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Age and Gender Estimation of Unfiltered Faces
Eran Eidinger, Roee Enbar, Tal Hassner*

Abstract—This paper concerns the estimation of facial at-
tributes – namely, age and gender – from images of faces
acquired in challenging, “in the wild” conditions. This problem
has received far less attention than the related problem of face
recognition, and in particular, has not enjoyed the same dramatic
improvement in capabilities demonstrated by contemporary face
recognition systems. Here we address this problem by making
the following contributions. First, (i), in answer to one of the
key problems of age estimation research – absence of data –
we offer a unique dataset of face images, labeled for age and
gender, acquired by smart-phones and other mobile devices, and
uploaded without manual filtering to online image repositories.
We show the images in our collection to be more challenging than
those offered by other face-photo benchmarks. (ii) We describe
the dropout-SVM approach used by our system for face attribute
estimation, in order to avoid over-fitting. This method, inspired
by the dropout learning techniques now popular with deep belief
networks, is applied here for training support vector machines,
to our knowledge, for the first time. Finally, (iii), we present
a robust face alignment technique which explicitly considers the
uncertainties of facial feature detectors. We report extensive tests
analyzing both the difficulty levels of contemporary benchmarks,
as well as the capabilities of our own system. These show our
method to outperform state-of-the-art by a wide margin.

I. INTRODUCTION

At the most basic level of the languages we speak, how

we address a person is largely influenced by who that person

is: “sir” or “madam” are used based on the gender of the

person being referred to; an older person would often be

addressed more formally than a younger one. More generally,

languages reserve different words and grammar rules when

addressing different people. This phenomenon, at the heart

of social interactions, relies on our ability to estimate these

individual traits, here, age and gender, at a glance, just from

facial appearances. As the roles of computers in our lives grow,

and as we interact with them more and more, it is natural to

expect computerized systems to be capable of doing the same,

with similar accuracy and effortlessness.

Yet despite this, and despite the obvious relation to the well-

studied problem of face recognition, there has been far less

work focused on developing systems for automatic age and

gender estimation from face photos. This is at least partially

due to the absence of sufficient data: Where face recogni-

tion has benefited greatly from high-quality, comprehensive

benchmarks such as the Labeled Faces in the Wild (LFW) [1]

and the YouTube faces [2] collections, similar data sets are
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not openly available for age and gender estimation. This is

especially perplexing, when considering that estimating facial

attributes has been shown in the past to be key to accurate

face recognition [3]. This gap in the resources available for

the study of the two problems may be traced to the additional

challenge of obtaining accurate age labels, compared to subject

identities [4]. Regardless, as a consequence, this problem has

not enjoyed the same dramatic improvement in capabilities

demonstrated for face recognition.

In an effort to close the gap between the capabilities of age

and gender estimation systems and face recognition systems

(let alone the gap between computer and human capabilities)

we take the following steps. First, we offer a public data-set of

labeled images, and associated benchmark protocols, designed

to reflect the challenges of real-world age and gender estima-

tion tasks. Besides being massive in the number of images and

subjects it includes, it is unique in the nature of its images.

These were obtained from online image albums captured by

smart-phones and automatically uploaded to Flicker before be-

ing manually filtered or “curated”. It therefore contains many

images which would typically be removed by their owners as

being faulty or otherwise unsuitable. Compared to other “in the

wild” face image collections, most notably LFW or PubFig,

it contains images which demonstrate a far wider range of

challenging viewing conditions. This is demonstrated in Fig. 1,

but also in our experiments, comparing the performances of

the same methods on different sets (Section V).

Training a computer vision system to accurately estimate

age, runs the risk of over-fitting to the biases of the photos

used for the training. This is more true here than in the related

problem of face recognition, as represented by, e.g., the LFW

benchmark. The reasons are twofold [4]: (i) the additional

challenge of preparing suitable data (collecting and labeling

photos for accurate age) results in less data being available,

and (ii), the multi-class nature of the problem may require a

wider variability of examples than the binary “same”/ “not-

same” classes used by the LFW.

Our second contribution in this paper addresses this issue

by proposing dropout-SVM for training linear support vector

machine (SVM) classifiers [6]. Our approach follows the

“dropout” technique recently proposed for training deep neural

networks [7], [8], and shown there to be an extremely powerful

means of avoiding over-fitting in these models. Here, we

propose using a similar approach when training SVM, in an

effort to avoid over-fitting due to the scarcity of available data,

rather than the nature of the classification model used.

Bringing these together, we describe a system for age and

gender estimation. Handling of facial images is performed by

a robust facial alignment technique, our third contribution,

which explicitly considers the uncertainty of the facial feature

detections used to estimate the aligning transformation. The

system employs standard facial features and linear SVM
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Fig. 1: Example images from two existing relevant collections and our own, Adience set. Left: PubFig benchmark [3]

images. Despite being considered “in the wild”, these images are often clean in terms of viewing conditions, and enjoy

participation from the subjects being photographed. Mid: The Gallagher collection [5], provides images with an intentional

bias towards groups of people, typically facing the camera and posing for their shots. Right: Images from our collection,

automatically uploaded to Flickr, without manual pre-filtering by their owners. Consequently, they include sideways facing

subjects, motion blur, poor lighting and more, all of which present additional challenges to automated face analysis systems.

classifiers, but is trained using our proposed dropout-SVM.

This system is tested on two variants of our own benchmark,

as well as two variants of the Gallagher [5] benchmark.

Our tests clearly demonstrate both the elevated challenge of

our benchmark as well as the substantial improvement in

performance of our proposed method.

To summarize, this paper makes the following contributions.

• Age/Gender benchmark of unfiltered face photos. We

provide a benchmark designed to reflect more realistic

face processing applications than those currently used.

• Robust face alignment and dropout-SVM. We describe

our own pipeline for inferring facial attributes, which

includes a robust face alignment technique as well as the

dropout-SVM approach to linear SVM training.

• Performance evaluation. We report an extensive evalu-

ation, comparing both alternative benchmarks and their

respective levels of difficulty, as well as the capabilities

of automatic age and gender estimation systems. We

show our own system to outperform others by substantial

margins on all the evaluated benchmarks.

Finally, in order to promote reproducibility of our results,

our data and code is publicly available from the project

webpage: www.openu.ac.il/home/hassner/Adience.

II. PREVIOUS WORK

Estimating the age of a person appearing in a photo, from

that person’s facial features, has been studied at length in

the past, though far less than the related problem of face

recognition. A comprehensive survey of methods and data

has previously been offered by [9] and more recently in [10].

Here we provide a cursory overview of this work, referring

the reader to those papers for a more in-depth treatment.

Broadly speaking, previous work on this problem can be

categorized in terms of how face images are represented and

how ages are estimated.

Face representations. Early work on age estimation [16],

inspired by studies of aging in biology [17], proposed rep-

resenting faces by obtaining facial measurements that change

with a person’s age. These so-called anthropometric models,

consider measurements taken from different facial locations,

and analyzed using expert-tailored knowledge, represented as

manually defined statistical models, to determine age. More

recently, [18] presented a similar approach for modeling the

age of young people. These methods, based on their need for

accurate localization of facial feature detections, may not be

suitable for the realistic scenarios considered here.

An alternative approach seeks to model the high dimen-

sional region in some feature space, which characterizes how

facial appearances change with age. To this end, previous

methods have used subspaces [19] or high dimensional man-

ifolds [14]. Similar to the anthropometric models, however,

they assume accurate alignment of faces, and the underlying

assumption of the manifold structure of facial appearances

across ages, which may not strictly be true.

Here we take a different approach to face image

representation. We assume that age appearances and

variations can be modeled using example images. Previous

related approaches use low-level features to represent these

examples. In particular, [4] used local binary patterns

(LBP) [20], Gabor features [21] were used by [22], both

features were recently used by [23], features inspired by

the processing in the visual cortex, the biologically-inspired

features (BIF) [24] were used in [25] (as well as others),

finally, image patches extracted from different image regions

were employed by [26].

Face discrimination. Age estimation, depending on the appli-

cation domain, can be a regression problem or a multi-label

classification task [9]. Here, we focus on age classification,

using the terms estimation and classification interchangeably,

and review previous work related to this task. Early work

on age classification used neural networks to classify face

images according to age [27]. Somewhat later, [28] compared

a number of different classification schemes, amongst which

neural networks were tested as well, and showed that their

best performance was obtained by using a quadratic regres-

sion system, relating the parameters of an active appearance

model [29] with numerical age labels. In [30] eleven low-

dimensional subspaces, each one representing a different age,
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TABLE I: Benchmarks for age and gender estimation from photos. With the exception of the FG-NET Aging and UIUC-

IFP-Y benchmarks, the table includes only benchmarks which are presently available online to the research community.

Benchmark Year ♯ Images ♯ Subjects ♯ Age groups Gender In the wild Notes

FG-NET Aging [11] 2002 1,002 82 Accurate ages Yes No This benchmark, though frequently used
in the past, to our knowledge, is no longer
available for download.

MORPH [12] 2006 55,134 13,000 Accurate ages Yes No Information provided for the academic dis-
tribution “Album 2”

UIUC-IFP-Y Internal
Aging [13], [14]

2008 8,000 1,600 Accurate ages Yes No Not publicly available, yet may presum-
ably be obtained from its authors.

PubFig [3] 2009 58,797 200 5 Yes Yes Celebrity photos from media websites. Bi-
ased towards high resolution, clear images
with subjects posing for the camera.

Gallagher group pho-
tos [5]

2009 5,080 28,231 7 Yes Yes Designed for studying group photos, and
so contains strong biases towards forward
facing, artificially posed faces.

VADANA [15] 2011 2,298 43 4 Yes Yes Mostly frontal faces with large number of
images per subject

Us, Adience 2014 26,580 2,284 8 Yes Yes See Section IV and Table II

are computed. Classification of a face image is performed by

considering the likelihood of it belonging to each of these

subspaces. Support vector machines were used for classifying

age in [14], [31] and more recently [32].

More recently, some have suggested different ways of

partitioning the space of face images based on age. One such

example is the ordinal subspaces approach of [33], which

uses a flat partitioning scheme. Finally, others have proposed

hierarchical partitioning models, including [34], which use an

“AND-OR” graph partitioning of age progression and [35]

which use age classifier hierarchy models.

A. Gender classification

Gender classification has received considerable attention

over the years, both for its potential contribution to face

recognition [3], as well as its applications in human computer

interaction, soft biometrics [36], [37] and more. For a rigorous

survey of the methods developed for this problem over the

years, we refer to [38] or, the more recent [39].

Some of the earliest attempts to automatically estimate

gender used neural networks [40]. Later, [41] proposed the use

of global features for gender classification. The contribution

of 3D head structure for gender classification was explored

in [42]. Face image intensities were directly classified using

SVM in [43] and later again using AdaBoost in [44]. Also

using AdaBoost, [45] used local binary patterns (LBP) [20]

rather than intensities. Contrary to these, others have consid-

ered local image information. These include SIFT features

in [46] and Haar wavelets in [47].

The methods listed above were mostly developed and tested

using photos obtained under constrained viewing conditions,

often using various subsets of the FERET benchmark (see

Section II-B). Recently, work has shifted towards more chal-

lenging viewing conditions, following a similar development

in face recognition research. Real-time performance when

classifying gender in real-world images was the emphasis

in [48]. Somewhat related to our work here, LBP was used

along with SVM classifiers in [49]. In [50] a viewpoint-

invariant appearance model was developed and used to rep-

resent faces in a gender classification system. Face images

were combined with other biometric cues, notably fingerprints,

in [51]. Finally, gender classification from video streams was

recently proposed in [52].

B. Existing benchmarks

We survey the benchmarks used by age and gender esti-

mation systems. Various properties of these benchmarks are

summarized in Table I. We refer the reader to [9] and [15] for

a more throughout survey. We note that this report considers

only sets which we know are, or were, publicly available.

Other sets listed in [9] may be obtained by direct request,

but were excluded from this summary.

Possibly the most well-used benchmark for age estimation

has been FG-NET aging set [11]. It consists of about 1,000

images of 82 subjects, labeled for accurate age. These photos

were acquired under controlled conditions, and so reflect less

challenges than those expected of modern face recognition

systems. Not surprisingly, performance on this set has long

since saturated, reaching mean average age estimate errors of

less than 5% (e.g., [53]).

Another popular benchmark used by many in the past is

the MORPH set [12], collected by the Face Aging Group

at the University of North Carolina at Wilmington. It is

partitioned into several subsets, or albums, of which “Al-

bum 2” is available for academic purposes. It contains over

55,000 images of 13,000 individuals. It too, like the FG-

NET set, contains images under highly controlled viewing

conditions. Over the years, performance on this set has also

saturated, with systems demonstrating performances reaching

near-perfect scores (e.g., [33]).

The UIUC-IFP-Y Internal Aging [13], [14], extensively

used by the SMILE lab at Northeastern University, is not

publicly available due to intellectual property limitations, but

presumably may be obtained by contacting its authors directly.

It offers 8,000 images of 1,600 voluntary Asian subjects (half

male, half female) in outdoor settings. This set too, was pro-

duced under lab-controlled conditions, and so unsurprisingly,

performance measured by mean average age prediction error

on this set has been reported to be near perfect [9].

Recently, following the shift towards face recognition “in

the wild” (e.g., the LFW set [1]), benchmarks for age and gen-

der estimation have also been assembled using unconstrained
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images. The first, originally designed for face recognition,

is the Public Figures benchmark (PubFig) [3]. It provides

attribute labels for the purpose of improving face recognition

systems. It includes images from news and media websites

which are typically of high quality, with subjects collaborating

with the camera, posing for the shot. Its construction em-

phasized many images for each individual, and so it includes

nearly 60,000 photos of only 200 celebrity faces. Despite pro-

viding age and gender information, we are unaware of previous

work which used this set for estimating these attributes.

In [5], Gallagher and Chen proposed a benchmark for the

study of groups of people, posing for the camera (e.g., family

photos). Photos in this collection therefore typically present

multiple subjects, in forward facing (towards the camera)

poses, each face in relatively low resolution. Thus, the median

face included in this set has only 18.5 pixels between eye

centers, and 25% of the faces occupy less than 12.5 pixels. The

age labels provided in this set make it a convenient choice for

studying age estimation, with recently reported results on this

set, still very far from reaching the near-perfect performances

on the other sets [54].

Finally, the VADANA set was recently proposed in [15].

With 2,298 images of 43 subjects, it is substantially smaller

than its recent predecessors, but unlike them, provides multiple

images of the same subjects in different ages, allowing for the

study of age progression of the same face.

III. FACE AND GENDER ESTIMATION SYSTEM

A. Overview of our approach

We next describe our system for age and gender

classification. As a key design choice, we model our

system after similar systems successfully applied for face

recognition [55]. Specifically, our pipeline consists of

detection, alignment, and identification (representation and

classification). This choice is motivated by the desire to

highlight the specific contributions of the novel aspects

of our pipeline – the face alignment of Section III-B

and the dropout-SVM proposed in Section III-C – rather

than fine-tune elements of a whole system. As a fortunate

byproduct, we obtain state-of-the-art results on both our tasks

with the same pipeline. Having the same general approach

perform well on different problems testifies to its effectiveness.

Detection and alignment. Given a photo, we begin by

applying the standard Viola and Jones face detector [56].

Detected faces are then aligned to a single reference

coordinate frame using the method proposed in Section III-B.

Representation. Aligned faces are encoded using several

popular global image representations. Here we chose the local

binary patterns (LBP) of [20], [57], [58] and the related Four

Patch LBP codes (FPLBP) of [59]. These were selected due to

their successful application to face recognition problems [60],

as well as their efficient computation and representation

requirements [61]. Our system is agnostic to the particular

image representations used, and so other face descriptors can

be used instead or in addition to the ones used here.

Fig. 2: Visualization of the uncertainties associated with

the 68 facial feature detections. Left: Uncertainties on the

reference coordinate frame. Mid: Uncertainties on a sample

face image. Note that ellipses are aligned with the image

axes, as we assume variance along the axes is uncorrelated. In

both images color codes the amount of uncertainty; color-bar

provided on the right.

Classification. Classification is performed using standard

linear SVM [6] trained using the feature vector representations

listed above. Here, we examine each descriptor independently,

or combine multiple descriptors by concatenating them

into single long feature vectors (Section V). Training is

performed using our own dropout-SVM scheme described

in Section III-C. Classification of gender is performed

using a single linear SVM classifier; for the multi-label age

classification, we use a one-vs-one linear-SVM arrangement.

Our choice of a simple linear-SVM is motivated by the

desire to reduce the risk of over-fitting. Simpler classifiers

have been shown to work well for these problems in the

past (e.g., [62]). Our results show, however, that by training

linear-SVM classifiers by dropout-SVM, excellent results

may be obtained without apparent over-fitting.

B. Face alignment with uncertainty

Past work has acknowledged the major role face alignment

plays in the accuracy of face recognition systems. In [55],

the “funneling” approach to image alignment was proposed,

based on sets of unaligned face image examples, and its impact

on recognition performance was demonstrated. An additional

significant leap in face recognition performance was obtained

using the commercial alignment system used by [63] to resolve

in-plane misalignments in the LFW benchmark. More recently,

deep learning was used for image alignment in [64]. Here we

offer an alternative approach, based on facial feature detection.

Specifically, we employ the robust facial feature detector

recently proposed by Zhu and Ramanan [65]. It detects 68

specific facial features, including the corners of the eyes and

mouth, the nose and more. By selecting ideal coordinates for

each of these points an affine transformation can presumably

be obtained and the images aligned. In practice, however,

errors in point localizations as well as the variability of face

shapes can often result in unstable alignment results.

To address this, we note that some detections are more

reliable than others: The corners of the eyes, for examples,

are easier to localize than, say, the cheekbones. In order to

accurately align faces, these uncertainties should be accounted

for. Doing so requires that we know the uncertainty associated

with each of the 68 features, but this information can only

be estimated once the faces are already aligned. In order to
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resolve this chicken-and-egg problem, we take an Iterative Re-

weighted Least Squares (IRLS) approach [66], [67].

Specifically, we assume reference facial feature points

{ri}i=1..68 = {(xr
i , y

r
i )}i=1..68 in a frontal-facing face.

Given corresponding feature points, {qi,j}i=1..68,j=1..N =
{(xq

i,j , y
q
i,j)}i=1..68,j=1..N (for N training photos), detected on

a query photo, we begin by computing an initial, time-0 affine

transformation H0

j , relating facial feature points qi,j , detected

in the j’th query photo, with their corresponding reference

points, ri, by using standard least squares. Feature points in

all queries are then projected using the standard

q′

i,j = H0

jqi,j .

For a given facial feature i, for all images j, we consider the

variance along the x axis and the variance along the y axis of

these projected points as the uncertainty values associated with

this feature. These are used to estimate a new aligning trans-

formation, H1

j at time-1, this time, by weighted least squares.

Although we tried using the covariance of the projected points,

rather than assuming uncorrelated variance along the two axes,

the additional computational costs associated with doing so did

not provide noticeable improvements in results.

This process can be repeated, obtaining transformations

H2

j ,H
3

j and so fourth, until convergence [66]. In practice,

however, we found that a single iteration was sufficient to pro-

vide a considerable improvement in performance (Section V).

Fig. 2 demonstrates the uncertainties computed by our method

following a single iteration, visualized both in the reference

coordinate system and on a sample query photo.

C. Dropout-SVM

A combination of few training samples, high dimensional

data, and complex classification models is often a recipe for

over-fitting [67]. Here, we use linear-SVM, a simple model,

less susceptible to over-fitting. The shortage of data available

for the study of age estimation, and the high dimensionality of

standard face representations (Section III-A) can nevertheless

lead to over-fitting of our classifiers and subsequently, to sub-

optimal performance.

Various methods designed to make SVM robust to over-

fitting have previously been proposed. Many of these employ

regularization terms, added to the objective function [68] or

the covariance estimation [69]. Others propose the use of more

robust optimization procedures [70]. Naturally, dimensionality

reduction techniques may also be used in order to reduce the

number of features, and hence the complexity of the learned

models compared to the available training instances, thereby

improving the models’ ability to generalize well. These meth-

ods require turning or learning of additional parameters,

modified optimizations, and, in the case of dimensionality

reduction, loss of potentially valuable information.

By contrast, our approach is inspired by the recent success

of dropout learning for deep neural networks [7], [8] where

over-fitting is a major concern. While training, dropout essen-

tially omits neurons from the network with some probability

pdrop for each feature, in each sample, to be dropped, usually

chosen as pdrop = 50%. By doing so, it was claimed that

neurons must better adapt to the input data, relying less on

other neurons in the network, and so obtain representations

which are more distributed and better generalized.

The relation between SVM and neural networks has been

noted in the past; SVM can be considered equivalent to a

single-layer neural network [71]. Thus, a similar dropout pro-

cedure can conceivably be applied to train SVM classifiers: We

propose that, rather than omit neurons, training is performed

by randomly dropping-out the output of input-layer neurons.

For the case of linear-SVM, this is equivalent to assigning the

value zero, at random, to training features (elements of the

feature vectors used for training). This random selection is

applied to each training instance separately; different features

are randomly selected and set to zero for different training

instances. In Section V we evaluate two variations of this

scheme: in one, 50% of the input values are dropped (dropout

0.5), and the other, where each training vector is considered

twice, each time with an independently selected random subset

of 80% of its values dropped (dropout 0.8).

Dropping out many of the values from the training

instances requires that the obtained model be modified

accordingly. Specifically, following training with a dropout of

rate of pdrop, we divide all the coefficients of the resulting

linear SVM model by (1 − pdrop). This compensates for the

dropped-out values, and provides a model suitable for test

instances which include all their values.

Discussion. Robust classification is often expressed in terms

of a classifier’s capabilities to generalize beyond a bounded

amount of perturbations of the training set [72], [73]. Here,

our data is limited both in the number of samples available,

and – following the strong alignment discussed above and

the invariant descriptors we use – in the natural variation of

values for each feature. As a consequence, these perturbations,

implicit in the training process, are limited in their capacity to

capture the underlying structure of the problem. The process

described above can therefore be considered as introducing

extreme perturbations to the input, thereby infusing the learn-

ing process with a much greater variability of possible values

for every feature and increasing the robustness of the learned

model. As a consequence, as we show in Section V, it has a

profound effect on the performance of our system.

IV. THE ADIENCE BENCHMARK

In order to facilitate the study of age and gender recognition,

we provide our own, public data set and benchmark of face

photos. Our key design principle is that the data we use should

be as true as possible to challenging real-world conditions. As

such, it should present all the variations in appearance, noise,

pose, lighting and more, that can be expected of images taken

without careful preparation or posing. We next describe the

database collection process, as well as the testing protocols

used with these photos in our tests.

A. Database preparation and contents

The source for the photos in our set are Flickr.com albums,

produced by automatic upload from iPhone 5 or later smart-

phones. By “opting in”, iPhone users can have the photos they
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TABLE II: Breakdown of faces per-label in our collection.

T. Gnd. denotes the total number of photos in each age

category with gender labels. Total denotes all photos in each

category labeled for age (including those with no gender label).

Complete version (faces in the range of ±45
◦ yaw from frontal)

0-2 4-6 8-13 15-20 25-32 38-43 48-53 60- Total

Male 745 928 934 734 2,308 1,294 392 442 8,192
Female 682 1,234 1,360 919 2,589 1,056 433 427 9,411
T. Gnd. 1,427 2,162 2,294 1,653 4,897 2,350 825 869 19,487
Total 2,519 2,163 2,301 1,655 4,950 2,350 830 875

Front version (faces in the range of ±5
◦ yaw from frontal)

Male 557 691 738 501 1,602 875 273 272 5,824
Female 492 911 956 630 1,692 732 295 309 6,455
T. Gnd. 1,049 1,602 1,694 1,131 3,294 1,607 568 581 13,649
Total 1,843 1,602 1,700 1,132 3,335 1,607 572 585

take automatically uploaded to their personal Flickr albums,

for backup. Flickr users may additionally opt to make these

albums publicly available through the Creative Commons (CC)

license. We use such photos in our collection.

Image collection consisted of the following steps. Photos

downloaded from ∼ 200 public Flickr albums were processed

by first running the Viola and Jones face detector [56], and

then detecting facial feature points using a modified version

of the code provided by the authors of [65]. Presumably due

to the recent “selfie” trend, many faces in these albums appear

at different roll angles. To avoid missing these faces, the face

detection process was applied to each image, rotated 360◦

degrees in 5◦ increments.

Faces for which the facial feature detection step failed were

considered too noisy or small and were discarded. The pose

estimated using the same code was additionally used to discard

faces which were at a greater than ±45◦ yaw angle from 0

(forward facing). Finally, all images were manually labeled

for age, gender and identity using both the images themselves

and any available contextual information (image tags and

associated text, additional photos in the same album etc.).

Though we do not use identity labels here, their contribution

to face recognition can be explored in the future.

Table I provides a comparison of the general properties

of our collection, compared to other sets. Evidently, our

set contains substantially more images than the Gallagher

collection, and substantially more subjects than the PubFig

set. Fig. 1 compares a few examples of photos from our

Adience collection to those in two recent unconstrained sets,

and demonstrates the greater variability in terms of pose and

viewing conditions of our photos. Breakdown of the number

of images included in each class is provided in Table II. We

note that not all faces could reliably be labeled for gender

(mostly babies) and not all could be labeled for age.

B. Benchmark protocols

We define test protocols to benchmark the performance of

gender and age estimation techniques, using our collection. We

use two variations of our data set: the frontal and the complete

sets (See Table II). The frontal set includes only roughly

frontal facing faces; that is, faces which were determined to

be within ±5◦ yaw angle from a forward facing face. The

complete set includes faces with up to ±45◦ degrees of yaw.

Training and testing is performed using 5-fold cross val-

idation with splits pre-selected to eliminate cases of images

from the same Flickr album appearing in both training and

testing sets in the same fold. We use the same splits for both

the gender and the age classification tasks. Results therefore

include both mean classification accuracy (age or gender),

including, ± standard error over the five folds.

Gender labeling is a binary classification task. The output

is both the accuracy of the classification, as well as an ROC

curve. For the multi-class age estimation we report mean

classification error across all age groups. Following [74] we

provide also the 1-off age error classification rate, where errors

of one age group are considered correct classifications.

V. EXPERIMENTS

A. Implementation details

Our system pipeline is implemented as a combination of

C++ and Python code. We produced our own Python imple-

mentations for the two descriptors used – LBP and FPLBP.

Face detection is performed using standard OpenCV routines,

wrapped to consider 360◦ roll versions of the input image, at

5◦ increments, and different classifier cascades for improved

robustness. Facial feature localization was performed using the

code made available by [65], with some optimizations applied

for better run-time performance.

The age and gender experiments reported below use our

own Adience benchmark, as well as the Gallagher group

photos benchmark. Our decision to use the Gallagher set for

this purpose follows the conclusion of the BeFIT project,

which designated this collection as the most suitable existing

age and gender classification benchmark [75]. This, as ear-

lier benchmarks, FG-NET and MORPH-II in particular, have

been saturated; results reported on these benchmarks have

long since reached near perfect performance, and so slight

differences in the reported performances are hard to interpret.

B. Age classification

We test various components of our system on the Gallagher

benchmark and our Adience collection. As the age groups in

the two benchmarks are different, direct comparison of the

difficulty each data set represents is impossible. We therefore

provide these only for gender in Section V-C. Here, we

refer to “exact” classification as the mean accuracy, across

all age groups, of predicting the true age label. “1-off”

implies counting labeling errors, one age group removed

from the true label, as correct. Dropout 0.5 denotes dropout-

SVM with 50% probability of dropping features; Dropout

0.8 denotes 80% of the input features dropped, randomly

and independently, from two copies of the input feature vector.

Gallagher age classification results. We compare our pipeline

with what we know to be the state of the art on the Gallagher

benchmark, using the testing protocol defined by that bench-

mark. These include results reported by Shan in [74], and more

recently, by Alnajar et al. in [54]. Our method was tested

with and without our alignment of Section III-B. Without

alignment indicates that faces were aligned using only the
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TABLE III: Age classification on the Gallagher benchmark.

Mean accuracy (± standard errors) over the seven age cate-

gories in the Gallagher benchmark. Boldface are best scoring.

Method Exact 1-off

1 Shan 2010 [74] 55.9 87.7
2 Alnajar et al. 2012 [54] 59.5 –

Our system, no alignment

3 LBP 56.4 ± 0.4 92.7 ± 0.2
4 FPLBP 60.2 ± 0.6 92.0 ± 0.2
5 LBP+FPLBP 57.5 ± 0.5 93.7 ± 0.2
6 LBP+FPLBP+Dropout 0.5 62.7 ± 0.6 94.5 ± 0.1
7 LBP+FPLBP+Dropout 0.8 65.6 ± 0.6 94.0 ± 0.2

Our system, including alignment

8 LBP 58.0 ± 0.1 94.1 ± 0.2
9 FPLBP 61.0 ± 0.5 92.2 ± 0.2

10 LBP+FPLBP 59.0 ± 0.4 95.3 ± 0.2

11 LBP+FPLBP+PCA 0.5 46.8 ± 0.6 90.1 ± 0.3
12 LBP+FPLBP+PCA 0.8 41.3 ± 0.4 83.9 ± 0.3
13 LBP+FPLBP+Dropout 0.5 64.3 ± 0.6 95.3 ± 0.3

14 LBP+FPLBP+Dropout 0.8 66.6 ± 0.7 94.8 ± 0.3

annotations available for that collection; namely, the locations

of the centers of the eyes. We used these locations to solve

for scale and rotation. The results reported for aligned images,

refer to the Gallagher set images following our alignment

process of Section III-B.

The results in Table III clearly show the substantial improve-

ment of our method compared to previous work, with our 1-off

scores reaching near perfect performance on this set. Without

alignment and without the dropout-SVM training (Table III,

rows 3–5), our performance is comparable to previous work.

Dropout-SVM alone provides an additional ∼ 6% performance

boost (rows 6,7). The addition of a robust alignment step

further improves our results by as much as 2.5% (row 10),

with our full system, including alignment and dropout-SVM,

obtaining the highest results (rows 13,14).

As previously mentioned, we use dropout-SVM to

address potential over-fitting. A well-known alternative is

dimensionality reduction. We compare our dropout-SVM

with standard PCA, used here to reduce the dimension of

the concatenated descriptors to half and to 20% of their size,

(corresponding to dropout rates of 50% and 80%). Results

are reported in rows 11 and 12. Although PCA was used

to reduce dimensionality by only half, its performance falls

well below that of dropout. This is likely due to the loss of

information inherent in the process. Dropout, by comparison,

classifies the entire test descriptors, unchanged.

TABLE IV: Age classification on the Adience benchmark.

Mean accuracy (± standard errors) over the eight age cate-

gories in the aligned Adience set. Boldface are best scoring.

Method Exact 1-off

1 LBP 41.4 ± 2.0 78.2 ± 0.9
2 FPLBP 39.8 ± 1.8 74.6 ± 1.0
3 LBP+FPLBP 44.5 ± 2.3 80.7 ± 1.1
4 LBP+FPLBP+PCA 0.5 38.1 ± 1.4 75.5 ± 0.9
5 LBP+FPLBP+PCA 0.5 32.9 ± 1.6 67.7 ± 1.1
6 LBP+FPLBP+Dropout 0.5 44.5 ± 2.2 80.6 ± 1.0
7 LBP+FPLBP+Dropout 0.8 45.1 ± 2.6 79.5 ± 1.4

Adience age classification results. Results on our own bench-

Fig. 3: Age classification errors made by our full system

on the Adience benchmark. Using LBP+FPLBP, alignment

and dropout of 50%. Top row are young people, classified as

old. Bottom are old people classified as young.

mark are provided in Table IV. Here, we apply our method

following alignment, in the absence of the eye localizations

provided in the Gallagher benchmark. Here, dropout-SVM

provides a lesser performance gain, though SVM trained with

dropout still provides better results than without (row 7).

Interestingly, for the 1-off results, dropout learning actually

damages performance. We believe this is due to the finer

granularity of our age groups and the consequent smaller inter-

class variation in appearances. This, along with the dropout-

SVM perturbations of the training samples, may be producing

classifiers which are over-generalized.

Fig. 3 provides examples of the age classification errors

made by our system (label errors of more than two age

groups). It presents young faces mis-labeled as old (top

row), and vice versa. Although some examples are extremely

challenging, from a computer vision perspective, due to severe

blur, occlusions, makeup and more, most if not all ages in these

photos can be estimated by a human observer. This testifies

to the gap that still remains between human and machine

capabilities in performing this task.

C. Gender estimation

Gallagher gender classification results. We provide average

accuracy results on a binary gender classification task,

over five-fold cross validation tests. Results are reported

in Table V. Fig. 4 (Left) provides ROC curves for the

various components of our method, on the aligned Gallagher

images (Section III-B). Our results demonstrate the consistent

improvement obtained by adding both the alignment (rows

6–8), and then the dropout-SVM training (rows 11,12).

Cross-dataset results. In order to evaluate the relative diffi-

culties of the Gallagher benchmark and our own, we measure

the accuracy obtained by using one dataset for training and

another for testing. In these tests, train and test sets used the

same images defined by the respective test protocols of each

benchmark (e.g., tests on an Adience test set were performed

using training on a Gallagher training set). We additionally

considered the two variants of each collection, where only

forward facing faces were included (i.e., faces up to a ±5◦

yaw angle from directly forward facing). In all cases we used

the method of Section III-B to align the faces. Results are

provided for LBP and FPLBP, as well as the two concatenated

and dropout-SVM 0.5 used.
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TABLE V: Gender estimation on the Gallagher bench-

mark. Mean accuracy (± standard errors).

Method Accuracy

No alignment

1 LBP 82.4 ± 0.5
2 FPLBP 82.5 ± 0.2
3 LBP+FPLBP 83.1 ± 0.3
4 LBP+FPLBP+Dropout 0.5 85.2 ± 0.3
5 LBP+FPLBP+Dropout 0.8 86.8 ± 0.1

Including alignment

6 LBP 84.6 ± 0.3
7 FPLBP 83.6 ± 0.3
8 LBP+FPLBP 86.4 ± 0.2
9 LBP+FPLBP+PCA 0.5 82.5 ± 0.2
10 LBP+FPLBP+PCA 0.8 80.6 ± 0.2
11 LBP+FPLBP+Dropout 0.5 87.5 ± 0.2
12 LBP+FPLBP+Dropout 0.8 88.6 ± 0.3

Our results are reported in Table VI. These clearly show

the difficulty level of our proposed data, compared to the

previous collection. In particular, no matter what training set

is used, testing on the full Adience collection produces the

lowest scores (shaded third row), with the frontal version of

our benchmark coming in second.

An important observation, evident from these results, con-

cerns database bias [76]; that is, how well training examples

from one set generalize to test samples in other sets. The

columns in Table VI show the variation in performance for

different test sets, using each training set in turn. The columns

for the full Adience benchmark, show a difference of about

5% between the best and worst performances. This should be

compared to the 10% difference between tests sets, when using

the Gallagher benchmark for training. These differences imply

a greater bias in the Gallagher image collection. This is not

surprising considering its original purpose, evaluating group

photos, and the manner in which its photos were collected

(i.e., using search terms relating to family photos etc.).

Fig. 4 (Right) provides ROC curves demonstrating the

contributions of various components of our system, all tested

with the aligned version of the Adience benchmark. The curves

for LBP, FPLBP, and LBP+FPLBP+Dropout 0.5 represent the

same tests used in Table VI. In addition, we provide a few

failed gender classification examples in Fig. 5. Here again,

these images demonstrate the difficulty of the classification

task defined by our benchmark, due to the myriad of confound-

ing factors which affect facial appearances in our images.

VI. CONCLUSIONS

Age, gender and other facial traits represent information

important to a wide range of tasks. Despite this, estimating

these traits from facial appearances has received less attention

than face recognition. Here, we are primarily motivated by

the observation that the amount of data available for the study

of a computer vision problem, in particular the problems

considered here, can have an immense impact on the machine

capabilities developed to solve it. In answer to this, we provide

two contributions: a new and extensive data set and benchmark

for the study of age and gender estimation, and a classification

pipeline designed with an emphasis on making the most of

what little data is available. In addition, we describe a novel,

TABLE VI: Gender estimation, cross-dataset training. Re-

sults using three variants of our pipeline. Columns represent

the source for training and rows the source for testing. We

report average accuracy in five-fold cross validation tests (±
standard errors). “Glgr” denotes the Gallagher set; “Ad”, our

Adience set; “Fnt” represents images with only near-frontal

faces (the frontal version). Note that no matter what training

is used, the results on the Adience benchmark (shaded third

row) are the lowest, testifying to its elevated difficulty.

LBP
Test Train Source

Glgr Glgr-Fnt Ad Ad-Fnt

Glgr 84.6 ± 0.3 84.7 ± 0.2 79.9 ± 0.4 78.5 ± 0.2
Glgr-Fnt 85.4 ± 0.4 86.5 ± 0.2 80.8 ± 0.3 79.9 ± 0.2
Ad 73.3 ± 1.2 73.5 ± 1.4 73.4 ± 0.7 72.9 ± 0.5
Ad-Fnt 74.4 ± 1.2 75.3 ± 0.9 74.6 ± 0.6 75.0 ± 0.3

FPLBP
Test Train Source

Glgr Glgr-Fnt Ad Ad-Fnt

Glgr 83.6 ± 0.3 81.2 ± 0.1 79.0 ± 0.3 77.7 ± 0.3
Glgr-Fnt 84.3 ± 0.4 82.9 ± 0.3 79.6 ± 0.4 79.3 ± 0.6
Ad 74.1 ± 0.9 72.0 ± 0.8 72.6 ± 0.9 72.1 ± 1.0
Ad-Fnt 75.5 ± 0.8 74.4 ± 0.8 74.0 ± 0.8 74.1 ± 1.0

LBP+FPLBP+Dropout 0.5
Test Train Source

Glgr Glgr-Fnt Ad Ad-Fnt

Glgr 87.5 ± 0.2 87.1 ± 0.2 83.0 ± 0.3 82.9 ± 0.3
Glgr-Fnt 87.9 ± 0.2 88.4 ± 0.2 84.0 ± 0.2 84.9 ± 0.2
Ad 75.9 ± 1.2 75.8 ± 1.6 76.1 ± 0.9 75.2 ± 1.0
Ad-Fnt 77.4 ± 1.2 77.8 ± 1.3 77.2 ± 0.7 77.0 ± 1.0

robust facial alignment technique, based on iterative estimation

of the uncertainties of facial feature localizations. Finally,

we provide extensive tests, which demonstrate the improved

capabilities of our method, alongside the heightened difficulty

level of our new benchmark.

Fig. 4: ROC curves for gender estimation results. Left:

Results on the Gallagher benchmark; right: results on the

Adience benchmark. See text for more details.

Our tests leave room for future work. This is evident by

considering the drop in performance exhibited when using

our benchmark compared to previous ones. It is also evident

when considering failed results – all of which are be easy for a

human to correctly classify, but are still very challenging from

a computer vision perspective. To this end, our pipeline can

be significantly improved, in the same way face recognition

systems have improved in the last few years. One possible

direction is considering uncertainties when performing 3D

pose normalization as in [77]. In a different line of work,
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Fig. 5: Gender classification errors made by our full system

on the Adience benchmark. Using LBP+FPLBP, alignment

and dropout of 50%. Top row are males classified as females.

Bottom are females classified as males.

our Adience set is labeled for identity. Though not used here,

this information allows the it to be used as a more challeng-

ing alternative to the benchmarks used today, consequently

providing a new driving force in improving face recognition

capabilities beyond their present state.

REFERENCES

[1] G. B. Huang, M. Ramesh, T. Berg, and E. Learned-Miller, “Labeled
faces in the wild: A database for studying face recognition in uncon-
strained environments,” University of Massachusetts, Amherst, TR 07-
49, 2007.

[2] L. Wolf, T. Hassner, and I. Maoz, “Face recognition in unconstrained
videos with matched background similarity,” in Proc. Conf. Comput.

Vision Pattern Recognition. IEEE, 2011, pp. 529–534.

[3] N. Kumar, A. Berg, P. Belhumeur, and S. Nayar, “Attribute and simile
classifiers for face verification,” in ICCV, 2009. [Online]. Available:
www.cs.columbia.edu/CAVE/databases/pubfig

[4] W.-L. Chao, J.-Z. Liu, and J.-J. Ding, “Facial age estimation based on
label-sensitive learning and age-oriented regression,” Pattern Recogni-

tion, vol. 46, no. 3, pp. 628–641, 2013.

[5] A. C. Gallagher and T. Chen, “Understanding images of groups of
people,” in Proc. Conf. Comput. Vision Pattern Recognition. IEEE,
2009, pp. 256–263.

[6] C. Cortes and V. Vapnik, “Support-vector networks,” Machine Learning,
vol. 20, no. 3, pp. 273–297, 1995.

[7] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification
with deep convolutional neural networks.” in Neural Inform. Process.

Syst., vol. 1, no. 2, 2012, p. 4.

[8] G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and R. R.
Salakhutdinov, “Improving neural networks by preventing co-adaptation
of feature detectors,” arXiv preprint arXiv:1207.0580, 2012.

[9] Y. Fu, G. Guo, and T. S. Huang, “Age synthesis and estimation via
faces: A survey,” Trans. Pattern Anal. Mach. Intell., vol. 32, no. 11, pp.
1955–1976, 2010.

[10] H. Han, C. Otto, and A. K. Jain, “Age estimation from face images:
Human vs. machine performance,” in Proc. Conf. Biometrics. IEEE,
2013.

[11] A. Lanitis, “The FG-NET aging database,” 2002, available: www-prima.
inrialpes.fr/FGnet/html/benchmarks.html.

[12] K. Ricanek and T. Tesafaye, “MORPH: A longitudinal image database
of normal adult age-progression,” in Proc. Conf. Automatic Face and

Gesture Recognition. IEEE, 2006, pp. 341–345, available: www.
faceaginggroup.com/morph.

[13] Y. Fu and T. S. Huang, “Human age estimation with regression on
discriminative aging manifold,” Trans. Multimedia, vol. 10, no. 4, pp.
578–584, 2008.

[14] G. Guo, Y. Fu, C. R. Dyer, and T. S. Huang, “Image-based human age
estimation by manifold learning and locally adjusted robust regression,”
Trans. Image Processing, vol. 17, no. 7, pp. 1178–1188, 2008.

[15] G. Somanath, M. Rohith, and C. Kambhamettu, “VADANA: A dense
dataset for facial image analysis,” in Proc. Int. Conf. Comput. Vision

Workshop. IEEE, 2011, pp. 2175–2182.

[16] Y. H. Kwon and N. da Vitoria Lobo, “Age classification from facial
images,” in Proc. Conf. Comput. Vision Pattern Recognition. IEEE,
1994, pp. 762–767.

[17] L. G. Farkas, Anthropometry of the head and face in medicine. Elsevier
New York, 1981.

[18] N. Ramanathan and R. Chellappa, “Modeling age progression in young
faces,” in Proc. Conf. Comput. Vision Pattern Recognition, vol. 1. IEEE,
2006, pp. 387–394.

[19] X. Geng, Z.-H. Zhou, and K. Smith-Miles, “Automatic age estimation
based on facial aging patterns,” Trans. Pattern Anal. Mach. Intell.,
vol. 29, no. 12, pp. 2234–2240, 2007.

[20] T. Ahonen, A. Hadid, and M. Pietikainen, “Face description with local
binary patterns: Application to face recognition,” IEEE Transactions on

Pattern Analysis and Machine Intelligence, vol. 28, no. 12, pp. 2037–
2041, Dec. 2006.

[21] C. Liu and H. Wechsler, “Gabor feature based classification using the
enhanced fisher linear discriminant model for face recognition,” Trans.

Image Processing, vol. 11, no. 4, pp. 467–476, 2002.
[22] F. Gao and H. Ai, “Face age classification on consumer images with

Gabor feature and fuzzy lda method,” in Advances in biometrics.
Springer, 2009, pp. 132–141.

[23] S. E. Choi, Y. J. Lee, S. J. Lee, K. R. Park, and J. Kim, “Age estimation
using a hierarchical classifier based on global and local facial features,”
Pattern Recognition, vol. 44, no. 6, pp. 1262–1281, 2011.

[24] M. Riesenhuber and T. Poggio, “Hierarchical models of object recogni-
tion in cortex,” Nature neuroscience, vol. 2, no. 11, 1999.

[25] G. Guo, G. Mu, Y. Fu, C. Dyer, and T. Huang, “A study on automatic
age estimation using a large database,” in Proc. Conf. Comput. Vision

Pattern Recognition. IEEE, 2009, pp. 1986–1991.
[26] X. Zhuang, X. Zhou, M. Hasegawa-Johnson, and T. Huang, “Face age

estimation using patch-based hidden markov model supervectors,” in Int.

Conf. Pattern Recognition. IEEE, 2008.
[27] T. Kanno, M. Akiba, Y. Teramachi, H. Nagahashi, and A. Takeshi,

“Classification of age group based on facial images of young males by
using neural networks,” Trans. Information and Systems, vol. 84, no. 8,
pp. 1094–1101, 2001.

[28] A. Lanitis, C. Draganova, and C. Christodoulou, “Comparing different
classifiers for automatic age estimation,” Trans. Systems, Man, and

Cybernetics, Part B: Cybernetics, vol. 34, no. 1, pp. 621–628, 2004.
[29] T. F. Cootes, C. J. Taylor, D. H. Cooper, and J. Graham, “Active

shape models-their training and application,” Comput. Vision Image

Understanding, vol. 61, no. 1, pp. 38–59, 1995.
[30] K. Ueki, T. Hayashida, and T. Kobayashi, “Subspace-based age-group

classification using facial images under various lighting conditions,” in
Proc. Conf. Automatic Face and Gesture Recognition. IEEE, 2006.

[31] G. Guo, Y. Fu, T. Huang, and C. Dyer, “Locally adjusted robust
regression for human age estimation,” in Applications of Computer

Vision. IEEE, 2008.
[32] D. Cao, Z. Lei, Z. Zhang, J. Feng, and S. Z. Li, “Human age estimation

using ranking svm,” in Biometric Recognition. Springer, 2012.
[33] K.-Y. Chang, C.-S. Chen, and Y.-P. Hung, “Ordinal hyperplanes ranker

with cost sensitivities for age estimation,” in Proc. Conf. Comput. Vision

Pattern Recognition. IEEE, 2011, pp. 585–592.
[34] J. Suo, S.-C. Zhu, S. Shan, and X. Chen, “A compositional and dynamic

model for face aging,” Trans. Pattern Anal. Mach. Intell., vol. 32, no. 3,
pp. 385–401, 2010.

[35] P. Thukral, K. Mitra, and R. Chellappa, “A hierarchical approach for
human age estimation,” in Proc. Conf. Acoustics, Speech and Signal

Processing. IEEE, 2012, pp. 1529–1532.
[36] G. Mahalingam and C. Kambhamettu, “Can discriminative cues aid face

recognition across age?” in Proc. Conf. Automatic Face and Gesture

Recognition. IEEE, 2011, pp. 206–212.
[37] M. Demirkus, D. Precup, J. J. Clark, and T. Arbel, “Soft biometric

trait classification from real-world face videos conditioned on head
pose estimation,” in Proc. Conf. Comput. Vision Pattern Recognition

workshops. IEEE, 2012, pp. 130–137.
[38] E. Makinen and R. Raisamo, “Evaluation of gender classification meth-

ods with automatically detected and aligned faces,” Trans. Pattern Anal.

Mach. Intell., vol. 30, no. 3, pp. 541–547, 2008.
[39] D. Reid, S. Samangooei, C. Chen, M. Nixon, and A. Ross, “Soft

biometrics for surveillance: An overview,” Handbook of statistics, pp.
327–351, 2013.

[40] B. A. Golomb, D. T. Lawrence, and T. J. Sejnowski, “SEXNET: A neural
network identifies sex from human faces.” in Neural Inform. Process.

Syst., 1990, pp. 572–579.
[41] S. Gutta, H. Wechsler, and P. J. Phillips, “Gender and ethnic classi-

fication of face images,” in Proc. Conf. Automatic Face and Gesture

Recognition. IEEE, 1998, pp. 194–199.
[42] A. J. O’Toole, T. Vetter, N. F. Troje, and H. H. Btilthoff, “structure than

with image intensity information,” Perception, vol. 26, pp. 75–84, 1997.



IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. ???, NO. ???, ??? ??? 10

[43] B. Moghaddam and M.-H. Yang, “Learning gender with support faces,”
Trans. Pattern Anal. Mach. Intell., vol. 24, no. 5, pp. 707–711, 2002.

[44] S. Baluja and H. A. Rowley, “Boosting sex identification performance,”
Int. J. Comput. Vision, vol. 71, no. 1, pp. 111–119, 2007.

[45] N. Sun, W. Zheng, C. Sun, C. Zou, and L. Zhao, “Gender classification
based on boosting local binary pattern,” in Advances in Neural Networks.
Springer, 2006, pp. 194–201.

[46] J.-G. Wang, J. Li, W.-Y. Yau, and E. Sung, “Boosting dense SIFT
descriptors and shape contexts of face images for gender recognition,”
in Proc. Conf. Comput. Vision Pattern Recognition workshops. IEEE,
2010, pp. 96–102.

[47] Z. Yang, M. Li, and H. Ai, “An experimental study on automatic face
gender classification,” in Int. Conf. Pattern Recognition, vol. 3. IEEE,
2006, pp. 1099–1102.

[48] D.-Y. Chen and K.-Y. Lin, “Real-time gender recognition for uncon-
trolled environment of real-life images.” in Proc. Int. Conf. Computer

Vision Theory and Applications, 2010, pp. 357–362.
[49] C. Shan, “Gender classification on real-life faces,” in Advanced Concepts

for Intelligent Vision Systems. Springer, 2010, pp. 323–331.
[50] M. Toews and T. Arbel, “Detection, localization, and sex classification

of faces from arbitrary viewpoints and under occlusion,” Trans. Pattern

Anal. Mach. Intell., vol. 31, no. 9, pp. 1567–1581, 2009.
[51] X. Li, X. Zhao, Y. Fu, and Y. Liu, “Bimodal gender recognition from

face and fingerprint,” in Proc. Conf. Comput. Vision Pattern Recognition.
IEEE, 2010, pp. 2590–2597.

[52] M. Demirkus, M. Toews, J. J. Clark, and T. Arbel, “Gender classification
from unconstrained video sequences,” in Proc. Conf. Comput. Vision

Pattern Recognition workshops. IEEE, 2010, pp. 55–62.
[53] K. Luu, K. Seshadri, M. Savvides, T. D. Bui, and C. Y. Suen, “Contourlet

appearance model for facial age estimation,” in Proc. Int. Joint Conf.

Biometrics. IEEE, 2011, pp. 1–8.
[54] F. Alnajar, C. Shan, T. Gevers, and J.-M. Geusebroek, “Learning-based

encoding with soft assignment for age estimation under unconstrained
imaging conditions,” Image and Vision Computing, vol. 30, no. 12, pp.
946–953, 2012.

[55] G. B. Huang, V. Jain, and E. Learned-Miller, “Unsupervised joint
alignment of complex images,” in Proc. Int. Conf. Comput. Vision.
IEEE, 2007.

[56] P. Viola and M. Jones, “Robust real-time face detection,” IJCV, vol. 57,
no. 2, 2004.
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