribution, which could lead to major errors in our es-
timated risk measures. They are based on the assumption that the near future will be
sufficiently like the recent past that we can use the recent historical data (as reflected
in the empirical distribution) to forecast the future. Their usefulness, in practice, there-
fore, depends on whether this assumption holds in any situation. Fortunately, it often
does hold, and nonparametric methods have a good track record. On the other hand,
they can be inaccurate where this assumption does not hold. Their estimates can also
be imprecise, especially in the tail regions where data are especially sparse. As a result,
nonparametric methods often have difficulty handling extremes.

The most common nonparametric approach is HS, in which we read off quantiles from
a histogram of historical losses, but can be refined in many ways. We can replace his-
tograms with kernels; these are more sophisticated nonparametric density estimators,
and, in effect, seek to smooth the jagged edges of histogram columns without impos-
ing strong assumptions on the data. We can also refine HS using weighted HS (e.g., we

24 We might also want to work with multivariate distributions because they are more flexible
and allow us to change the weights of the subportfolio positions from one period to the
next, which is not easily done with a univariate approach that implicitly takes the portfolio
composition as given.

25 Frees and Valdez (1998) give a readable introduction to the use of copulas in insurance risk
measurement. For more on copulas and their methodology, see also, e.g., Cherubini, Luciano,
and Vecchiato (2004).
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can weight data by age, volatility, or correlation to take account of changing market
circumstances), neural networks (which also allow us to adjust for changing mar-
ket circumstances), bootstrap methods (which help to gauge accuracy), and principal
components and factor analysis methods (which are very useful for dimensionality
reduction, which can be a concern when there is a large number of random variables
to be considered).

We can also extend nonparametric methods to include nonhistorical scenarios. For
example, we might construct some hypothetical scenarios, give these scenarios some
probabilities, and then apply nonparametric methods to mixtures of historical and hy-
pothetical scenarios. Adding hypothetical events to our data set helps remedy the main
weaknesses of historically-based nonparametric approaches—namely, their complete
dependence on the historical data set and their difficulties handling extremes—and
also allows an integrated and consistent treatment of historical and hypothetical
scenarios.26

Stochastic Simulation Methods

The third class of approach is stochastic simulation (or Monte Carlo simulation) meth-
ods. These methods simulate the loss distribution using a random number simulation
engine,27 and they are much more powerful and flexible than the earlier methods. This
is because the loss distribution is derived from an underlying calculation engine that
can take account of virtually any level of complexity. The basic method is to specify
the model “behind” the loss distribution: we specify all the factors (e.g., we specify the
exogenous and random variables, the distributions, the relationships between differ-
ent variables, parameter calibration,28 etc.) that together determine the loss. Having
set this model up, we then carry out a large number of simulation trials, each of
which produces a simulated loss based on a set of simulated realizations of the “driv-
ing” risk factors, which are obtained by taking random drawings from their specified
distributions. If we carry out a large number of such trials, then the distribution of
simulated losses obtained in this way will provide a good approximation to the true
but unknown loss distribution that we are seeking. We then obtain estimates of our
risk measures by applying nonparametric methods to this simulated loss distribution.

26 Ways of implementing this type of approach are discussed further by Berkowitz (2000) and
Aragonés, Blanco, and Dowd (2001).

27 These “random” numbers are of course never truly random. They are either “pseudo” random
numbers generated by (so-called) random number generators, which produce sequences of
numbers that try to mimic many of the properties of “true” random numbers, or they can
be “quasi” random numbers, sometimes known as low-discrepancy numbers, which do not
seek to produce “random-looking” numbers, but which often produce superior results in
higher-dimension problems. For more on these issues, see, e.g., Broadie and Glasserman
(1998) or Jäckel (2002).

28 Parameters might be calibrated using statistical methods and/or “judgment.” It is important
to appreciate that the parameters are forward-looking and even the best statistical methods
are inevitably backward looking. Thus, we need to “adjust” any historically based estimates
with our best judgment on how the future might differ from the past. This can be important
in such areas as modeling mortality or financial returns, where the foreseeable future [sic]
might plausibly be rather different from the recent past.
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Stochastic methods are ideally suited to a great range of risk measurement prob-
lems, and will often provide the best way of dealing with the problems we are likely
to encounter: they are particularly good at dealing with complicating factors—such
as those considered in the next section—that other approaches often cannot handle.
We can also refine stochastic approaches (e.g., using stratified sampling and impor-
tance sampling) to focus on any particular features of the loss function that we might
be especially interested in (e.g., its extreme tail). Stochastic methods are therefore the
methods of choice for the vast majority of “complex” risk problems, and we shall have
more to say on them in the next two sections.29

COMPLICATING FACTORS IN INSURANCE RISK MEASUREMENT PROBLEMS

Insurance risk problems often involve many complicating features, which credible
risk measurement can often not ignore, and which will often necessitate that we use
stochastic simulation methods. These complicating factors include:� Valuation problems: Most insurance positions are valued using accounting stand-

ards. These have the advantages that they are formula-driven and their limita-
tions are well understood. However, book values are often very misleading and
frequently lead to excessive smoothing: this means that they can have great diffi-
culty valuing derivatives positions such as options. The problems of book valuation
have prompted accounting authorities to move toward market value (or marked-to-
market) accounting. This works well for assets traded in liquid secondary markets,
but becomes more subjective when markets are thin or nonexistent, as is the case
for many insurance positions. Mark-to-model valuation is sometimes used, but this
is subjective and unreliable, and open to abuse as well as error. In practice, many
insurance companies therefore have little choice but to use an uneasy (and gener-
ally inconsistent) combination of book, marked-to-market, and marked-to-model
valuation.� “Badly behaved” and heterogeneous risk factors: Risk factors often exhibit mean-
reversion, asymmetry, heavy tails, jumps, and nonstationarity, and such features
often necessitate some form of stochastic simulation.30 Insurance problems also
typically involve multiple risk factors that are often very heterogeneous. In fact,
the risk factors driving underwriting risks, market risks, credit risks, and opera-
tional risks are likely to have very different distributions: underwriting risks will
often require models of underlying “real” processes (e.g., for weather, tempera-
ture, earthquakes, mortality, etc.), and often require models of both the frequency

29 The downsides of stochastic methods are that they can be less easy to use than some al-
ternatives, they require a lot of calculations (which can be time-intensive, and sometimes be
beyond our computing capability), and they often have difficulty with early-exercise features
in options. However, the downsides are fairly minor: ease of use is not much of a problem for
actuaries (and there is also a lot of good user-friendly software available as well), calculation
times are falling rapidly thanks to improvements in computing power, and methods have
recently become available to handle early exercise (such as those of Andersen, 2000; Longstaff
and Schwartz, 2001; etc.).

30 Some examples of how these processes might be modeled are given in Dowd (2005a, chs. 8
and 9).
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and the severity of loss events;31 market risks will require models of key stock and
bond indices, exchange rates, commodity prices, etc. (and some of these might be
“badly behaved” too); credit risks will require models of default processes, de-
fault correlations, ratings migrations, and so on;32 operational risks involve many
further complicating factors;33 and there are also liquidity risk issues to be consid-
ered as well.34 The heterogeneity of these various risk factors also makes aggrega-
tion difficult, and will often require us to model multivariate distributions using
copulas.� Nonlinearity: Position values are often nonlinear functions of risk factors. For ex-
ample, property losses might be complicated functions of risk factors such as hur-
ricanes, earthquakes, or temperatures, and many derivatives positions will have
varying sensitivities to underlying risk factors (e.g., the sensitivities of options po-
sitions depend on the extent to which they are in or out of the money). There can
also be complicated conditionality relationships between position values and risk
factors. Conditionality can arise from many sources, but in insurance contexts of-
ten arises from the presence of loading factors and thresholds. These thresholds
might be deductibles, reference losses, stop-loss limits, retention levels, etc., and
they might be nominal, proportional, per occurrence, per risk, deterministic, or
stochastic. We can also get multiple thresholds (e.g., layers in reinsurance treaties)
and these can sometimes be stochastically related.� Optionality: Insurance problems are often riddled with financial options (e.g., mini-
mum interest guarantees, surrender options, guaranteed annuity rates, etc.; see also
Jørgensen, 2001). Often, these options are quite exotic (e.g., have “nonstandard”
underlying processes) and/or allow for early exercise, and such features often re-
quire that they be valued using stochastic methods. Insurance problems also often
exhibit many real options too (e.g., franchise options, options to expand/contract,
etc.). Real options have their own difficulties: valuation is often complicated by
market incompleteness, and many real options are intrinsically complicated com-
pound options (i.e., options on options) that are not always easy to handle.� Parameter and model risk: Insurance risk problems are often subject to considerable
parameter and model risk, and this can lead to major errors in estimates of risk
measures. These problems can be especially difficult in situations where we have
relatively little data to estimate parameters or select models reliably (e.g., where we
have small sample sizes or are dealing with extremes).35 These sorts of problems

31 There are many examples of such models in the references cited in this article. Some more
general discussions of these models are to be found in Klugman, Panjer, and Wilmot (1998)
and Denuit et al. (2005).

32 The complexities of credit risk issues are discussed further, e.g., in Crouhy, Galai, and Mark
(2000, 2001a, chs. 7–13), and in Alexander and Sheedy (eds.) (2004).

33 For more on operational risks, see Alexander (ed.) (2003), the articles in the Fall (2002) issue
of the Journal of Risk Finance, or Tripp et al. (2004).

34 These issues are discussed further in Kelliher et al. (2004) and Dowd (2005a, ch. 14).
35 For example, evidence from a number of empirical studies suggests that the VaR models used

by financial institutions can be quite inaccurate (see, e.g., Beder, 1995; Marshall and Siegel,
1997; Berkowitz and O’Brien, 2002). In the insurance area, there is also significant evidence
that published mortality tables are subject to significant parameter risk (see, e.g., Olivieri,
2001; Cairns, Blake, and Dowd, 2005).
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also manifest themselves for many insurance-specific reasons as well, e.g., where
losses are reported but not adjusted, incurred but not reported, etc., and where
actuaries are working with mortality tables that are subject to aggregate mortality
risk, where there are issues about smoothing methods, etc.36� Long horizons: Insurance problems can have long horizons (e.g., problems involv-
ing life insurance, annuities, and runoffs can have horizons of decades). Longer
horizons increase the pressure to face up to the problems of specifying a dynamic
portfolio management strategy, and taking account of policyholder behavior; they
increase the importance of inbuilt options (e.g., options to cash out, convert, etc.,
barrier options, and real options); they aggravate vulnerability to parameter and
model risk, because we are effectively extrapolating from the estimated model
over a longer period; and they make model validation more difficult, because it
becomes harder to accumulate a good track record that can be used for validation
purposes.� Other complicating factors: There can also be many further complicating factors,
such as: coinsurance features; captive arrangements (e.g., commingling arising
from multiparent captives, etc.); unit-linking; with-profits and endowment fea-
tures; securitization and ART;37 integrated risk management; committed capi-
tal features; liquidity risks; credit risks (e.g., collateral requirements, credit en-
hancement features, etc.); the impact of risk management strategies; and tax
issues.

EXAMPLES OF INSURANCE RISK MEASUREMENT PROBLEMS

We now consider some illustrative insurance problems that involve the estimation
of QBRMs. These are chosen to show how some of the issues and methods we have
discussed can be applied to insurance problems, and to highlight the thinking behind
the application.38

36 The problems of parameter and model are discussed in more detail in Derman (1997), Geske
(1999), Cairns (2000), Dowd (2000; 2005a, ch. 16), Kato and Yoshiba (2000), Siu, Tong, and
Yang (2001b), Hirsa, Courtadon, and Madan (2003), or Cairns, Blake, and Dowd (2005).

37 For more on securitisation and ART issues, see, e.g., Canabarro et al. (2000), Culp (2002), and
Swiss Re (2003).

38 We would also like to make some points about good practice that apply in every case: (1) It
is always important to carry out some preliminary data analysis to “get to know” our data,
identify their characteristics (e.g., their sample moments) and possible outliers. This analysis
should also involve some graphical analysis (e.g., QQ plots) to form a tentative view of what
distributions might fit the data. (2) We should always be aware of potential parameter and
model risk, and it is often good practice to look for ways of trying to estimate our exposure
to them (e.g., by estimating confidence intervals for our risk measures).We can estimate
parameter risk if we treat the parameters as random variables in their own right, specify the
distributions from which the parameters are drawn, and then embed this parameter model
is a broader stochastic simulation framework. We can quantify model risk by resorting to
mixtures of distributions. These methods are explained further in Dowd (2000, 2005a, ch. 16).
Alternatively, we can quantify these risks using Bayesian methods (e.g., as in Siu, Tong, and
Yang, 2001b).
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Estimating a Univariate Loss Distribution39

One of the simplest applications is the estimation of a univariate loss distribution.
We would begin by identifying the risk factor(s) involved, which might be the loss
itself, or the random variables driving it (e.g., seismic activity, outbreaks of disease,
mortality experience, etc.). Where the loss is to be modeled conditional on risk factors,
we also need to specify the nature of the relationship between the loss variable and
the risk factor(s). We then need to model the risk factor(s), and these models can
be quite sophisticated. We may also have to deal with further complications such
as embedded options, unobserved variables, and so forth. We also have to estimate
(and/or calibrate) any parameters. Depending on the context, we might be more
interested in the central mass of the loss distribution (e.g., if we are concerned with
expected claims, etc.) or the tails (e.g., if we are working with exceedances, extremes,
etc.), and this will also influence the distribution(s) chosen. The resulting model might
then be parametric, nonparametric, or some combination (i.e., semiparametric), but
the actual calculations are more likely than not to involve some form of stochastic
simulation.40

Modeling Multiple Loss Functions

A natural extension is where we wish to obtain the distribution of some aggregate
loss from the loss distributions of constituent positions. We can sometimes handle
this type of problem using a multivariate version of the univariate approach just
mentioned, going through much the same steps but with multivariate rather than
univariate models. However, such an approach is often restrictive (e.g., because it
forces marginal distributions to be the same, and because it only allows a limited
range of dependence between the different loss variables). It is therefore generally
better to model multivariate losses using copulas, and this would involve the follow-
ing two-stage modeling strategy. In the first stage, we model the various individual
loss distributions in exactly the same way as before (i.e., we obtain their marginal
distributions). The second stage then involves the copula analysis: we select and fit
a copula function to represent the dependence structure between the different loss
variables. This function provides a way of representing the multivariate distribution
which takes as its arguments the marginal distribution functions of our individual

39 Naturally, this problem of modeling a loss distribution also implies a corresponding
probability-of-ruin problem: for example, if we obtain a quantile from the loss distribution
and interpret this as the initial reserve or capital, then the probability of ruin is the probability
of a loss exceeding this reserve. We can therefore look at this same problem in probability-
of-ruin terms. From this perspective, we can see that the risk measure estimation methods
discussed here allow actuaries a much more flexible approach to probability of ruin than is
possible using classical actuarial theory, because it no longer requires them to make the old
assumptions (e.g., of compound Poisson processes, independence, etc.) that were made in
the past to achieve tractable closed-from solutions. Instead, we can make any assumptions
we like about loss processes and if necessary rely on simulation methods to give us numerical
answers.

40 Some illustrative examples are: Klugman and Parsa (1999) and Bolancé, Guillen, and Nielsen
(2003), who model insurance losses; O’Connor, Golden, and Reck (1999), who model defaults
in corporate lending portfolios; Cebrián, Denuit, and Lambert (2003), who model large in-
surance claims using a generalized Pareto model; and Canabarro et al. (2000), Clark (2002),
Woo (2002), and Daneshvaran and Morden (2004), who model natural catastrophes.
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loss variables. We then input the fitted marginals to the fitted copula to obtain the
aggregate loss distribution that we are seeking,41 and we estimate our desired risk
measures from the estimated aggregate loss distribution.

Scenario Analyses

Scenario analyses are very commonly used for insurance/actuarial problems. To con-
struct a scenario, we first specify the portfolio we are concerned about (e.g., property,
casualty, life, country, type of product, etc.). We then identify the risk factors involved,
and, in doing so, it often helps to distinguish between general economic factors and
underwriting factors. The former refer to macroeconomic conditions, fluctuating in-
terest rates, equity indices, inflation, FX rates, changes in insurance market conditions,
etc. The latter refer to factors that might trigger large claims, and are often (but not
always) specific to product lines: these might be earthquakes, windstorms, cyclones,
hurricanes, fires, environmental pollution, asbestos, tobacco, motorway pile ups, nat-
ural catastrophes, plane crashes, infectious diseases, war, terrorism, pollution, changes
in mortality or morbidity trends, changes in legal opinions, regulatory changes, etc.
Underwriting risk factors might be specific to particular portfolios or product lines,
but there are connections across portfolios to be considered as well, and identifying
common risk factors can sometimes be difficult.

Once risk factors are identified, we then have to model them. Often, modeling boils
down to specifying some kind of loss distribution that would be calibrated using past
data and/or expert judgment. It is also sometimes possible to assume that loss events
are independent, which greatly simplifies the modeling process. However, we also
have to bear in mind that some types of events (e.g., changes in liability) have long-
term effects, so assumptions of independence are often not appropriate: this leads us
into methods of handling temporal dependence (e.g., comonotonic approaches, etc.).
We might also be concerned about scenarios affecting investments, credit risk expo-
sures (e.g., in relation to reinsurers), and so on. The latter are becoming increasingly
important as ART practices spread, and raise difficult and complex issues relating
to default probabilities (including default probability transition matrices), recovery
rates, the modeling of creditworthiness, the impact of credit enhancement features,
and so forth. Once we have modeled our risk factors, we specify our exposures to
them, and then aggregate to form some sense of the overall impact of the scenarios
considered. It goes without saying that we should try to consider all relevant risk
factors, take account of interdependencies across portfolios, and also take account of
the impact of risk management strategies.

Various guidelines have been suggested to assist the process of scenario generation.
It is important to ensure that scenarios are plausible, consistent, and do not violate
no-arbitrage conditions. Scenarios should also embody plausible assumptions about
the sensitivities of positions to underlying risk factors. Modelers need to take account
of plausible interactions between market, credit, and liquidity risks, and also be on

41 Some nice examples of copula modeling in insurance are given in Frees and Valdez (1998) and
Klugman and Parsa (1999): both analyze cases where the marginal distributions for losses
and allocated loss adjustment expenses (ALAE) are modeled using Pareto distributions, and
their joint dependence is modeled using Archimedean copulas.
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their guard for potential pitfalls (such as failing to consider losses that occur when
risk factors only move a little, or not at all, e.g., as would be the case on straddle
positions). It is also important for scenarios to respect the principle of parsimony
and avoid unnecessary complexity. Key assumptions should also be highlighted and
subjected to critical scrutiny, and modelers should have some idea of the sensitivity
of their results to such assumptions. Finally, it is very important that modelers are
able to articulate the basic “stories” embodied in their scenarios and successfully
communicate these to nonspecialist audiences (e.g., senior management).42

Scenario analyses can come in a variety of forms and involve any number of scenarios.
In its traditional form, an institution would construct a limited number of deterministic
scenarios that typically involved asking “what if?” questions and then trying to work
through their likely consequences. Scenarios like these can be based on historical
experience or on alternate history (i.e., asking “what might have been?”), but can also
be based on more “mechanical” possibilities (e.g., what happens if the stock market
falls by x amount, interest rates rise by y amount, etc.).43 However, most modern
scenario analyses are stochastic, and involve large numbers of simulation trials.44 Risk
measures are then very easy to determine: each trial produces a loss outcome that can
be regarded as having the same probability as any other loss outcome; obtaining an
estimate of one’s preferred risk measure from the simulated loss outcomes is then
trivial. Stochastic scenario analyses have been applied to a great variety of insurance
problems and can sometimes be very sophisticated.

The following applications and associated references give some indication of what
stochastic models involve and their diverse range of possible applications:� Asset-return modeling (Wilkie, 1984; Exley, Mehta, and Smith, 2000; Blake, Cairns,

and Dowd, 2001; Hibbert, Mowbray, and Turnbull, 2001; Bayliffe and Pauling, 2003;
Longley-Cook and Kehrberg, 2003).� Catastrophe modeling (Clark, 2002; Woo, 2002; Canabarro et al., 2000; Daneshvaran
and Morden, 2004).

42 For more on some of the guiding principles behind scenario generation—and a sense of the
diversity of practice and intricacies involved—see, e.g., Breuer and Krenn (1999), Smith and
Riley (1999), Reynolds (2001), Altschull and Robbins (2003), Longley-Cook and Kehrberg
(2003), and Dowd (2005a, ch. 13).

43 We can also get more elaborate forms of mechanical scenarios analysis, sometimes known as
factor push or maximum loss optimization: we identify the risk factors, shock them all (e.g.,
by a couple of standard deviations), and then have an algorithm mechanically search through
these scenarios to identify the worst one. These methods are often used for estimating the risks
of derivatives positions, and some well-known examples are the quadratic programming
method suggested by Wilson (1994), and the delta-gamma methods suggested by Rouvinez
(1997). These “mechanical” methods are reviewed in Dowd (2005a, ch. 13.3).

44 Stochastic simulation exercises can sometimes be extremely time-intensive, and in such cases
we would also have to think carefully about ways of economizing on calculation time. For
example, we might resort to variance reduction methods (such as antithetics, control variates,
importance sampling, stratified sampling, etc.). We can also resort to methods such as prin-
cipal components analysis. A good example of such a method is the “scenario simulation”
approach of Jamshidian and Zhu (1997): this is a computationally highly efficient approach
that involves simulating the principal components for a set of risk factors.
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� Mortality modeling (Olivieri, 2001; Czernicki, Harewood, and Taht, 2003; Cairns,
Blake, and Dowd, 2005; Dowd et al., 2005 ).� Reserving and capital (Li and Tsai, 2000; Hürlimann, 2001; Turnbull, 2002;
Czernicki, Harewood, and Taht, 2003; Hibbert and Turnbull, 2003; Watson Wyatt,
2003, 2004; Moody’s, 2004).� Various miscellaneous insurance applications, such as modeling asset-liability
management (Jagger and Mehta, 1997; Swiss Re, 2000; Exley, Mehta, and Smith,
2000; Babbel, 2001), embedded options (Jørgensen, 2001), with-profit guarantees
(Hibbert and Turnbull, 2003), the impact of policyholder behavior on insurance
company positions (Altschull and Robbins, 2003) and insurance company defaults
(Moody’s, 2004; Ekström, 2005).

We emphasize that this list is merely illustrative, but even so it does give some indi-
cation of the state of the art.

FURTHER ISSUES

Our discussion has focused on three key themes: the type of risk measure, the
estimation method, and the type of insurance application. Inevitably, this focus
means that there are other (important) issues that we have barely touched on. These
include:� Capital allocation and risk budgeting: Typically, these involve breaking down the ag-

gregate risk measure into its component risks (i.e., determining the extent to which
each business unit contributes to the overall risk measure) so that the firm can
then allocate capital to “cover” these component risks. Allocating capital “cor-
rectly” is an important issue not just because we want to avoid risk “black holes”
and ensure that firms are adequately capitalized at the firmwide level, but also
because it is necessary if they are to price products properly and avoid inadver-
tent cross-subsidization. However, capital allocation is a very difficult subject, and
closed-form solutions for component risks are known only for special cases, the
best known of which is where risk factors are elliptically distributed (see Garman,
1997; Wang, 2002b; Valdez and Chernih, 2003). Capital allocation is also further
complicated by overhead allocation issues45 and by the fact that it is sometimes
necessary to distinguish between the capital allocation and the risk measure on
which the allocation is based (Goovaerts, Kaas, and Dhaene, 2003a).46� Risk-expected return analysis and performance evaluation: In practice, we might want
to identify the risk-expected return trade-off faced by the firm at an aggregate

45 For example, one of the best-known contributions to this subject in insurance is the capital
allocation model of Myers and Read (2001): this model satisfies varies “nice” properties and
has had a major influence on the literature. However, Gründl and Schmeiser (2005) point out
that this model is open to a number of problems—of which the central one is the difficulty
of allocating equity capital to different business lines, which is a form of overhead allocation
problem—and typically leads to incorrect decision-making. Thus, capital allocation is much
more difficult than it looks at first sight.

46 In practice, firms tend to resort to ad hoc rules of thumb along the lines discussed at length in,
e.g., Matten (2000). For more on capital allocation and risk budgeting, see also Panjer (2002),
Fischer (2003), Tsanakas (2004), or Dowd (2005a, ch. 13).
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level, and we want systems of performance evaluation that correctly allow for
the risks taken as well as profits earned by individual managers. Achieving these
objectives is very difficult, not just because they raise issues of risk aggrega-
tion/disaggregation, but also because they raise organizational issues (e.g., moral
hazard) and the classic risk-expected return decision rules (e.g., Sharpe ratios) are
not reliable outside the restrictive world of elliptical distributions. It is therefore
necessary to think in terms of risk-expected return analysis outside the familiar
but limiting confines of ellipticality (and some ways of doing so are suggested by
Acerbi (2004, pp. 186–199) and Dowd (2005b). However, there has also been consid-
erable progress made with these types of problems in an insurance setting, where
a number of recent studies have looked at risk measures in optimal insurance, re-
insurance and hedging contexts (see, e.g., Young, 1999; Gajek and Zagrodny, 2004;
Kaluszka, 2005; Korn, 2005).� Long-run and strategic issues: The estimation and uses of measures in long-run and
strategic contexts, where we might be concerned with the impacts of alternative
asset allocation strategies (e.g., Blake, Cairns, and Dowd, 2001), the effects of long-
term trends (e.g., Dowd, Blake, and Cairns, 2004b; Gilles et al., 2003) or the value
of real options (e.g., franchise options; see Panning, 1999).� Model evaluation: In the financial risk area, the subject of model evaluation (or
backtesting) has received a considerable amount of attention. Most of these back-
tests focus on the frequency of losses exceeding a VaR (see, e.g., Kupiec, 1995;
Christoffersen, 1998), but more sophisticated backtests compare sets of complete
density forecasts against subsequently realized outcomes (e.g., Berkowitz, 2001).
These methods all require matching sets of forecasts and realized outcomes, and are
therefore only practically feasible for models with short forecast horizons where
such track records can be accumulated. However, the subject has received little
attention in the actuarial field, and this is unfortunate as evaluating insurance risk
models is likely to be even more difficult than evaluating the risk models com-
monly used in capital market institutions. The best advice we can offer insurance
practitioners is to use some of the backtests developed in the financial risk area,
where possible. Beyond that, they need to think innovatively and above all take
the problem of evaluation seriously: they might identify key assumptions in their
models and test or critique these as best they can; they might bootstrap from their
models and see if bootstrapped outcomes (e.g., long-run returns or mortality rates)
are consistent with target outcomes; they might use simulation models to estimate
shortfall probabilities and check whether the estimated shortfall probabilities are
acceptable; and so forth.� Enterprise-wide risk management (ERM): Risk measurement systems also have an
important role to play in ERM systems, which seek to counteract “silo mentalities”
in risk management and manage risks across the firm on a holistic, consistent, and
proactive basis.47 ERM systems require reliable risk measures, and also highlight
the issue of how to aggregate risks across heterogeneous positions in a consistent

47 For more on ERM and its applications in insurance, see Tillinghast-Towers Perrin (2000, 2001)
and Wang (2002b). Some recent surveys on the practice of ERM in the insurance industry are
given by Casualty Actuarial Society (2001), Tillinghast-Towers Perrin (2002) and PWC (2004).
Mikes (2005) gives a good account of some of the practical problems that can arise with the
implementation of ERM systems.
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and intellectually defensible manner. There have also been major ERM initiatives
in recent years, one by the CAS in the United States and another being the launch
in 2005 of the ERM Institute International led by Shaun Wang, both of which seek
to promote ERM education in the insurance industry.� Regulatory risk measures: There is a large literature on the regulatory uses of financial
risk measures. The best-known instance of these is the use of VaR measures to
determine regulatory capital requirements in the Basel capital adequacy regime
(see e.g., Basel Committee on Banking Supervision, 2003): this has been heavily
criticized on a number of grounds (see, e.g., Danielsson et al., 2001; Danielsson,
2002). There have also been many other initiatives by financial regulators involving
the regulatory uses of financial risk measures: these include the EU’s Solvency
II initiative, the U.K. Financial Services Authority’s capital adequacy regime for
insurers (e.g., Financial Services Authority, 2002, 2005), the use of risk-based capital
requirements by the NAIC and by other regulators (e.g., NAIC, 1995), and the
regulatory use of early warning systems to identify institutions that are likely to
get into difficulties (see, e.g., Gunther and Moore, 2003; Pottier and Sommer, 2002).48

CONCLUSION

The subject of financial risk measurement has come a long way since the appearance
of VaR in the early 1990s. In retrospect, it is clear that VaR was much overrated, and is
now discredited as a “respectable” risk measure—despite the ostrich-like reluctance of
many of its adherents to face up to this fact. Risk measurement has moved on, and we
now have many “respectable” risk measures to choose from: these include coherent
risk measures, spectral risk measures, distortion risk measures, and many others.
Indeed, in some ways, we now have too many risk measures available to us, and there
are (usually) no easy ways to determine which might be best: the most appropriate
risk measure depends on the assumptions we make (e.g., whether we are prepared to
“buy into” risk aversion theory, whether we prefer to work with distortion functions,
etc.), and would appear also to be sometimes context-dependent. Any search for a
single “best” risk measure—one that is best in all conceivable circumstances—would
therefore appear to be futile, and practitioners should be pragmatic. De gustibus non
disputandum est.

Estimating any of these risk measures is straightforward: if we can estimate quantiles
then we can easily estimate any QBRMs. This implies that upgrading from a VaR to a
more “respectable” risk measure is easy: we just add a few more lines of code to our
program. And, as for estimation method, our preferred approach will almost always
be some form of stochastic simulation: most insurance risk problems are complex,
and these complexities can (in general) only be handled using stochastic methods.

In short, our main advice to insurance practitioners is that they should usually avoid
the VaR as a risk measure and choose risk measures that appear to be “respectable”
and appropriate to the problem at hand; they should also face up to the complexity of
insurance risk problems and think in terms of stochastic methods as their preferred
estimation vehicles.

48 We also ignore the related issues raised by nonregulatory rating systems. For more on these,
see, e.g., Crouhy, Galai, and Mark (2001b) or Krahnen and Weber (2001).
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Forecasting the future is of course a very uncertain business, but it seems to us that
there are certain trends in risk measurement that are very likely to continue over the
near future:

� We already have more than enough risk measures to choose from, and the business
of producing new risk measures would appear to generating rapidly diminishing
returns. We would therefore anticipate that significant new developments in this
area will become harder to achieve and less frequent.� Estimation methods will continue to improve: new estimation methods are being
developed in other fields, and there is a process of intellectual arbitrage whereby
methods developed in fields such as engineering, physics, and statistics gradually
make their way over to financial risk management or actuarial science, and so lead
to improvements in the estimation and management of financial risks. We have
seen this with extreme-value theory and copulas, and we would anticipate further
developments of a comparable nature.� We perceive that practitioners are gradually becoming more aware of the impor-
tance of parameter and model risk, and we expect this trend to continue. From a
practical point of view, it is much better to have a rough and ready estimate of a
risk measure and be aware of its limitations, than have a “fancy” estimate and be
unaware of its weaknesses. Indeed, we would argue that any estimated risk meas-
ure reported on its own is close to meaningless without some indicator of how
precise the estimate might be. Fortunately, practitioners are becoming more aware
of these issues, and we would anticipate that a time will eventually come when
precision metrics will be reported as a matter of course.� There is also the troublesome subject of model evaluation. This is difficult enough
in the simpler contexts of, say, the 1-day VaR models used by securities firms, and
is generally much more difficult for the risk models appropriate for insurance com-
panies (because of their greater complexity, longer horizons, etc.). Recent disasters
such as Equitable Life (where the firm failed to value the options it had written;
see Blake, 2001) only underline this point: the failure to evaluate models properly
is one of the key weaknesses of modern actuarial practice. We therefore anticipate
that this subject will receive increasing attention from actuaries, and it is especially
important that work be done on the evaluation of longer-horizon risk forecasting
models.

Finally, it is also helpful to see developments in risk measurement in their broader
cross-disciplinary context. For a very long time, actuaries have been accustomed to
thinking of themselves of “the” risk experts. Generation after generation of actuaries
took this as given, and for many years there was no one to challenge it. Then, in the last
decade or two, the upstart discipline of “financial risk management” emerged out of
nowhere, as it were, and the new breed of financial risk managers started laying claim
to much of the territory that actuaries had traditionally considered as their own (e.g.,
over the modelling of long-term asset returns). The stage was set for a classic turf war,
and the FRM profession had the advantage that it had a flagship, the VaR, that took
center stage: VaR was the flavor, not just of the month, but of the entire decade, and
everyone wanted a “VaR model.” The actuarial profession was then criticized because
insurance companies were generally well behind capital markets institutions in their
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risk management practices, and because spectacular disasters (such as Equitable Life
in the United Kingdom) highlighted the limitations of the assumptions on which many
actuarial projections had been based. And yet the “VaR revolution” itself became
unstuck, and some of the standard risk measures used by actuaries for many years
(such as ES-type measures and the outcomes of stress tests) turned out to be very
respectable when viewed from the perspective of more recent risk measure theory.
Those actuaries (and others) who were skeptical of the siren calls of the VaR had been
right all along. Furthermore, the state of risk management understanding reflected
in actuarial journals is in many respects well ahead of that reflected in FRM journals.
Indeed, the only area where we can see that actuaries are visibly behind their FRM
counterparts is in terms of risk model evaluation. On the other hand, for their part,
most FRM practitioners are quite ignorant of the actuarial literature—so much so,
in fact, that we would argue that the failure of FRM practitioners to acknowledge
developments in actuarial science is little less than a professional disgrace.

REFERENCES

Acerbi, C., 2002, Spectral Measures of Risk: A Coherent Representation of Subjective
Risk Aversion, Journal of Banking and Finance, 26: 1505-1518.

Acerbi, C., 2004, Coherent Representations of Subjective Risk Aversion, in: G. Szegö,
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