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Abstract

Background: Prebiotics resist digestion, providing fermentable substrates for select gastrointestinal bacteria associated

with health and well-being. Agave inulin differs from other inulin type fibers in chemical structure and botanical origin.

Preclinical animal research suggests these differences affect bacterial utilization and physiologic outcomes. Thus,

research is needed to determine whether these effects translate to healthy adults.

Objective: We evaluated agave inulin utilization by the gastrointestinal microbiota by measuring fecal fermentative end

products and bacterial taxa.

Methods: A randomized, double-blind, placebo-controlled, 3-period, crossover trial was undertaken in healthy adults (n 5

29). Participants consumed 0, 5.0, or 7.5 g agave inulin/d for 21 d with 7-d washouts between periods. Participants

recorded daily dietary intake; fecal samples were collected during days 16–20 of each period and were subjected to

fermentative end product analysis and 16S Illumina sequencing.

Results: Fecal Actinobacteria and Bifidobacterium were enriched (P < 0.001) 3- and 4-fold after 5.0 and 7.5 g agave inulin/d,

respectively, compared with control. Desulfovibriowere depleted 40% with agave inulin compared with control. Agave inulin

tended (P < 0.07) to reduce fecal 4-methyphenol and pH. Bivariate correlations revealed a positive association between intakes

of agave inulin (g/kcal) and Bifidobacterium (r = 0.41, P < 0.001). Total dietary fiber intake (total fiber plus 0, 5.0, or 7.5 g agave

inulin/d) per kilocalorie was positively associated with fecal butyrate (r = 0.30, P = 0.005), tended to be positively associated

with Bifidobacterium (r = 0.19, P = 0.08), and was negatively correlated with Desulfovibrio abundance (r =20.31, P = 0.004).

Conclusions: Agave inulin supplementation shifted the gastrointestinal microbiota composition and activity in healthy adults.

Further investigation is warranted to determine whether the observed changes translate into health benefits in human

populations. This trial was registered at clinicaltrials.gov as NCT01925560. J Nutr 2015;145:2025–32.
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Introduction

The gastrointestinal (GI)7 microbiota plays a crucial role in
human health, affecting metabolism, physiology, and immune

function (1–3). Recent advances in sequencing technologies
have allowed researchers to gain a better understanding of

the thousands of different microbial taxa in the GI tract (4).

Increasingly, perturbations in the GI microbiota are being

associated with complex diseases, including obesity, diabetes,

cardiovascular disease, inflammatory bowel disease, and autism

(3, 5–8).
Epidemiologic evidence suggests there are inverse associa-

tions between dietary fiber intake and obesity (9), diabetes

(10, 11), and coronary heart disease (12–14). Inadequate fiber

consumption is a recognized problem in the United States (15),

with average intakes barely surpassing 50% of the Adequate

Intake recommendation (25–38 g/d) (16). Because inadequate
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fiber intake is also associated with increased risk of obesity,
diabetes, and cardiovascular disease (9, 17–19), the role of fiber
in GI microbial metabolism, function, and disease prevention is
of particular interest.

Prebiotics are a promising dietary strategy by which the GI
microbiota can be modified for health promotion. Prebiotics are
selectively fermented food ingredients that promote specific
changes in the composition and/or activity of bacteria already
present within the GI tract, thus promoting host health and
well-being (20). Bacterial fermentation of prebiotics results in
production of SCFAs, lactic acid, gases (hydrogen, methane,
and carbon dioxide), and reduced luminal pH (21). SCFAs and
particularly butyrate benefit host health by regulating fluid
and electrolyte uptake, influencing epithelial cell cytokinetics
and barrier function, and exerting anti-inflammatory effects
(22–32). Inulin and fructooligosaccharides (FOSs) were shown
to promote the growth of bifidobacteria in infants and adults
(20, 33, 34). Suggested health benefits of bifidobacteria include
production of acetic and lactic acids, synthesizing B vitamins,
excreting antimicrobial substances that reduce pathogenic
bacteria, and influencing maturation of the immune system
(35–40). However, uncertainties in this field of research warrant
further study. Until recently, most studies on dietary modulation
of the GI microbiota have relied on culture-based methods or
molecular methods such as fluorescent in situ hybridization and
quantitative real-time PCR, which are restricted to specific
bacterial groups. As such, our understanding of how prebiotics
affect the entire community structure of the microbiota is
relatively unknown.

Agave inulin, which was investigated in the present study, is
composed of linear and branched fructose chains, connected
with b-2,1 and b-2,6 linkages, and a degree of polymerization
(DP) between 25 and 34 (41). In comparison, chicory inulin is
linear with b-2,1 linkages and a DP that ranges from 2 to 60
(42). In vitro experimentation has demonstrated that agave
inulin is readily fermented by bifidobacteria and lactobacilli (43,
44). In addition, rodent studies have provided evidence that the
botanical origin and chemical structure of different inulin-type
fibers (e.g., agave inulin and chicory inulin) induce variable
effects on body composition, blood cholesterol, and blood
glucose concentrations (45–47). The prebiotic effects of agave
inulin in healthy adults, however, are currently unknown.
Therefore, translational studies to investigate the influence of
agave inulin on the human GI microbiota are warranted.

Previously, our laboratory conducted a randomized, double-
blind, placebo-controlled, crossover study to assess tolerance
and utilization of agave inulin in healthy adults (48). The
primary objectives of that study were to determine GI tolerance
via subjective daily and weekly questionnaires and fermentation
profiles via 8-h breath hydrogen testing after treatment boluses.
The study demonstrated that agave inulin was well tolerated
up to 7.5 g/d and improved laxation. This report details the
secondary objectives of the study to assess 1) agave inulin
utilization by the GI microbiota through measurements of fecal
fermentation end products and 2) amplicon-based bacterial
community analysis from the same individuals.

Methods

Subjects. Healthy adults were recruited for this study via an e-mail list
server from the University of Illinois. Participants were screened to

ensure general health and to collect demographic information. The

inclusion criteria included participants 1) be 20–40 y of age; 2) have

BMI (kg/m2) > 18.5 and < 29.5; 3) be free of metabolic and GI diseases,

with no history of such diseases; 4) avoid medications known to affect

intestinal function; 5) be free of antibiotic use for at least the past 8 wk;

6) limit alcohol consumption to 2 servings/d (e.g., <28 g ethanol/d);
7) avoid taking prebiotics or probiotics; 8) consume a moderate fiber

diet; 9) continue to consume the same dose of vitamin and/or mineral

supplements, if applicable; 10) maintain current level of physical

activity; 11) agree to keep detailed dietary and stool records; and
12) meet with study personnel weekly. Female participants were excluded

if they had menstrual cycles < 27 d or > 29 d in length, were pregnant, or

were lactating. Before study initiation, all participants voluntarily signed

a written informed consent as approved by the University of Illinois
Institutional Review Board. This study was conducted from January

2013 to May 2013 and was registered with clinicaltrials.gov as

NCT01925560.

Experimental design and treatments. This study was a randomized,

double-blind, placebo-controlled, 3-period, crossover design with 1 7-d

baseline period and 3 21-d treatment periods, followed by 1-wk

washouts between each period (Supplemental Figure 1). This experiment
was part of the tolerance study conducted by our laboratory (48). Agave

inulin (BIOAGAVE agave inulin fiber; Ingredion Incorporated) and

control treatments were provided as chocolate chews (Bruce�s Candy

Kitchen) in identical wrappers in coded boxes. Chews were formulated
to provide 0, 5.0 or 7.5 g fiber in 3 chews. Researchers and participants

were blinded to treatment codes. Study participants received instructions

on completing a detailed dietary journal from a registered dietitian
before study initiation and had weekly 1-on-1 meetings with a study

dietitian and/or dietetic interns throughout the trial to ensure record

completeness. Dietary intake data were assessed with Nutritionist Pro

(Version 5.2, 2012; Axxya Systems). Participants completed daily and
weekly GI intolerance questionnaires and stool records throughout the

study.

Stool collection and analysis. During days 16–20 of each treatment
period, participants brought 3 fresh (within 15 min of defecation) fecal

samples to the laboratory by using Commode Specimen Collection

Systems (Sage Products) on ice packs within coolers. Samples were

homogenized on arrival, a pH measurement was taken (Denver Instru-
ment), and then samples were divided into aliquots for individual ex-

periments. The samples for microbial analysis were flash-frozen in

liquid nitrogen and stored at 280�C until analysis. The aliquot for
SCFAs (acetate, propionate, butyrate), branched-chain FAs (BCFAs;

valerate, isovalerate, isobutyrate), and ammonia was immediately

acidified with 2N-HCl (10%wt:vol) and frozen at220�C until analysis.

Phenol and indole aliquots were weighed and then stored at220�C until
analysis.

Fecal dry matter was measured according to the methods of the

Association of Official Analytical Chemists (1984) (49). Ammonia

concentrations were determined with methods described by Chaney and
Marbach (50). Fecal SCFA and BCFA concentrations were analyzed with

GC as previously described (51). Phenol and indole concentrations were

assessed according to Flickinger et al. (52).
Fecal bacterial DNA was extracted according to the manufacturer�s

instructions by using the PowerLyzer PowerSoil DNA Isolation Kit (MO

BIO Laboratories, Inc.) with bead beating for 20 min by using a vortex

adaptor. After extraction, a 250-bp region from the V4 region of the 16S
rRNA gene was amplified according to Caporaso et al. (53). Sequencing

was performed at the WM Keck Center for Biotechnology at the

University of Illinois by using an Illumina MiSeq2000 with the use of v3

reagents (Illumina Inc.).
High-quality (quality value > 25) sequence data derived from the

sequencing process were analyzed with QIIME 1.8.0 (54). Briefly,

sequences were clustered into operational taxonomic units (OTUs)
by using closed-reference OTU picking against the Greengenes 13_8

reference OTU database (99% similarity threshold). After quality

filtering, weighted and unweighted UniFrac distances were computed

at an even sampling depth of 33,388 sequences per sample (55, 56). To
create a visual illustration of the responses to agave inulin supplemen-

tation, bubble plots that depicted the differences in each study

participant�s fecal Bifidobacterium proportion after 20 d of consumption
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of 5.0 and 7.5 g agave inulin/d were created by comparing each

treatment dose with the control period (0 g/d).

Statistics. Fecal fermentation end products (SCFAs, BCFAs, phenols,

indoles, and ammonia), pH, dry matter, and bacterial sequence percent-

ages were analyzed with the Mixed models procedure of SAS (version

9.3; SAS Institute, Inc.) with treatment as a fixed effect and participant
and period as random effects. Post hoc Tukey adjustments were used to

control for multiple comparisons. The UNIVARIATE procedure and

Shapiro-Wilk statistic were used to test for data normality, and log

transformations were used as needed. The Mann-Whitney test was used
when normality was not achieved with transformations. Bivariate cor-

relations (Pearson�s r) between Bifidobacterium, Desulfovibrio, agave
inulin dosage in relation to daily caloric intake, total dietary fiber intake
(dietary fiber plus 0, 5.0, or 7.5 g agave inulin/d) in relation to daily

caloric intake, BMI, and fecal fermentation end products were assessed.

A probability of P < 0.05 was accepted as statistically significant, and P <

0.10 was considered a trend.

Results

Twenty-nine of the 30 enrolled participants completed the study.
One participant was removed from the trial because of con-
sumption of a medication restricted by the study. Participant�s
baseline characteristics are listed in Supplemental Table 1.
Agave inulin up to 7.5 g/d was well tolerated with no adverse
events (48). Participants� dietary intake and body weights did
not differ among treatment periods (P > 0.05; Supplemental

Table 2).
The fecal pH (P = 0.06) and 4-methylphenol concentration

(P = 0.07) tended to be lower after agave inulin supplementation
compared with control (Table 1).

Illumina MiSeq sequencing of the 87 fecal samples gener-
ated >10 million total sequences. Overall, 11 bacterial phyla,
94 families, and 227 genera were identified in the participants
(Supplemental Tables 3 and 4). Although a number of taxa were
identified at each National Center for Biotechnology Information

taxonomic hierarchy level, only a few accounted for the majority
at each level. Bacteroidetes and Firmicutes represented ;90% of
the sequences at the phyla level. Twelve families and 18 genera
represented >90% of the sequences. Conversely, 20 phyla,
72 families, and 188 genera made up <1% of total sequences at
each respective taxonomic level.

Agave inulin supplementation significantly shifted the rela-
tive abundance of fecal Actinobacteria compared with control
(P = 0.002; 7.5 = 5.0 > 0 g agave inulin/d) (Table 2). Compared
with control, Actinobacteria were enriched (P < 0.05; 7.5 = 5.0 >
0 g agave inulin/d) 3- and 4-fold with 5.0 and 7.5 g agave inulin/d,
respectively. These shifts were countered with nonsignificant
reductions in Proteobacteria and Bacteroidetes. The relative
abundance of the Bifidobacteriaceae family (Supplemental Table
5) and Bifidobacterium genus (Table 2) were both similarly
enriched (P < 0.001; 7.5 = 5.0 > 0 g agave inulin/d) by 3- and 4-
fold with 5.0 and 7.5 g agave inulin/d, respectively). Four species
in the Bifidobacterium genera were significantly enriched (P <
0.005; 7.5 = 5.0 > 0 g agave inulin/d) after supplementation with
5.0 and 7.5 g agave inulin/d comparedwith control:B. adolescentis,
B. breve, B. longum, andB. pseudolongum (Supplemental Table 6).
Two species, B. animalis and B. bifidum, were not affected by
treatment (P > 0.05). The relative abundance of theDesulfovibrio
genera was reduced (P < 0.05; 7.5 = 5.0 < 0 g agave inulin/d) by
;40% with both treatment doses of agave inulin. In addition,
the relative abundances of Lachnobacterium and Ruminococcus
were depleted (P < 0.05) with 7.5 g agave inulin/d compared
with 0 g agave inulin/d; however, 5.0 g agave inulin/d was not
different from 0 or 7.5 g agave inulin/d.

Although dietary supplementation of agave inulin resulted in a
significant increase in fecal Bifidobacterium in the treatment
groups, individual responses to the treatments were varied (Figure
1). In general, female participants were more responsive to
supplementation, demonstrating larger shifts in the abundance of
fecal Bifidobacterium than for male participants. Two women
experienced a 15% increase in fecal Bifidobacterium compared
with 0 g agave inulin/d, and 3 women demonstrated 5–10%
increases in abundance with agave inulin supplementation. Half
of the male participants demonstrated increased abundances of
#5% in fecal Bifidobacterium from the 0-g/d treatment period.
Alternatively, 5 male participants did not respond to supplemen-
tation and were essentially unaffected by agave inulin treatments
with 0–1% reductions in fecal Bifidobacterium with agave inulin
supplementation compared with control.

Bivariate correlations revealed a significant positive cor-
relation between Bifidobacterium and grams of agave inulin
consumed per kilocalorie (r = 0.41, P < 0.001; Figure 2A). Total
dietary fiber intake (total dietary fiber plus 0, 5.0, or 7.5 g agave
inulin/d) per kilocalorie, however, only tended to be associated
with Bifidobacterium abundance (r = 0.19, P = 0.07; Figure 2B).
Total fiber intake was positively associated with fecal butyrate
concentration (r = 0.30, P = 0.005; Figure 2C). Fecal
Faecalibacterium also was positively associated with butyrate
concentrations (r = 0.29, P = 0.007). Fecal ammonia concen-
tration tended (r =20.21, P = 0.052) to negatively correlate with
Bifidobacterium abundance. No other significant correlations
were found between fecal fermentation end products and
Bifidobacterium. Bivariate correlations revealed several corre-
lations with Desulfovibrio abundance, including negative cor-
relations between Desulfovibrio abundance and total fiber
intake per kilocalorie (r = 20.31, P = 0.003) and fecal acetate
(r =20.28, P = 0.009), butyrate (r =20.23, P = 0.029), and total
SCFA (r = 20.26, P = 0.015) concentrations. Conversely,
positive correlations were found with Desulfovibrio abundance

TABLE 1 Fecal fermentation end products of healthy human
participants who consumed 0, 5.0, or 7.5 g agave inulin/d in a
crossover design1

Item

Treatment with
agave inulin

SEM P0 g/d 5.0 g/d 7.5 g/d

End product, μmol/g DM feces

Ammonia 96.2 99.7 99.7 6.78 0.82

4-Methylphenol 1.87 1.83 1.59 0.168 0.07

Indole 0.944 1.01 0.907 0.094 0.17

Isobutyrate 6.49 6.39 6.56 0.342 0.92

Isovalerate 8.25 8.37 8.45 0.437 0.92

Valerate 6.64 7.15 7.52 0.649 0.12

Total BCFAs 21.4 21.9 22.6 1.16 0.59

Acetate 237 254 262 18.7 0.12

Propionate 62.9 68.5 67.3 7.99 0.18

Butyrate 49.9 55.9 55.8 4.98 0.14

Total SCFAs 350 379 385 29.4 0.12

SCFA molar ratio

Acetate 0.684 0.681 0.686 0.009 0.68

Propionate 0.176 0.174 0.172 0.007 0.63

Butyrate 0.141 0.145 0.143 0.007 0.59

pH 6.88 6.77 6.74 0.078 0.06

1 Values are least squares means with pooled SEMs, n = 29. BCFA, branched-chain FA

(isobutyrate + isovalerate + valerate); DM, dry matter.
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and fecal 4-methylphenol (r = 0.29, P = 0.007) and with fecal pH
(r = 0.24, P = 0.02).

a and b diversity were also assessed and results are included
in Supplemental Figure 2 and 3, respectively.

Discussion

Prebiotics are selectively fermented ingredients that promote
specific changes in composition and/or activity of GI bacteria
(20). However, to date, the impact of prebiotics on the mi-
crobiota has relied heavily on molecular methods that investi-
gate targeted taxa instead of characterizing the entire community
structure. The present study used high-throughput sequencing
to characterize the community composition of the fecal micro-
biota. In addition, we measured fecal fermentation end pro-
ducts, thereby providing both compositional and functional
outcomes related to agave inulin fermentation by the GI micro-
biota. Our data revealed that agave inulin supplementation
enriched fecal Bifidobacterium. In addition, we found a negative
correlation between Bifidobacterium and fecal ammonia con-
centrations. The reduction in fecal pH and phenolic compounds
suggests increased saccharolytic fermentation and reduced proteo-
lytic fermentation. Because phenols and ammonia are considered
toxic to intestinal epithelial cells, our results indicate a prebiotic
effect of agave inulin supplementation.

Because Bifidobacterium are not the only bacteria able to
use inulin-type fibers and bacterial crossfeeding is particularly
important in the complex milieu of the GI tract, an ecologic
characterization of the microbiota was necessary. Although
Lactobacillus, Bacteroides, Roseburia, and Faecalibacterium
have all demonstrated the potential to degrade oligofructose in
vitro (57, 58), we found that only Bifidobacterium species were
selectively enriched in healthy adults who consumed agave
inulin. Four species of Bifidobacteriumwere enriched with agave
inulin supplementation, B. adolescentis, B. breve, B. longum,
and B. pseudolongum, whereas 2 others were not (e.g., B. animalis
and B. bifidum). In vitro experiments have indicated that
B. adolescentis is able to grow on FOSs and that its presence
contributed to crossfeeding by lactate utilizers, and subsequent
butyrate production (35). The presence of various b-fructofu-
ranosidase genes in several strains of these species is supportive
of these results (59–62). In addition, in vitro studies demonstrate
that B. bifidum grows on FOSs but not with inulin (63, 64) and
that a commercial probiotic strain of B. animalis was also not
able to metabolize inulin (59–62). The selective growth inhibi-
tion by B. bifidum and B. animalis may be due to the presence
of different b-fructofuranoside genes and also the structural
differences between FOSs and long-chain inulin.

The linear relation between agave inulin per kilocalorie and
Bifidobacterium provides a plausible explanation for the more
pronounced effect observed in female as opposed to male
participants because agave inulin represented a higher propor-
tion of the dietary intake of women. Dose responses were
demonstrated with short-chain FOSs, whereby 2.5 g/d did not
increase bifidobacteria counts >0 g/d, but 10 and 20 g/d increased

TABLE 2 Predominant fecal bacterial phyla and genera present
in healthy human participants who consume 0, 5.0, or 7.5 g agave
inulin/d in a crossover design1

Phylum and genus

Treatment with agave inulin,
% of sequences

Pooled SEM P0 g/d 5.0 g/d 7.5 g/d

Firmicutes 50 51 49 3.5 0.61

Faecalibacterium 12 14 14 1.6 0.40

Eubacterium 0.64 0.84 0.85 0.36 0.28

Clostridium 0.36 0.26 0.27 0.05 0.41

Ruminococcus 5.1b 3.1a,b 2.3a 0.81 ,0.01

Roseburia 1.9 1.7 1.6 0.31 0.89

Lachnospira 0.93 0.95 0.87 0.18 0.76

Coprococcus 1.5 1.5 1.5 0.26 0.93

Dialister 0.51 0.76 0.56 0.24 0.29

Dorea 0.43 0.59 0.39 0.14 0.10

Oscillospira 0.34 0.32 0.28 0.04 0.52

Blautia 2.6 2.6 2.3 0.36 0.32

Anaerostipes 0.22 0.16 0.18 0.03 0.42

Lachnobacterium 0.24b 0.07a 0.08a,b 0.06 0.02

Lactobacillus 0.01 0.02 0.05 0.03 0.18

Megamonas 0.02 0.36 0.40 0.24 0.14

Megasphaera 0.14 0.20 0.29 0.15 0.26

Phascolarctobacterium 0.13 0.15 0.14 0.04 0.87

Bacteroidetes 44 42 43 3.5 0.61

Bacteroides 31 32 32 3.5 0.93

Parabacteroides 1.9 1.7 1.4 0.10 0.66

Prevotella 7.7 5.5 6.6 2.7 0.06

Paraprevotella 0.20 0.09 0.19 0.10 0.19

Proteobacteria 3.1 2.8 2.0 0.98 0.61

Sutterella 0.80 1.1 0.92 0.16 0.41

Bilophila 0.21 0.16 0.15 0.03 0.06

Desulfovibrio 0.14b 0.08a 0.09a 0.06 0.01

Succinivibrio 0.75 0.69 0.48 0.65 0.79

Pseudomonas 0.41 0.07 0.01 0.20 0.79

Actinobacteria 1.9a 3.6b 5.1b 0.87 ,0.01

Bifidobacterium 1.7a 3.2b 4.9b 0.83 ,0.01

Collinsella 0.10 0.22 0.14 0.10 0.17

Verrucomicrobia 0.34 0.50 0.30 0.16 0.23

Akkermansia 0.34 0.50 0.30 0.16 0.23

1 Values are least squares means with pooled SEMs, n = 29. Values in a row without a

common letter are significantly different, P , 0.05.

FIGURE 1 Bubble plots show differences in the proportions of fecal Bifidobacterium as a percentage in each individual healthy adult male (M)

and female (F) participant (n = 29) after 20 d of consumption of 5.0 and 7.5 g agave inulin/d compared with the control period (0 g agave inulin/d).

The size of the bubbles is representative of the percentage differences. Black bubbles depict increased proportions, and white bubbles depict

decreased proportions of fecal Bifidobacterium after agave inulin supplementation.
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fecal bifidobacteria in healthy adults (65). Similarly, galactooli-
gosaccharide (GOS) supplementation followed a dose response
curve for enriching bifidobacteria abundance. In that case,
supplementation of 2.5 g GOSs/d did not shift fecal microbes in
healthy adults compared with control; however, doses of 5.0 and
10 g GOSs/d significantly increased fecal bifidobacteria abun-
dance (66). Host genetics may also contribute to these differen-
tial responses (67).

Previously, we reported the breath hydrogen profiles of these
same participants after a bolus of 0, 5, or 7.5 g agave inulin/d.
The results revealed an early peak (4–6 h) after agave inulin
consumption, suggesting fermentation begins more proximally
in the GI tract. Breath hydrogen profiles represent 14% of total
hydrogen produced in the gut that is subsequently perfused into
the lungs (68). By comparison, between 90% and 99% of SCFAs
are absorbed by the gut or used by the microbiota (25, 30, 69).
As such, fecal SCFAs represent residual fermentation end
products, thereby providing a potential explanation for the

numeric increase in fecal SCFAs with agave inulin supplemen-
tation. Because we previously observed a clear distinction
between agave inulin and controls during the 8-h breath
hydrogen testing, but only a numeric increase in fecal SCFAs,
this suggests that the SCFA measurements were either not
sensitive enough to detect the changes in fermentation profiles
among treatments or that there was inadequate power.

The fermentation profile in concert with the enrichment of
fecal Bifidobacterium and depletion of fecal Desulfovibrio after
agave inulin supplementation is particularly interesting. Proteo-
bacteria, including Desulfovibrio, colonize the proximal intes-
tine utilizing mono- and di-saccharides and amino acids as
primary energy sources (70). Because saccharolytic fermentation
of agave inulin begins 4 h after consumption, this suggests that
the impact of supplementation may begin more proximally in
the GI tract. Early fermentation could be affectingDesulfovibrio
by spreading saccharolytic fermentation throughout the GI
tract, thereby changing nutrient availability and environmental

FIGURE 2 Scatterplots depict rela-

tions between (A) fecal Bifidobacterium

and grams of agave inulin consumed

per kilocalorie, (B) fecal Bifidobacterium

and total fiber intake (total dietary fiber

plus 0, 5.0, or 7.5 g agave inulin/d agave

inulin) per kilocalorie, and (C) total fiber

intake (g/d) and fecal butyrate concen-

trations (mmol/g DM feces) in healthy

human participants consuming 0, 5.0, or

7.5 g agave inulin/d in a crossover

design. Statistical relations were deter-

mined with bivariate correlations (Pear-

son�s r), and a probability of P , 0.05

was accepted as statistically significant,

n = 29. DM, dry matter.
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conditions along the way. The numeric reduction in the proteo-
lytic fermentation end product, 4-methylphenol, is also supportive
of this hypothesis. Desulfovibrio is a sulfate-reducing bacteria
that uses substrates, including SCFAs and amino acids, to reduce
sulfur-containing compounds to hydrogen sulfide, a potential
toxin to GI epithelial cells (71, 72). Increased proportions of
sulfate-reducing bacteria were noted in individuals with inflam-
matory bowel disease and autism (7, 8, 73–75). Furthermore,
individuals with autism were found to have both increased
abundances of Desulfovibrio and decreased abundances of
Bifidobacterium (7, 8, 76). Although the underlying mechanisms
of these bacterial shifts in diseased individuals remain unclear,
the potential application of agave inulin as a therapeutic agent in
individuals with these diseases warrants further investigation.

Our data support the Institute of Medicine�s recommenda-
tion to consume a high-fiber diet from a variety of sources.
Although we did not detect a significant treatment effect of
agave inulin supplementation alone, total dietary fiber intake
(dietary fiber plus 0, 5.0, and 7.5 g agave inulin/d) was positively
correlated with fecal butyrate. The benefits of increased SCFA
concentrations and particularly increased butyrate include local
and systemic effects. Luminal effects of butyrate include
provision of energy for intestinal epithelial cells and effects on
enterocyte cell cycle progression, differentiation, and apoptosis
via histone deacetylase inhibition; systemically, butyrate was
shown to provide immune-modulating functions, influence
cholesterol biosynthesis, and improve insulin resistance (23,
24, 26–28, 69, 77, 78).

To our knowledge, this is the first study to use high-
throughput sequencing to demonstrate a specific enrichment of
fecal Bifidobacterium after agave inulin supplementation in
healthy adults. The selectivity of other prebiotic fibers was
demonstrated in clinical trials by using high-throughput se-
quencing. Davis et al. (66) reported that 5.0 and 10.0 g GOSs/d
specifically enriched fecal Bifidobacterium. Resistant starches
also were reported to have differential effects on the fecal
microbiota. Resistant starch type 4 was previously found to
enrich Bifidobacterium, whereas resistant starch type 2 selec-
tively enriched Eubacterium (79). Other fermentable fibers also
have demonstrated more nonspecific shifts, including polydex-
trose and soluble corn fiber, which were found to enrich several
genera in both the Firmicutes and Bacteroides phyla (80, 81).

The chemical structures of these fibers and the complex GI
ecosystem, which provides residence to diverse microbes capable
of crossfeeding, should be considered in light of this. Agave
inulin is composed of a terminal glucose monosaccharide with
linear and branched fructose chains connected with b-2,1 and
b-2,6 linkages, and a DP ranging from 25 to 34 (42). GOSs
typically contain a terminal glucose with a b-1,4 linkage to
galactose polymers linked by b-1,6 covalent bonds; DP generally
ranges between 2 and 10 (82). Resistant starch type 2 and type 4
are composed of glucose monomers with a-1,6 glycosidic bonds,
with the additional crosslink by phosphorylation of type 4 resistant
starches (79). Polydextrose is a highly branched polysaccharide
that consists of glucose units linked by a- and b-linked 1,2, 1,3,
1,4, and 1,6 linkages (83). Soluble corn fiber is an oligosaccharide-
rich corn starch fraction enriched in a-1,6-glycosidic bonds (84).
The distinct molecular structures of these fibers provide a par-
tial explanation for the differences in microbial shifts after
supplementation.

Study strengths include the crossover design with washouts,
dietary record collection, utilization of state-of-the-art se-
quencing technology and bioinformatics tools, and assessment
of digestive physiologic outcomes. We, however, acknowledge

potential limitations, including the lack of biomedical measures
such as blood glucose, cholesterol, and TGs. In addition, we
aimed to characterize the impact of fiber supplementation on the
entire community structure of the fecal microbiota; therefore, a
more in-depth examination of the species and strains affected by
agave inulin were outside the scope of this research and should
be investigated in future studies. Next steps should include
assessment of microbial functional capacity and activity through
measurement of mRNA or protein expression and further
assessment of untargeted bacterial metabolites. Additional
characterization of bacterial crossfeeding via in vitro models
and computational simulations will also help advance our
understanding of the role of diet on the microbiome. Because
rodent studies have provided evidence for the benefits of agave
inulin supplementation on body composition, blood cholesterol,
and blood glucose concentrations (45–47), further investigation
is warranted to determine whether these effects translate into
health benefits in human populations.
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