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ABSTRACT

Great achievements in knowledge are produced by older innovators today than they were a century

ago. Using data on Nobel Prize winners and great inventors, I find that the age at which noted

innovations are produced has increased by approximately 6 years over the 20th Century. This trend

is consistent with a shift in the life-cycle productivity of great minds. It is also consistent with an

aging workforce. The paper employs a semi-parametric maximum likelihood model to (1) test

between these competing explanations and (2) locate any specific shifts in life-cycle productivity.

The productivity explanation receives considerable support. I find that innovators are much less

productive at younger ages, beginning to produce major ideas 8 years later at the end of the 20th

Century than they did at the beginning. Furthermore, the later start to the career is not compensated

for by increasing productivity beyond early middle age. I show that these distinct shifts for

knowledge-based careers are consistent with a knowledge-based theory, where the accumulation of

knowledge across generations leads innovators to seek more education over time. More generally,

the results show that individual innovators are productive over a narrowing span of their life cycle,

a trend that reduces -- other things equal -- the aggregate output of innovators. This drop in

productivity is particularly acute if innovators' raw ability is greatest when young.
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Age is, of course, a fever chill

that every physicist must fear.

He’s better dead than living still

when once he’s past his thirtieth year.

— Paul Dirac, 1933 Nobel Laureate in Physics

1 Introduction

It is widely perceived that great innovations are the provenance of the young. The sentiments of

Dirac expressed above have been shared by Einstein, von Neumann and many other eminent scien-

tists and mathematicians (Zuckerman & Merton, 1973; Simonton, 1988). Empirical investigations

of this view, usually undertaken within the fields of psychology and sociology, tend to support the

idea that innovative activity is greater at younger ages, although great achievement before the age

of 30 is not typical. Rather, a researcher’s output tends to rise steeply in the 20’s and 30’s, peak in

the late 30’s or early 40’s, and then trail off slowly through later years (Lehman, 1953; Simonton,

1991).

While many great insights do occur at younger ages, it is also clear that innovators spend a

large number of their early years undertaking education.1 Indeed, human capital investments

dominate the early part of the innovator’s life-cycle. Learning a subset of the skills, theories, and

facts developed by prior generations seems a necessary ingredient to innovative activity. Newton

acknowledged as much in his famous letter to Hooke, "if I have seen farther it is by standing on the

shoulders of giants". Dirac and Einstein, who produced major contributions at the age of 26, first

went through significant educational periods and then built directly on existing work. Dirac built

on Heisenberg’s uncertainty principle and Hamiltonian mechanics. Einstein’s early insights built

1Research in the psychology literature suggests that substantial training periods — ten years at minimum — are a
prerequisite to expertise in many fields, from science to sports, music, medicine, and chess (see Ericsson and Lehmann
1996 for a review).
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on the work of Planck and Maxwell. Certainly, innovation would be a very difficult enterprise if

every generation had to reinvent the wheel.

These two observations suggest an intriguing tradeoff. If innovators are especially productive

when young, but education is an important preliminary input to innovation, then the opportunity

cost - the time spent - in education may be significant. Moreover, how innovators approach this

tradeoff may evolve as the economy evolves. As one example, the accumulation of knowledge

across generations may impose an increasing educational burden on successive cohorts, so that the

expanding time costs of education will delay the onset of active innovative careers. This possibility

poses a problem for innovation as it reduces, ceteris paribus, the lifetime output of individual

innovators, especially if their potential is greatest when young.

In this paper, I show that the great achievements in knowledge of the 20th Century occurred at

later and later ages. The youth of Einstein and Dirac is far more unusual today than it was at the

time of their great insights. The mean age at great achievement for both Nobel Prize winners and

great technological inventors rose by about 6 years over the course of the 20th Century. Moreover,

this trend in knowledge-based achievement is distinctive: the age of great achievement in athletics

has shown no trend.

Having presented these age trends in Section 2, I then develop hypotheses to explain them.

In one set of hypotheses, the productivity of innovators over the life-cycle may have shifted on

specific dimensions. For example, increasing educational attainment at younger ages may delay

the onset of active innovative careers. Alternatively, innovator productivity may have increased at

more advanced ages due to improved health or an increased role for experience. Determining the

location of any shift in innovator productivity will substantially constrain the set of theories that

can explain the general upward trend in age.

In another hypothesis, the upward age trend in the data could simply reflect underlying demo-
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graphic shifts. Great innovations at a point in time are selected from a set of innovations produced

by a range of innovators. Since the population has become substantially older with time, we are

more likely to draw older innovators today than we were at the beginning of the 20th century. Put

another way, if people lived shorter lives in the past, then innovators in the past will also appear

younger.

Section 3 develops a formal econometric model of the age at great achievement to (1) test be-

tween these competing explanations and (2) locate any specific shifts in life-cycle productivity. The

model is estimated using semi-parametric maximum likelihood methods, with the results presented

in Section 4. I find substantial shifts in life-cycle productivity beyond any demographic effect.

Specifically, there has been a large upward trend in the age at which innovators begin their active

careers; meanwhile, there is no compensating shift in the productivity of innovators beyond middle

age. The estimates suggest that, on average, the great minds of the 20th Century began innovating

at age 23 at the start of the 20th Century, but only at age 31 at the end - an upward trend of 8

years.

Section 5 considers both implications of these patterns for aggregate innovative output and

possible reasons for the upward trend in the early life cycle. I show that the delayed start to the

career is captured partly by an increasing age at Ph.D.. Using a simple model for the educational

decisions of innovators, I then show precise circumstances in which innovators choose to expand

educational attainment. Interestingly, while general increases in the value of education may increase

an innovator’s output, they can discourage increased educational attainment. An expansion of

foundational knowledge, on the other hand, can produce the empirical features we see. Section 6

concludes.
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2 Age and Great Achievement

This section presents benchmark facts about the age of individuals at the time of their great

achievements. Two types of achievements are considered. The first group considers knowledge-

based achievements: research that leads to Nobel Prizes in Physics, Chemistry, Medicine, and

Economics, as well as technological achievements presented in almanacs of the history of technology.

The second group considers physical achievements: world-record breaking events in track and field,

as well as Most-Valuable Player awards in baseball. The athletes are included for comparison,

allowing us to highlight what is distinctive about knowledge-based achievement.

The data set uses established sources to identify great achievements in knowledge. Nobel Prizes

are determined by committees of experts and are given in principle for a distinct advance. The

technological almanacs compile key advances in technology, by year, in several different categories

such as electronics, energy, food & agriculture, materials, and tools & devices. The year (and

therefore age) of great achievement is the year in which the key research was performed. For the

technological almanacs, this is simply the year in which the achievement is listed. For Nobel Prizes,

which are retrospective, the year of achievement was determined by consulting various biographical

resources. The Data Appendix describes the data collection and sources in further detail.

As a first look at the data, Figure 1 presents ages at great innovation, considering all 20th

Century observations together. Three features are of immediate note. First, there is a large

variance in age. The largest mass of great innovations in knowledge came in the 30’s (42%), but

a substantial amount also came in the 40’s (30%), and some 14% came beyond the age of 50.

Second, there are no observations of great achievers before the age of 19. Dirac and Einstein prove

quite unusual, as only 7% of the sample produced a great achievement at or before the age of 26.

Third, the age distribution for the Nobel Prize winners and the great inventors, which come from

independent sources, are extremely similar over the entire distributions. Only 7% of individuals
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in the data appear in both the Nobel Prize and great inventors data sets.

The most surprising aspect of these data, however, becomes apparent when we consider shifts

in this age distribution over time. To start, I run the following regression:

ai = α+ βti + γXf + εi (1)

where ai is the age of individual i at the time of the great achievement, ti is the year of the

great achievement, and Xf are fixed effects for the field of the achievement and the country of the

individual’s birth. Results of this regression are presented in Table 1. We see that the mean age

at great achievement is trending upwards by 5 or 6 years per century. These trends are highly

significant and are robust to field and country of birth controls. Indeed, the controls cause the time

trend to strengthen, rising to about 8 years over the course of the 20th century. The strengthening

effect of the controls on the trend suggests a compositional shift in great innovation towards fields

and countries that favor the young.

These trends can be seen in greater distributional detail in Figure 2, which presents the raw data

again but divides the 20th Century into three chronological periods: from 1900-1935, 1935-1960,

and 1960 to the present. This figure combines all unique individuals in the Nobel Prize and great

inventors data sets. Here we observe a general shift of the age distribution away from younger

ages. There is a distinct drop in the presence of those in their 20’s and an increased presence of

those in later middle age.

One obvious hypothesis for this outward age shift is a decline in the productivity of younger

innovators in favor of older innovators. Given that the early part of an innovator’s career is

dominated by education, one natural reason for a decline in early innovative potential may be an

increase in the time spent in training. More generally, there may be relative increases in the

productivity of older innovators directly. As one example, if we believe that raw ability declines
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over the life-cycle while experience increases, then the shift in the distribution may suggest the

rising importance of experience over ability. Alternatively, improved health technology may result

in increased ability and effort at later ages.

But we must be careful in how we interpret the distributional shifts we see. A second hypothesis

for the outward age shift is a simple demographic effect. If the underlying population of innovators

is getting older, then older innovators will be more likely to produce substantial innovations, even

if the relationship between age and innovative potential is fixed. The greater the ratio of 50-

year-old innovators to 25-year-old innovators, the more likely the Nobel Prize winning invention

or greatest technological insight to come from one of the 50-year-olds. Such demographic effects

may be important: certainly, life-expectancy and the average age of the population have risen

substantially over the 20th century.

One reduced-form way to test between these ideas is a difference-in-difference style analysis. If

we view the scientific/technological innovators as a “treatment” group experiencing effects peculiar

to knowledge-based careers, then we might profitably attempt a comparison with “control” groups

that are claimed on a priori grounds to be immune to such knowledge effects. An obvious choice for

a control group is great achievements in athletics. Age-achievement profiles in athletics will also be

influenced to some extent by demographic effects, but athletes presumably do not face increasing

training demands over time — the rules of their games are both straightforward and fixed. In fact,

as shown in Table 2, the age of great achievements in athletics is not showing an upward trend.

Figure 3 compares the underlying distribution of MVP winners in baseball before and after 1960,

dividing the data in half. We see that the entire distribution appears essentially stationary.

The substantial upward trend in the age of knowledge-based achievement is entirely absent

in physical achievement. Moreover, if general demographic effects explain the age trends among

great innovators, then they should also be felt to some degree among the athletes. But comparing
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knowledge-achievements and athletic achievements along these lines cannot be wholly satisfactory.

The age distribution of athletes clearly favors the young to a degree that knowledge-based achieve-

ment does not.2 Shifts in the population density beyond middle age will therefore not influence

the age distribution of athletic achievement, while they still might influence the age distribution of

great achievements in knowledge. More generally, this comparison does not help us pinpoint any

distinct shifts in life-cycle productivity for knowledge-based careers.

The following section develops a formal econometric model to identify specific shifts in innova-

tion potential, controlling for demographic effects. With this econometric model, we can ask two

questions explicitly. First, is the upward trend in the age of great achievement simply a demo-

graphic effect, or is it driven by shifts in innovator’s life-cycle productivity? Second, if life-cycle

productivity is shifting over time, is this due to effects at the beginning of the life-cycle, the end

of the life-cycle, or both? The methods to answer these questions are developed in Section 3, and

the results are presented in Section 4.

3 Econometric Model

This section presents a simple stochastic model to define the probability that witnessed innovations

are produced by innovators at particular ages. The empirical analysis in Section 4 will then use

this model to determine, mechanically, where the upward trend in the age of great achievement is

coming from.

Formally, consider a populationN . Given that we have witnessed an innovation, the probability

that the innovation was produced by an individual i is defined by:

Pr(i) =
xiP

{i∈N} xi
2No one has ever won the MVP in baseball or broken a track & field world record after the age of 40. But 41%

of Nobel Prize winning research and the 20th Century’s great technological inventions came beyond that age.
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where xi represents the innovation potential of person i. Innovation potential measures the relative

innovative strength of an individual.3

It will be useful to consider the model in terms of cohorts of equally-aged individuals. First,

define the set of cohorts as A, where a ⊂ A represents the cohort with age a. Furthermore, let

the set of individuals in this cohort be Na ⊂ N , and let the number of individuals in such a set be

defined as |Na|. Then the probability that a witnessed innovation is produced by an individual in

the cohort with age a is,

Pr(a) =

P
{i∈Na} xiP
{i∈N} xi

=
|Na|

_
xaP

{a∈A} |Na|
_
xa

where
_
xa is the average innovation potential of individuals in the cohort with age a. Dividing

top and bottom by the size of the entire population, |N |, and defining the age distribution of the

population as pa = |Na| / |N |, we can rewrite this expression into a particularly useful form,

Pr(a) =
pa
_
xaP

{a∈A} pa
_
xa

Our notation to this point has ignored the possibility that both the age distribution of the

population, pa, and the average innovation potential of individuals of age a,
_
xa, may be changing

over time. Investigating this possibility is the ultimate purpose of our estimation exercise and we

acknowledge it explicitly by writing,

Pr(a|t) = pa(t)
_
xa(t)P

{a∈A} pa(t)
_
xa(t)

(2)

3 Innovation potential can be interpreted as the instantaneous probability that person i produces an innovation,
but it need not be given such a stochastic basis. One may think of innovators as being drawn, with replacement,
from a box of names. A particular person’s innovation potential then represents the frequency with which his or her
name appears in the box, where we imagine that innovators with higher ability or effort level appear more often.
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Any variation over time in the expected age at innovation is then determined explicitly:

E[a|t] =
X
{a∈A}

aPr(a|t)

Several useful points can now be made. First, it is now clear that trends in the age of great

innovation must be driven either by shifts in the population age distribution, pa(t), or by shifts

in the average innovation potential of various age groups,
_
xa(t). Second, any presumption that

the innovators’ upward age trends are driven mechanically by increasing life expectancy may be

misleading. An increasing density of very old individuals is unlikely to be an important force,

simply because the innovation potential,
_
xa, of those in their later years is likely to be low — if only

because people retire. Furthermore, demographic events like the post-war baby boom in the U.S.

can create periods where the working population is getting younger even though life expectancy is

rising. Third, the stochastic process represented in equation (2) can produce innovators with a

large variance in age, as demonstrated in Figure 1. Finally, it is worth noting that this stochastic

model makes few assumptions. While we will make further assumptions in how we define pa(t) and

_
xa(t), the model to this point is quite general.

Equation (2) is the central vehicle for the maximum likelihood estimation presented in Section 4.

In particular, given data for the population distribution, pa(t), and a series of year-age observations

for great achievements, we can use (2) to test hypotheses about the shape of innovation potential,

_
xa(t). Before continuing to the estimation, it remains to develop an explicit model of

_
xa(t) and

how it may shift over time. This sub-model is presented in the next section.

3.1 Locating Shifts in Life-Cycle Productivity

In this section we will add parametric structure to the definition of xi and, by extension,
_
xa. In

particular, we will embed in equation (2) a sub-model of innovation potential that allows for specific

and testable shifts in the life-cycle productivity of innovators.
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In choosing an appropriate modeling strategy, it is helpful to first consider the existing empirical

literature on creative careers, which suggests the following general pattern (e.g., Lehman 1953,

Bloom 1985, Simonton 1991). First, the life-cycle begins with a period of full-time training in

which there is no substantive creative output. Second, there is a rapid rise in output to a peak in

the late 30’s or early 40’s. Third, innovative output declines slowly through later years. While

laboratory experiments do suggest that creative thinking becomes more difficult with age (e.g.

Reese et al, 2001), the decline in innovative output at later ages may largely be due to declining

effort, which a range of sociological, psychological, institutional, and economic theories have been

variously proposed to explain (see Simonton 1996 for a review).

To illustrate these life-cycle patterns, Figure 4 presents data for the creative output of 31 long-

lived individuals, all of whom were born in the mid to late 19th century. Eleven of the individuals

are inventors who hold significant numbers of patents, and their innovation output is defined by

patent frequency as a function of age. The remaining individuals are eminent American scientists

across a variety of disciplines; their innovation potential is defined by publication frequency.4 The

average innovation potential is presented in the figure along with a smoothed estimate using an

Epanechnikov kernel with a bandwidth of 3 years. These data match closely with the general

pattern noted above.

Given this pattern, consider the following simple model. First, we assume that innovators start

their lives with a period of education during which they do not innovate. Let the (stochastic)

length of education required for an individual i be ei.5 Additionally, we will define g(ai; zi) as the

individual’s innovation potential if fully educated, where zi is some (stochastic) measure of talent,

effort, health, and any other factor that influences innovative ability. The innovation potential of

4See the Data Appendix for further details.
5Two reasons we might expect a distribution in the age at which innovators arrive at the knowledge frontier are

(i) different fields contain different types or amounts of knowledge, and (ii) individuals vary in the speed at which
they educate themselves within a specific field.
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individual i as a function of their age is then,

xi = I(ai ≥ ei)g(ai; zi)

where I(ai ≥ ei) is an indicator function equal to 1 if ai ≥ ei and 0 otherwise.

With this specific description of individual innovation potential, we can employ a law of large

numbers to write the cohort average innovation potential as,

_
xa(t)

p→ E[I(ai ≥ ei)g(ai; zi)]

Assuming additionally that ei and zi are independent6 this expectation simplifies to,

_
xa(t)

p→ Pr(ai ≥ ei)E[g(ai; zi)] (3)

To estimate Pr(ai ≥ ei), we will assume first that ei is distributed logistically within cohorts,

Pr(ai ≥ ei) =
1

1 + e−(ai−µ(t))/ω(t)
(4)

where µ(t) = E[ei] and ω (t) is a variance parameter. A logistic specification seems reasonable as

it is parametrically simple, flexible, and captures the "S" shape we see leading up to the peak of

Figure 4.7 Figure 5 presents a graph to clarify this logistic specification and the meaning of the

parameters.

To estimate the expectation of g(ai; zi) I will assume a second logistic curve with parameters θ

and ρ,

6 In general, it might be more reasonable to assume that the distributions of ei and zi are not independent: high
ability (high zi) individuals may be more efficient in their education (low ei). While this possibility is not considered
formally in this paper, the data set used here considers great inventors, for whom we might take the view that zi is
essentially constant.

7Another natural option is a normal distribution, a variation that has no substantive effect on the results.
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E[g(ai; zi)] = 1− 1

1 + e−(ai−θ(t))/ρ(t)
(5)

This reverse "S" curve appears reasonable, as it can capture the initially slow decline in output in

later middle age, followed by the more rapid decline and then tailing off of output into old age, as

seen in Figure 4 and documented in other literature noted above.

With equation (3) and its sub-components (4) and (5), we now have a model for innovation

potential over the life-cycle. We can estimate this model to determine how the propensity to

produce great achievements in knowledge changes with age. By articulating specific underlying

models for both the "front end" of the life-cycle, (4), and the "back end" of the life-cycle, (5), we

can ask not only whether innovation potential has been shifting over time but, more specifically,

whether any shifts are coming from the early years of life, the late years of life, or both.

A motivational question in this paper is whether µ(t), the mean age at which the active career

begins, is changing over time. Shifts in this mean over time can be generally modeled by a

polynomial expansion,

µ(t) = µ0 + µ1t+ µ2t
2 + ... (6)

Shifts in the standard deviation of the can be modeled similarly. The main estimation presented

in Section 4 will allow for a linear trend in µ(t) and a fixed variance parameter, ω; more general

specifications will also be considered as robustness checks.

As with the beginning of the innovative career, we can further allow for shifts in innovation

potential at the end of the career,

θ(t) = θ0 + θ1t+ θ2t
2 + ... (7)

For example, as noted above, shifts that increasingly favor experience over raw ability may
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increase later life innovation potential. Meanwhile, improved health technology may lead to clearer

thinking and/or increased physical stamina, while, alternatively, rising incomes could encourage

earlier retirement and a decline in average innovation potential among older innovators. In the

estimation I will constrain E[g(30; zi)] > 0.9 to ensure that (5) and movements in it are describing

effects later in life, which will make the results more transparent to interpret. This strategy will help

us to substantially limit theories for the increased age at great innovation over the 20th Century.

Taken together, equations (2), (3), and the distributional assumptions in (4), (5), (6) and

(7) produce a stochastic model that integrates demographic effects with a model of knowledge

accumulation.8 We can now attempt to determine what is driving the upward age trend among

inventors.

4 Estimation and Results

This section proceeds in three parts. It first discusses the data used to estimate pa(t). It then turns

to estimates of the sources of the inventors’ age trend, presenting the paper’s central results, and

concludes by considering the robustness of the estimations.

4.1 Population Data

The great innovators come from many different countries and are therefore drawn from populations

with differing age distributions. Data on these age distributions are difficult to find for many

countries, particularly over the time-frame of the entire 20th century. For this reason, the estimation

will focus on the American subset of great innovators. The American innovators show a similar

trend in mean age at great achievement as the larger group and provide a significant number of

8The log-likelihood function is:

i log
pai (ti)

1

1+e−(ai−µ(t))/ω(t)
1− 1

1+e−(ai−θ(t))/ρ(t)

{ai∈A} pai (ti)
1

1+e−(ai−µ(t))/ω(t)
1− 1

1+e−(ai−θ(t))/ρ(t)
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observations on their own.9

Figure 6 shows the population age density, pa(t), of the United States for three selected census

years. The densities are calculated from large micro-samples of the U.S. census. With these

micro-samples, it is possible to determine not only the age distribution for (i) the entire national

population, but also the distribution for subgroups of (ii) active workers and (iii) professional

scientists and engineers. The scientist and engineer data are appealing as they may capture a

closer approximation of the relevant age distribution of innovators. However, the sample sizes are

small in early census years, and the occupational codes in the census are not entirely consistent

across time, raising concerns that shifts in the age distribution for this sub-group may partly be

an artifact of shifting classifications. The maximum likelihood model will be estimated using each

of these population data sets. As we will see, the estimates are quite insensitive to the choice of

population. See the Data Appendix for further discussion of these census data and the construction

of the science and engineers sub-sample.

4.2 Central results

Table 3 presents the maximum likelihood estimates for innovation potential. Specifications (1)

through (3) present estimates of innovation potential assuming it is stationary over the 20th Cen-

tury. Specifications (4) through (6) present the main estimates, which allow for linear trends in

life-cycle innovation potential over time.

There are two striking results. First there is a large and statistically significant shift in life-cycle

innovator productivity over time, even when controlling for an aging population. Second, the shift

in innovation potential is felt entirely at the beginning of the life cycle. In particular, we see that

the mean age at which innovators begin making active contributions has increased by about 8 years

over the course of the 20th Century, rising from a mean age of about 23 in 1900 to approximately
9There are 294 American-born great innovators. The trend in age at great achievement is 8.24 years/century

with a standard error of 2.58 years/century.
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31 in the year 2000. These results are robust to the choice of population data.

Meanwhile, there is no shift in innovation potential in middle age or beyond. The estimates

show virtually zero movement, although robustness checks (see below) suggest non-zero but still

highly insignificant movements in other specifications. Interestingly, this stationarity implies that

demographic effects have driven the rising density of innovators beyond middle age that was seen

in Figure 2.

Figure 7 compares the estimated life-cycle curves for the year 1900 and the year 2000, using

specification (6). We see that the peak ability to produce great achievements in knowledge came

around age 30 in 1900 but shifted to nearly age 40 by the end of the century. An interesting aspect

of this graph is the suggestion that total lifetime innovation potential has declined. Other things

equal, if individuals delay the start of their innovative careers without increasing their productivity

at older ages, then their life-cycle output will fall. In particular, the area under the 2000 curve in

Figure 7 is 30% smaller than it was in 1900. This point will be further discussed in Section 5.

Finally, note that the estimated life-cycle innovation potential follows the general pattern noted

in the literature on creative careers. We see a period of essentially no innovation potential at very

young ages, followed by a steep rise and then a more gradual tailing off. We also see a substantially

steeper decline in the capacity for great innovations than we see in Figure 4, which considered more

ordinary innovations, unweighted for quality. This suggests that while innovators often remain

active into later ages, great achievements remain a younger person’s game.

4.3 Robustness

In this section I consider a number of robustness checks. Columns (1) through (3) of Table 4 allow

for additional linear trends in the variance parameters of the logistic distributions. We see that,

regardless of the population data used, the only statistically significant movement in innovation

potential continues to come at the beginning of the life cycle, in the mean age at which the career
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begins. The point estimates suggest that the variance may tighten in the initial part of the life

cycle, although this is far from significant. Many other functional forms have also been examined,

including those that do not assume logistic distributions. Regardless of the functional form, I find

that the significant trends appear only in the beginning of the life-cycle, showing an increasing age

at which innovators begin innovating.10

As a second robustness check, columns (4) and (5) re-estimate the model using all unique

observations of great inventors worldwide. While the population data used covers only the U.S.,

one might consider the population patterns in the U.S. to be reasonable approximations for other

developed countries where most great inventors live. The empirical estimates using the worldwide

data agree substantially with the pattern estimated for U.S. inventors alone. The trend coefficient

is slightly lower, similar to what we saw in Table 1 when we do not control for country fixed effects,

and the standard errors smaller, as expected given the increased sample size.

Lastly, Table 5 considers the U.S. Nobel Prize and U.S. great inventor datasets separately.

While the Nobel Prize is in principle given for distinct achievements, we might be concerned that

other criteria affect the selection, and that these criteria have shifted over time to favor older

innovators. For example, an increasing bias towards lifetime achievement would have this effect.

Furthermore, the Nobel Prize is retrospective and requires award winners to be alive; therefore,

increased longevity beyond the achievement age could also increasingly favor the old.

These possible selection concerns regarding Nobel Prizes are unlikely to be important for several

reasons. The great inventor data set, which simply lists the great technological achievements in

each given year, appears more immune to these kinds of selection biases and yet, on every dimension,

produces similar results. As seen in Figure 1, the Nobel Prize and great inventors data sets have

10The logistic functions are appealing for the reasons discussed in Section 3.1. The estimation methodology can,
however, also employ polynomial or piecewise linear functions to describe sequential pieces of the life cycle. These
specifications produce similar results: an increase, prior to middle age, in the age at which innovators begin producing
great ideas.
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extremely similar age distributions. Second, these two groups show extremely similar mean trends,

as detailed in Table 1. Third, Table 5 shows that the structural trends are similar for both groups

when they are estimated independently; the coefficients for the great inventors are the same as for

the whole, and the standard errors rise slightly as would be expected given the smaller sample size.

These common patterns suggest common forces rather than idiosyncratic selection effects. Finally,

the results of Tables 3, 4, and 5 show shifts in innovation potential at the beginning of the life-cycle

and not at the end, which is not consistent with selection stories based on longevity or increasing

favoritism for lifetime achievement.

5 Interpretations

This paper has presented a series of increasingly specific facts. The age at great innovation has

trended upwards by approximately 6 years over the course of the 20th Century. This trend is not

simply due to an aging population but reflects a substantial change in the life-cycle productivity

of innovators. Specifically, the age at which the young begin their innovative careers has risen by

approximately 8 years. Meanwhile, there is no compensatory increase in creative potential beyond

early middle age.

This rising delay at the beginning of the innovator’s life cycle has also been echoed in other

research. A study of patenting behavior since 1975 found that the age at first patent among the

general innovator population has shown a similar upward trend - at a rate of about 6 to 7 years

per century if extrapolated (Jones, 2005). That age trend holds across widely different fields and

institutional environments, including both government and corporate research. Taking the facts

together, we see similar trends among both the greatest minds and ordinary inventors. We appear

to be seeing a general phenomenon.

The increasing delay at the beginning of the innovator’s life cycle may be an important element
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in understanding aggregate inventive output. Other things equal, the shorter the period that

innovators spend innovating, the less their output as individuals. If innovation is central to

technological progress, then forces that reduce the length of active innovative careers will reduce

the rate of technological progress, working against growth in standard models. This effect will

be particularly strong if innovators do their best work when they are young. In fact, aggregate

data patterns, much debated in the growth literature, have noted long-standing declines in the

per-capita output of inventors, both in terms of patent counts and productivity growth (Machlup

1962; Evenson, 1991; Jones 1995a; Kortum, 1997). Simple calculations suggest that the typical

R&D worker contributes approximately 30% as much to aggregate productivity gains today as she

did at the opening of the 20th Century.11 This paper provides micro-evidence that explains part

of that trend. Other things equal, the estimates of Section 4 indicate a 30% drop in the lifetime

innovation potential over the century, or nearly half of the overall decline in individual research

productivity.12

The maximum likelihood estimates focus interpretations on effects limited to the young. Ex-

planations must confront not a general aging effect but a specific delay at the beginning of the

life-cycle.13 One natural and intriguing possibility is that innovators are choosing more education

11Combining Machlup’s data on growth in knowledge producing occupations for 1900-1959 (Machlup 1962, Table
X-4) with similar NSF data for 1959-1999 (National Science Foundation, 2005), we see that the total number of
knowledge-producing workers in the United States has increased by a factor of approximately 19. Meanwhile,
the U.S. per-capita income growth rate, which proxies for productivity growth over the long-run, suggests a 6-fold
increase in productivity levels (based on a steady growth rate of 1.8%; see Jones 1995b). The average rate at which

individual R&D workers contribute to productivity growth is
·
A/LR = gA/LR , where A is aggregate productivity, g

is the productivity growth rate, and LR is the aggregate number of R&D workers. The average contribution of the
individual R&D worker in the year 2000 is then a fraction A2000/A1900 /(L2000R /L1900R ) = 6/19 (32%) of what it was
in 1900.
12This paper estimates the relative innovation potential across age groups, so that forces that enhance or reduce

the impact of all innovators, regardless of age, are not captured. Other influences, on top of delays at the beginning
of the life-cycle, may therefore help to explain further portions of the declining trend in the average contributions
of innovators. Suggested mechanisms include innovation exhaustion or "fishing out" stories (e.g. Evenson, 1991;
Kortum, 1997), as well as narrowing expertise and innovative capacity as an endgenous response to an increased
educational burden. Jones (2005) provides theory and empirical support for this latter mechanism.
13Theories that focus on productivity in the later life-cycle, such as improved health effects, find little support.

Theories that suggest delays in innovation at both young and old ages will also have trouble explaining the specific
empirical patterns we see. For example, research on creative careers in the arts (Galenson & Weinberg 2001; Galenson
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over time, and the balance of this section will explore this interpretation in detail. In the first

part, I will examine trends in the age at Ph.D. of Nobel Prize winners. I will then employ a simple

formalization of educational choice to analyze why innovators would delay their careers, even if the

delay results in less time for innovation.

5.1 The Age at Ph.D.

Given the increasing delay at the beginning of the life-cycle, an obvious question is whether this

delay is reflected in longer periods of formal education. Indeed, several studies have documented

upward trends in educational attainment among the general population of scientists.14 While the

Ph.D. is an institution that only approximately captures the end of the training phase and the

beginning of the primary research phase, I will briefly consider the basic facts.

For 92% of the Nobel Prize winners, it was possible to determine the age and location for the

highest degree. In 96% of these cases, the highest degree was a doctorate, in 2% a Master’s degree,

and in the remaining cases the type of degree was unclear. I analyze trends in the age by running

the following regression:

aDi = α+ βtDi + γXf + εi (8)

where aDi is the age of individual i at the time of their highest degree, tDi is the year of the

highest degree, and Xf are fixed effects for the country of the degree and the field of the ultimate

achievement.

2004a; Galenson 2004b) has suggested a useful distinction between "conceptual" innovation and "experimental"
innovation, where the former favors the young and the latter favors the old — often the very old. However, these
important ideas are not wholly satisfactory here because an increasing experimental bias would presumably be felt
to a large degree at older ages.
14For example, the age at which individuals complete their doctorates rose generally across all major fields in

a study of the 1967-1986 period, with the increase explained by longer periods in the doctoral program (National
Research Council, 1990). The duration of doctorates as well as the frequency and duration of post-doctorates has
been rising across the life-sciences since the 1960s (Tilghman et al, 1998). A study of electrical engineering over the
course of the 20th century details a long-standing upward trend in educational attainment, from an intitial propensity
for bachelor degrees as the educational capstone to a world where Ph.D.’s are common (Terman, 1998).
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The results are presented in Table 6. We see that Nobel Prize winners are completing their

formal education at substantially older ages today than they were a century ago. There is an

upward age trend of approximately 4 years per century, and the trend is robust across specifica-

tions. Interestingly, while this trend is large, it accounts for only about half of the delay seen

in the maximum likelihood estimates, although it is within those estimates’ confidence intervals.

Institutional variations in Ph.D. requirements complicate further interpretations. For example,

the country fixed effects in column (4) are jointly significant with a p-value of less than .0001. This

suggests that variations in degree requirements differ across countries; institutional variations over

time are then likely as well. For example, the rise of post-doctorates and/or “on-the-job training”

may explain part of the upward trend in ways not captured by charting ages at Ph.D..15

5.2 The Educational Decision

This paper begins by noting an intriguing tradeoff innovators confront at the beginning of their

lives. Innovators build on earlier knowledge, but knowledge acquisition delays the active production

of new ideas. More generally, innovators must compare the return to active production with the

return to further training, whatever the type of benefits that training brings. In this final section,

I will analyze the educational decisions of innovators in a simple model to both clarify and limit

theories for the empirical patterns uncovered in this paper.

A reasonable specification, especially for highly motivated innovators, is that they choose their

educational attainment to maximize their lifetime research contribution. In particular, their choice

problem is:16

15“On-the-job training” can be substantial. For example, Nobel prize-winning physicist Philip Anderson describes
his early years at Bell Labs, after his Ph.D., as a period where "Lannier taught me many fundamental techniques" and
"I learned chrystallography and solid state physics...and most of all the Bell mode of close experiment" (Lundqvist,
1992).
16More generally, this objective function captures cases where utility is defined to maximize fame or income, so

long as fame and income are monotonic functions of lifetime innovative output.
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max
E

Z T

E
f(E; k)g(a)da

where f(E; k) represents the value of education to their innovative output, and g(a) > 0 represents

the individual’s natural ability as a function of age. Individuals spend some number of years, E,

focused on education during which time they do not innovate, followed by a career of innovation

until they die at time T . The amount of education will influence their ultimate productivity,

where ∂f/∂E > 0 and f(0) = 0. The parameter k represents the state of knowledge or other

environmental conditions that influence the value of education.

The first order condition for this problem is:

∂f(E; k)

∂E

Z T

E
g(a)da = f(E; k)g(E) (9)

which clarifies the central tradeoff. Greater education brings a benefit: the incremental effect on

innovative output, ∂f/∂E, weighted by the innovative ability that remains over your lifetime. But

it also brings an opportunity cost, f(E; k)g(E), the current innovation potential foregone.

Figure 8 presents a graph for analyzing the optimization condition (9), with the terms usefully

rearranged. In particular, I label the upward sloping curve the "longevity curve" and the downward

sloping curve the "educational return curve".17

Consider the educational return curve first. One apparently intuitive idea is that innovators

will seek more education if education becomes "more valuable". However, increases in the value

of education can — surprisingly — have no effect or even the opposite effect. Increasing the value

of education may increase the marginal return, but it will also increase the inframarginal value

17The longevity curve has some finite value at age 0 and approaches ∞ as E → T , since limE→T
T

E
g(a)da = 0.

The educational return curve has some finite value at age T and approaches∞ as E → 0, since f(0) = 0 and therefore
limE→0 f

0(E)/f(E) is unbounded. Hence there is an interior solution to this problem. I have drawn these curves as
monotonic in E, so that the curves have a single crossing property, but this is not necessarily the case under general
functional specifications.
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of what is already learned — raising the opportunity cost of further education. For example, if

f increases by a fixed multiple, then the educational return curve does not shift in Figure 8 and

innovators’ optimal educational attainment will not change. Alternatively, if the value of education,

f , increases by a constant, then the optimal amount of education can actually decline.18

A second idea is that knowledge becomes more difficult to acquire. To assess this possibility,

consider a specific, learning-based model. First, knowledge acquisition begins with fundamental

skills that are not field specific, such as basic mathematics training. These skills are necessary

foundations for more advanced learning, but do not on their own raise the future innovator’s

immediate innovative potential to any appreciable degree. For example, the typical twelve-year-old

has mastered a number of essential concepts, upon which future training will build, but the twelve-

year-old still has no appreciable capacity to innovate. The required acquisition of preliminary

knowledge means that f remains low through much of one’s training. At some point, education

begins to bring the individual close to the research frontier. Here, f begins to rise substantially.

In this investment process, increases in the stock of preliminary knowledge cause the marginal

benefit of education to remain low for longer periods at the beginning of the life-cycle. In particular,

a rightward translation of f by a fixed amount will cause the "educational return curve" in Figure 8

to shift by an equivalent amount and, therefore, E∗ to rise.19 Increasing educational attainment in

a field is then an optimal response to a growing set of foundational knowledge. Useful knowledge for

research simply takes longer to acquire — there is an increasing distance to the knowledge frontier.

Finally, increases in life expectancy, T , can also produce endogenous increases in educational

attainment. Increasing longevity raises the marginal benefit of education. In Figure 8, the

"longevity" curve shifts to the right, resulting in higher E∗. This effect is likely small however,

18Formally, in the first case, write f (E; k) = kf (E). Then (∂f/∂E) /f is insensitive to the value of k. In the
second case, write f (E; k) = f (E) + k. Then (∂f/∂E) /f is decreasing in the value of k at all values of E.
19Formally, let f(E; k) = f(E − k) and define E1 = E + k. Then f 0(E)/f(E) = f 0(E1 − k)/f(E1 − k), so a

translation of f(E) by an amount k causes an equivalent translation in the educational return curve.
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because raw ability and/or effort are low at the end of life. Adding low-productivity years at the

end of life, especially years beyond typical retirement ages, will do little to compensate for shorter

active innovation periods at younger ages.20

Other possible explanations can be considered within or outside this optimization framework.21

However, the interesting result from this theoretical analysis is to suggest that education-based

theories for the empirical patterns in this paper must follow particular forms. General shifts in the

value of education may substantially impact the overall lifetime productivity of innovators and yet,

to the extent that time opportunity costs are definitive, have no effect on educational attainment.

In particular, the evolution of innovative opportunities, a subject much debated in the growth and

innovation literatures, appears orthogonal in a basic analysis to the trends seen in this paper.22 The

drop in lifetime innovation potential seen in Figure 7 may be either exacerbated or compensated

for by general shifts in creative opportunities.

Meanwhile, the empirical patterns are consistent with an increase in the amount of foundational

knowledge passed from one generation to the next. In this theory, a natural by-product of innova-

tion is an increasing educational burden imposed on successive generations of innovators.23 Such

an accumulation of foundational knowledge runs against the prominent ideas of Thomas Kuhn,

who saw scientific progress as a process of revolutionary paradigm shifts (Kuhn, 1962). And here

20 If innovators are impatient, then the effect of increased longevity is reduced further: with a 5% discount rate, a
30-year-old would discount innovative output at age 70 by 90%. Lastly, if we take the view that f(E) is essentially
a step function, with foundational knowledge acquisition providing no return until you get close to the frontier, then
the educational return function may be very steep in the vicinity of the equilibrium, so that E∗ will react little to
shifts in the longevity curve.
21For example, institutional changes that force students to spend more time in teaching or other duties might delay

active innovative careers; in that sense the f curve may shift for institutional reasons. Alternatively, if establishing
a reputation is a prerequisite to doing grant-based research, and research has become more grant-based (expensive)
over time, then extensions of formal education may serve as a signalling mechanism - a different interpretation of the
educational return curve. This idea is perhaps more compelling, although (unreported) results show a substantial
age increase at Ph.D. and great achievement among the economists alone, and these prize winners have had little
need for large grants.
22Popular ideas include a "fishing-out" mechanism, where good ideas become increasingly hard to find (e.g. Kortum

1997), as well stories for increasing returns, where the knowledge of one generation increases the creative potential
of future generations (e.g. Weitzman 1998).
23See Jones (2004) for a range of other evidence consistent with an increasing burden of knowledge.
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an interesting irony appears. Scientists, disinclined to believe that their current views are funda-

mentally wrong, tend to see the Kuhnian view as a pessimistic description of scientific progress.

But once we consider the educational burden that accumulations of knowledge can impose — in-

creasingly limiting the life-cycle contributions of innovators — the revolutionary view may be the

more optimistic one.

6 Conclusions

Great minds produce their greatest insights at substantially older ages today than they did a century

ago. This upward age trend is not due simply to an aging population, but comes from a substantial

decline in the innovative output of younger innovators. Meanwhile, there is no compensatory

expansion of innovative output at later ages. Innovators are the engines of technological change

and, other things equal, the less time an innovator spends successfully innovating, the less her

lifetime output. The estimates point to a 30% decline in life-cycle innovation potential over the

20th Century.

Innovators build directly on earlier knowledge and spend significant portions of their early years

in education. This human capital acquisition provides a possible explanation for the trends we

see. In a simple optimization framework, the accumulation of knowledge — a rising distance to the

frontier — can explain increased educational attainment. Whether or not this particular theory is

correct, the economics literature has focused little on the human capital investments of innovators.

Given that innovators spend some of their youngest and potentially brightest years undertaking

educational investments, understanding the tradeoffs at the beginning of the life-cycle may be first-

order for understanding the ultimate output of these individuals. Certainly, great innovation is

less and less the provenance of the young.
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7 Data Appendix

This appendix describes the data sources used in the paper, providing both reference material and
some underlying details of the methodology used in data collection.

7.1 Data on great innovators

A wealth of biographical information is available for Nobel Prize winners. The most useful imme-
diate source is the official website of the Nobel Foundation, nobelprize.org. This website provides
lists and written biographies of all winners, and was used to obtain dates and locations of birth,
the field of the prize, the year and location of the highest educational degree, and the year(s) in
which the prize-winning research was performed. Altogether, I was able to determine dates of
birth for 547 of the 564 Nobel Prize winners (97.0%), and the period of key research for all but 3
of these. The period of key research was usually straightforward to ascertain, although for 30% of
the prizewinners it spans multiple years, in which case the apparent initial and final years of the
key research were collected. In cases where the Nobel Foundation’s web-site did not accurately
identify the year or period of key research, other sources were consulted. The primary printed
materials used were:

Schlessinger, B. and Schlessinger, J. The Who’s Who of Nobel Prize Winners, 1901-1995. Oryx
Press, Phoenix AZ 1996.

which was cross-referenced with,

Daintith, J. and Gjertsen, D. The Grolier Library of Science Biographies. Vols. 1-10. Grolier
Educational, Danbury CT 1996.

Debus, A.G. ed. World Who’s Who in Science: A Biographical Dictionary of Notable Scientists
from Antiquity to the Present. Marquis Who’s Who Inc., Chicago 1968.

McMurray, E.J., Kosek, J.K., and Valade, R.M. Notable Twentieth-Century Scientists. Vols. 1-4.
Gale Research, Detroit 1995.

Williams, T.I. ed. Biographical Dictionary of Scientists. John Wiley and Sons, New York 1974.

Where necessary, the estimations in the text use the middle year of the research to define the
age at great achievement, although results using either the first or last year of the key research are
extremely similar in general and, in particular, nearly identical in the size of the trends and their
statistical significance.

Data on great inventors were collected from two technological almanacs that provide, by year,
a list of notable technological advances. These almanacs typically provide the date and location
of birth of the innovator responsible, providing a set of 286 inventors in the 20th Century. The
almanacs used were,

Bunch, B. and Hellemans, A. The Timetables of Technology. Simon and Schuster, New York
1993.
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Ochoa, G. and Corey, M. The Timeline Book of Science. Ballantine Books, New York 1995.

In the event that the almanacs did not provide dates or location of birth, the four general
biographical resources listed above were consulted, in addition to two further biographical resources:

Bachman, T.M. ed. Who’s Who of Science and Engineering: Millennial Edition. Marquis Who’s
Who, Wilmette, IL 1999.

Inventors’ Hall of Fame. Website: http://www.invent.org/. Akron, OH.

The field of research is given according to set categories in both the Bunch et al and Ochoa et
al sources. I condense the categorizations across these sources into nine fields: Communication,
Computers & Electronics, Energy, Food & Agriculture, Materials, Medicine, Tools & Devices,
Transportation, and Other. These categorizations define the field fixed effects in the econometric
specification (1), but the results are not sensitive to specific categorizations.

7.2 Data on great athletes

For the Most Valuable Player Award in baseball, dates of birth and dates of the award were taken
electronically from the Lahman Baseball Database, version 5.1, which was released on January 24,
2004. This database contains an enormous set of data for baseball players from 1871 through the
present. It can be found at http:/baseball1.com/.

For world record breakers in track & field, dates of birth, dates of record breaking event, and
nationalities were taking from the following source:

Lawson, G. World Record Breakers in Track and Field Athletics, Human Kinetics, Champaign,
IL 1997.

7.3 Data on population age distribution

One and five percent micro-samples of the U.S. census are available electronically through IPUMS,
the Integrated Public Use Microdata Series, which is maintained by the University of Minnesota:

Steven Ruggles, Matthew Sobek, Trent Alexander, Catherine A. Fitch, Ronald Goeken, Patricia
Kelly Hall, Miriam King, and Chad Ronnander. Integrated Public Use Microdata Series:
Version 3.0 [Machine-readable database]. Minneapolis, MN: Minnesota Population Center
[producer and distributor], 2004.

The smallest sample used was for the 1900 census, whose micro-sample provided data on approx-
imately 100,000 individuals. The largest sample used was for the 2000 census, whose micro-sample
provided data on approximately 2.8 million individuals. Existing census research available on
the website (www.ipums.umn.edu/usa/chapter3/chapter3.html) indicates that these micro-samples
provide accurate estimates of the population at large with regard to age. Population data for years
in between decennial census years were determined by linear interpolation. Data for the year 1930
are not available, requiring interpolation for years between 1920 and 1940.
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The subgroup of active workers is defined by having active labor force participation (LAB-
FORCE=1) in the IPUMS data. The IPUMS attempts to recode census data to allow comparisons
over time on a common basis, even if the census questions asked are not entirely consistent. From
1940, LABFORCE=1 for any individual who is actively working or seeking work. In 1900, the
variable requires that individuals report any profession and have worked in the last 12 months. In
1910-1920, it includes those who report any "gainful occupation". This subsample is still large,
with a minimum of 40,000 observations in 1900 and 1.3 million observations in 2000.

The subgroup of professional scientists and engineers requires further construction. The IPUMS
uses the variable OCC1950 to define occupations across census years according to a common set
of categories. I then take a subsample of these occupation codes that include the following rele-
vant descriptions: professors and instructors in all subjects except social sciences (codes 012-026);
engineers (codes 041-049); and natural scientists (codes 061-069). These data have two potential
difficulties: first, the samples are substantially smaller, with only 56 observations in 1900 and 353
in 1910, rising to approximately 25,000 in the year 2000; second, the occupation is not defined until
it is begun, in which case those still in school are not included. To create reasonable population
estimates I first smooth these population data with an Epanechnikov kernel and a bandwidth of 2
years. Second, I impute the number of innovators still in training (those aged 15-29) based on the
number of employed workers ten years later who are ten years older. The results are not sensitive
to particular kernel bandwidths or age imputation schemes. In results not reported, I have also
considered a broader set of all "professional, technical" workers (codes 001-099), which gives similar
results.

7.4 Data on innovation potential

The data in Figure 4 considers the life-cycle output of prominent inventors and scientists. Patent
data for 9 of the 11 patentees used in estimating life-cycle innovation potential were drawn from
the following source,

Kraeuter, D.W.Radio and Television Pioneers: A Patent Bibliography. Scarecrow Press, Metuchen
NJ 1992.

Patent data for the remaining 2 patentees, as well as data on the publication frequencies for 20
eminent American scientists, were drawn from multiple volumes of the following series,

National Academy of Sciences, Biographical memoirs, Washington, D.C.

The year in which a patent was granted was used to determine the age of the patentee at the time
of innovation. The year of publication was used for the scientists. For the scientists, publications
of any kind were included and equally weighted, whether they be journal articles, books, or lighter
articles or editorials. All 31 persons lived into old age. The two youngest at their death were 67.
Seventy percent lived beyond the age of 79, most well into their 80’s. Kernel estimations of the
patentees alone or of the scientists alone produce estimates that are less smooth but similar in their
larger features.
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Table 1:  Age Trends among Great Innovators 
 Dependent Variable:  Age at Great Achievement 
 Nobel Prize Winners Great Inventors 
 (1) (2) (3) (4) (5) (6) 

Year of Great 
Achievement  

(in 100’s) 

 
5.83*** 

  (1.37) 

 
6.34*** 

   (1.36) 

 
7.79*** 

   (1.54) 

 
4.86** 
(2.31) 

 
6.60** 
(2.58) 

 
8.18** 
(3.29) 

 
Field Fixed 

Effects 

 
No 

 
Yes 

 
Yes 

 
No 

 
Yes 

 
Yes 

 
Country of Birth 

Fixed Effects 

 
No 

 
No 

 
Yes 

 
No 

 
No 

 
Yes 

 
Number of 

observations 

 
544 

 
544 

 
544 

 
286 

 
286 

 
248 

 
Time span 

 
1873-
1998 

 
1873-
1998 

 
1873-
1998 

 
1900- 
1991 

 
1900- 
1991 

 
1900- 
1988 

 
Average age 

 
38.6 

 
38.6 

 
38.6 

 
39.0 

 
39.0 

 
38.9 

 
R2 

 
0.032 

 
0.068 

 
0.189 

 
0.016 

 
0.098 

 
0.173 

Notes:  Coefficient on year of great achievement gives age trend in years per century.  Standard 
errors are given in parentheses. Field fixed effects for Nobel Prizes comprise four categories:  
Physics, Chemistry, Medicine, and Economics.  Field fixed effects for great inventors comprise 
nine categories:  Communication, Electronics and Computers, Energy, Food and Agriculture, 
Materials, Medicine, Tools and Devices, Transportation, and Other. 
**  Indicates significance at a 95% confidence level. 
*** Indicates significance at a 99% confidence level. 
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Table 2:  Age Trends among Great Athletes 
 

Dependent Variable:  Age at Great Achievement 
 Baseball 

MVP 
Track & Field 

World Record Breakers 
 (1) (4) (5) (6) 

Year of Great 
Achievement 

(in 100’s) 

 
-0.01 
(1.18) 

 
1.04 

(1.19) 

 
1.22 

(1.14) 

 
-0.89 
(1.33) 

 
Field Fixed 

Effects 

 
-- 

 
No 

 
Yes 

 
Yes 

 
Nationality 

Fixed Effects 

 
-- 

 
No 

 
No 

 
Yes 

 
Number of 

observations 

 
160 

 
328 

 
328 

 
224 

Time span 
 

1911- 
1999 

 
1908- 
1996 

 
1908- 
1996 

 
1908- 
1996 

 
Average age 

 
29.0 

 
25.0 

 
25.0 

 
24.8 

 
R2 

 
0.004 

 
0.003 

 
0.247 

 
0.348 

Notes:  Coefficient on year of great achievement gives age trend in years 
per century.  Standard errors are given in parentheses.  Errors are clustered 
by individual.  Field fixed effects for Track & Field World Record 
Breakers comprise 10 categories:  the 100m, 1500m, Mile, Javelin, and 
High Jump for Men, and the first four of these for Women. 
 **  Indicates significance at a 95% confidence level. 
*** Indicates significance at a 99% confidence level. 
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Table 3:  Maximum Likelihood Estimation of Life-Cycle Innovation Potential 
   
  (1) (2) (3) (4) (5) (6) 

µ0 

Initial Mean, 
in Years 

28.1 
(1.05) 

27.9 
(1.20) 

28.0 
(1.02) 

24.0 
(2.05) 

23.3 
(2.30) 

23.4 
(1.95) 

µ1 

Trend, in 
Years/Century 

-- -- -- 
7.76 

(3.22) 
[.016] 

8.29 
(3.49) 
[.018] 

8.32 
(2.71) 
[.002] 

Early Life 
Cycle 

Logistic 
Curve 

ω 
Variance 
Parameter 

2.53 
(0.35) 

2.65 
(4.55) 

2.55 
(0.41) 

2.40 
(0.37) 

2.47 
(0.43) 

2.38 
(0.40) 

        

θ0 

Initial Mean, 
in Years 

45.6 
(3.48) 

46.6 
(2.58) 

50.1 
(3.89) 

45.5 
(2.36) 

46.6 
(2.21) 

50.0 
(3.90) 

θ1 

Trend, in 
Years/Century 

-- -- -- -0.00e-03 
(8.63e-03) 

-0.00e-03 
(6.70e-03) 

0.14e-03 
(6.88e-03) 

ρ 
Variance 
Parameter 

7.09 
(1.16) 

7.54 
(9.75) 

9.15 
(1.82) 

7.05 
(1.10) 

7.54 
(0.91) 

9.12 
(1.60) 

Later Life 
Cycle 

Logistic 
Curve 

       

Population Entire U.S. 
Population 

All Active 
Workers 

Scientists 
and 

Engineers 

Entire U.S. 
Population 

All Active 
Workers 

Scientists 
and 

Engineers 
Data Number of 

Great 
Achievement 
Observations 

294 294 294 294 294 294 

Log 
Likelihood 

 -1053.8 -1055.8 -1059.7 -1050.9 -1053.0 -1056.7 

Notes:   All estimates are maximum likelihood.  Standard errors are given in parentheses and calculated using the 
inverse of the information matrix.  P-values for the trend in the early life-cycle are given in square brackets. 
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Table 4:  Maximum Likelihood Estimation:  Further Specifications 
   
  (1) (2) (3) (4) (5) 

µ0 

Initial Mean, in 
Years 

24.8 
(1.94) 

24.6 
(1.84) 

24.5 
(2.36) 

25.8 
(1.07) 

25.5 
(1.19) 

µ1 

Trend, in 
Years/Century 

6.32 
(3.27) 
[.053] 

6.05 
(2.94) 
[.039] 

6.47 
(3.95) 
[.101] 

5.32 
(1.97) 
[.007] 

5.89 
(2.12) 
[.005] 

ω0 
Initial Variance 

Parameter 

2.86 
(0.83) 

3.42 
(1.01) 

3.08 
(1.14) 

2.21 
(0.20) 

2.02 
(4.18) 

Early Life 
Cycle 

Logistic 
Curve 

ω1 
Trend, Variance 
Years/Century 

-0.88 
(1.42) 

-1.74 
(1.60) 

-1.29 
(1.80) -- 0.43 

(7.35) 

       

θ0 

Initial Mean, in 
Years 

45.0 
(4.49) 

45.3 
(3.22) 

48.5 
(4.88) 

46.9 
(3.70) 

46.8 
(3.79) 

θ1 

Trend, in 
Years/Century 

0.99 
(4.06) 

2.29 
(3.28) 

2.79 
(6.79) 

-0.71 
(5.17) 

-0.93 
(2.53) 

ρ0 
Initial Variance 

Parameter 

6.81 
(2.06) 

6.97 
(1.47) 

8.42 
(2.13) 

7.38 
(7.40) 

7.67 
(0.73) 

Later Life 
Cycle 

Logistic 
Curve 

ρ1 
Trend, Variance 
Years/Century 

0.45 
(1.77) 

1.04 
(1.46) 

1.27 
(3.07) -- -0.42 

(1.09) 

       

Population Entire U.S. 
Population 

All Active 
Workers 

Scientists 
and 

Engineers 

Entire U.S. 
Population 

Entire U.S. 
Population 

Nationality 
 U.S. Born U.S. Born U.S. Born All All Data 

Number of 
Great 

Achievement 
Observations 

294 294 294 738 738 

Log 
Likelihood 

 -1050.8 -1052.6 -1056.4 -2641.2 -2641.1 

Notes:   All estimates are maximum likelihood.  Standard errors are given in parentheses and calculated 
using the inverse of the information matrix.  P-values for the trend in the early life-cycle are given in square 
brackets.  Specifications (4) and (5) use U.S. population data but all great achievements worldwide in the 
20th Century. 
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Table 5:  Maximum Likelihood Estimation:  U.S. Nobel Prizes vs. U.S. Great Inventors 
   
  (1) (2) (3) (4) (5) (6) 

µ0 

Initial Mean, in 
Years 

22.6 
(2.84) 

23.2 
(3.59) 

23.4 
(3.32) 

22.8 
(2.84) 

21.6 
(4.22) 

20.8 
(5.72) 

µ1 

Trend, in 
Years/Century 

8.91 
(5.23) 
[.088] 

8.64 
(5.84) 
[.139] 

7.85 
(5.18) 
[.130] 

10.29 
(4.56) 
[.024] 

11.53 
(4.46) 
[.010] 

12.82 
(6.67) 
[.055] 

Early Life 
Cycle 

Logistic 
Curve 

ω 
Variance 
Parameter 

2.43 
(0.73) 

2.83 
(0.79) 

2.64 
(0.81) 

2.30 
(0.46) 

2.32 
(0.90) 

2.23 
(0.68) 

        

θ0 

Initial Mean, in 
Years 

53.7 
(8.16) 

50.8 
(13.1) 

61.5 
(14.0) 

43.7 
(3.54) 

44.4 
(7.94) 

46.8 
(10.1) 

θ1 

Trend, in 
Years/Century 

-4.61 
(12.1) 

-1.8 
(17.7) 

-7.20 
(22.4) 

0.00e-03 
(1.28e-03) 

0.00e-03 
(2.20e-02) 

0.09e-03 
(7.40e-02) 

ρ 
Variance 
Parameter 

6.64 
(2.72) 

8.64 
(3.01) 

8.43 
(6.87) 

6.24 
(0.99) 

6.55 
(2.23) 

7.65 
(3.72) 

Later Life 
Cycle 

Logistic 
Curve 

       

Population Entire U.S. 
Population 

All Active 
Workers 

Scientists 
and 

Engineers 

Entire U.S. 
Population 

All Active 
Workers 

Scientists 
and 

Engineers 
Source for Great 

Achievement 
(US Born Only) 

Technology 
Almanacs 

Technology 
Almanacs 

Technology 
Almanacs 

Nobel  
Prize 

Nobel 
Prize 

Nobel 
Prize Data 

Number of 
Great 

Achievement 
Observations 

127 127 127 181 181 181 

Log 
Likelihood 

 -463.6 -463.8 -466.6 -633.6 -635.4 -635.5 

Notes:   All estimates are maximum likelihood.  Standard errors are given in parentheses and calculated using the inverse 
of the information matrix.  P-values for the trend in the early life-cycle are given in square brackets. 
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Table 6:  Age Trends at Highest Degree among Nobel Prize Winners 
 Dependent Variable:  Age at Highest Degree 
 (1) (2) (3) (4) (5) 

Year of Highest 
Degree 

(in 100’s) 

 
4.11*** 
(0.61) 

 
3.85*** 
(0.62) 

 
3.86*** 
(0.62) 

 
4.39*** 
(0.65) 

 
3.22*** 
(1.22) 

 
Field Fixed 

Effects 

 
No 

 
No 

 
Yes 

 
Yes 

 
Yes 

 
Country of 

Degree Fixed 
Effects 

 
No 

 
No 

 
No 

 
Yes 

 
-- 

Data All Doctorate 
Only All All U.S. 

Degree 
Number of 

observations 505 484 505 505 213 

Time span 1858-
1990 

1858-
1990 

1858-
1990 

1858-
1990 

1888-
1990 

Average age 26.5 26.6 26.5 26.5 26.6 

R2 .084 .075 .096 0.283 .060 
Notes:  Coefficient on year of highest degree gives age trend in years per century.  
Standard errors are given in parentheses. Field fixed effects for Nobel Prizes 
comprise four categories:  Physics, Chemistry, Medicine, and Economics.  
**  Indicates significance at a 95% confidence level. 
*** Indicates significance at a 99% confidence level. 
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Figure 1:  The Age Distribution of Great Innovation 
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Figure 2:   Shifts in the Age Distribution of Great Innovation 
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Figure 3:  The Age Distribution of Baseball’s Most Valuable Player 
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Figure 4:  Innovative Output over the Life-Cycle for 31 Eminent Innovators 
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Figure 5:  Model of Innovation Potential over the Life-Cycle 

 
 
 

Figure 6:  The United States Population Distribution in Two Selected Years 
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Figure 7:  Maximum Likelihood Estimates for the Potential to Produce  

Great Innovations as a Function of Age 
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Figure 8:  The Equilibrium Choice of Educational Attainment 
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