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Age and market capitalization 
drive large price variations 
of cryptocurrencies
Arthur A. B. Pessa 1, Matjaž Perc 2,3,4,5,6* & Haroldo V. Ribeiro 1*

Cryptocurrencies are considered the latest innovation in finance with considerable impact across 
social, technological, and economic dimensions. This new class of financial assets has also motivated 
a myriad of scientific investigations focused on understanding their statistical properties, such as 
the distribution of price returns. However, research so far has only considered Bitcoin or at most a 
few cryptocurrencies, whilst ignoring that price returns might depend on cryptocurrency age or be 
influenced by market capitalization. Here, we therefore present a comprehensive investigation of 
large price variations for more than seven thousand digital currencies and explore whether price 
returns change with the coming-of-age and growth of the cryptocurrency market. We find that tail 
distributions of price returns follow power-law functions over the entire history of the considered 
cryptocurrency portfolio, with typical exponents implying the absence of characteristic scales for 
price variations in about half of them. Moreover, these tail distributions are asymmetric as positive 
returns more often display smaller exponents, indicating that large positive price variations are more 
likely than negative ones. Our results further reveal that changes in the tail exponents are very often 
simultaneously related to cryptocurrency age and market capitalization or only to age, with only a 
minority of cryptoassets being affected just by market capitalization or neither of the two quantities. 
Lastly, we find that the trends in power-law exponents usually point to mixed directions, and that 
large price variations are likely to become less frequent only in about 28% of the cryptocurrencies as 
they age and grow in market capitalization.

Since the creation of Bitcoin in 20081, various different cryptoassets have been developed and are now considered 
to be at the cutting edge of innovation in finance2. These digital financial assets are vastly diverse in design charac-
teristics and intended purposes, ranging from peer-to-peer networks with underlying cash-like digital currencies 
(e.g. Bitcoin) to general-purpose blockchains transacting in commodity-like digital assets (e.g. Ethereum), and 
even to cryptoassets that intend to replicate the price of conventional assets such as the US dollar or gold (e.g. 
Tether and Tether Gold)3,4. With more than nine thousand cryptoassets as of 20225, the total market value of 
cryptocurrencies has grown massively to a staggering $2 trillion peak in 20216. Despite long-standing debates 
over the intrinsic value and legality of cryptoassets7, or perhaps even precisely due to such controversies, it is 
undeniable that cryptocurrencies are increasingly attracting the attention of academics, investors, and central 
banks, around the world8,9.

Moreover, these digital assets have been at the forefront of sizable financial gains and losses in recent years10,11, 
they have been recognized as the main drivers of the brand-new phenomena of cryptoart and NFTs12,13, but also 
as facilitators of illegal activities, such as money laundering and dark trade14–16. Financial research dedicated to 
cryptoassets, on the other hand, has been mostly concerned with the extension of fairly traditional analyses17, 
including market efficiency18–23, distribution of price returns24–26, and volatility27,28. Researchers have also probed 
the hedging and safe haven capabilities of cryptoassets when combined with a portfolio of stocks29,30, their 
behavior in the scenario of generalized market turmoil caused by the COVID-19 pandemic30,31, and the forma-
tion of price bubbles32,33.
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Among these subjects, the distribution of price returns, especially of large price variations, is considered 
fundamental for evaluating this new market’s intrinsic risks and modeling its dynamics34,35. Earlier analyses have 
consistently found price returns to follow heavy-tail distributions. Chu et al.36 have adjusted a large number of 
probability distributions to the log-returns of daily prices of Bitcoin from 2011 to 2014, finding the generalized 
hyperbolic distribution (a heavy-tailed distribution) to be the best description of the data. Using daily prices of 
eight cryptoassets (Bitcoin, Dash, Ethereum, Litecoin, NEM, Stellar, Monero, and Ripple) and the Jarque-Bera 
test, Zhang et al.28 have rejected the normality of their log-returns. Similarly, Osterrieder et al.25 have also found 
the normal distribution to be incompatible with price returns of six cryptocurrencies (Bitcoin, Dash, Litecoin, 
MaidSafeCoin, Monero, and Ripple) over a three-year period (2014–2016). Feng et al.29 have fitted a general-
ized Pareto distribution to two years of daily price returns of seven cryptocurrencies (Bitcoin, Dash, Ethereum, 
Litecoin, Monero, NEM, and Ripple) and observed an asymmetry between the left and right tails. Finally, using 
high-resolution data obtained from exchanges and referring to different semesters between 2010 and 2018, 
Begušić and coworkers26 have found power laws to be plausible fits to the empirical distributions of large price 
variations of Bitcoin. This latter approach belongs to the field of econophysics37, and has established intriguing 
regularities in the distributions of log-returns of traditional financial assets such as a power-law distribution 
[ p(r) ∼ r−α ] with typical exponents α ∼ 437–39.

The above short review of pertinent past research shows that, while the return distributions of cryproassets 
have attracted considerable interest, most previous works have investigated these distributions using data span-
ning only a few years of price history from small sets of cryptocurrencies (usually Bitcoin and a handful of the 
biggest cryptocurrencies by market capitalization). Moreover, past research has not established whether return 
distributions change over time and whether they are dependent on market capitalization. The main goal of this 
work is therefore to fill these gaps by presenting a dynamic analysis of the return distributions of more than 
seven thousand cryptocurrencies.

Our results show that the vast majority of cryptocurrencies have return distributions with tails well described 
by power-law functions over their entire history. The typical values of the power-law exponents characterizing 
these distributions are smaller than those observed in traditional assets, showing that cryptoassets are more sus-
ceptible to large price variations, with about half of them not presenting a characteristic scale for price returns. 
Moreover, these tail exponents reveal an asymmetry in large price movements often characterized by smaller 
exponents for positive returns; that is, large positive price variations are expected to occur more frequently 
than negative ones in most cryptoassets, but this asymmetry is minimal for a few classes of cryptoassets such as 
stablecoins. Our research further demonstrates that changes in the tail exponents are often associated with the 
age of cryptocurrencies and their market capitalization, or only with age, with only a minority of cryptoassets 
affected by market capitalization alone or entirely unaffected by these two quantities. For digital assets affected 
by age or market capitalization, we find power-law exponents to have mixed directions, with about 28% of all 
cryptocurrencies, and 37% of the current top 200 cryptocurrencies, becoming less likely to exhibit large price 
variations as they age and grow in market capitalization. This in turn indicates that large price variations are 
expected to become less likely only for a small part of the cryptocurrency market.

Results
Our results are based on daily price time series of 7111 cryptocurrencies that comprise a significant part of all 
currently available cryptoassets (see “Methods” for details). From these price series, we have estimated their 
logarithmic returns

where xt represents the price of a given cryptocurrency at day t. All return time series in our analysis have at least 
200 observations (see Supplementary Fig. S1 for the length distribution). Figure 1a illustrates Bitcoin’s series of 
daily returns. To investigate whether and how returns have changed over the aging and growing processes of 
all cryptocurrencies, we sample all time series of log-returns using a time window that expands in weekly steps 
(seven time series observations), starting from the hundredth observation to the latest return observation. In 
each step, we separate the positive from the negative return values and estimate their power-law behavior using 
the Clauset-Shalizi-Newman method40. Figure 1a further illustrates this procedure, where the vertical dashed 
line represents a given position of the time window ( t = 2004 days), the blue and red lines indicate positive 
and negative returns, respectively, and the gray lines show the return observations that will be included in the 
expanding time window in future steps. Moreover, Fig. 1b shows the corresponding survival functions (or com-
plementary cumulative distributions) for the positive (blue) and negative (red) returns of Bitcoin within the time 
window highlighted in Fig. 1a. These survival functions correspond to return values above the lower bound of 
the power-law regime ( rmin ) and dashed lines in Fig. 1b show the power-law functions adjusted to data, that is,

with α = 4.5 for the positive returns and α = 3.0 for the negative returns in this particular position of the time 
window ( t = 2004 days).

We have further verified the goodness of the power-law fits using the approach proposed by Clauset et al.40 
(see also Preis et al.41). As detailed in the “Methods” section, this approach consists in generating several syn-
thetic samples under the power-law hypothesis, adjusting these simulated samples, and estimating the fraction 
of times the Kolmogorov-Smirnov distance between the adjusted power-law and the synthetic samples is larger 
than the value calculated from the empirical data. This fraction defines a p-value and allows us to reject or not 
the power-law hypothesis of the return distributions under a given confidence level. Following Refs.40,41, we 
consider the more conservative 90% confidence level (instead of the more lenient and commonly used 95% 

(1)rt = ln(xt/xt+1),

(2)p(r) ∼ r−α (for r > rmin) ,



3

Vol.:(0123456789)

Scientific Reports |         (2023) 13:3351  | https://doi.org/10.1038/s41598-023-30431-3

www.nature.com/scientificreports/

confidence level), rejecting the power-law hypothesis when p-value ≤ 0.1 . For the particular examples in Fig. 1b, 
the p-values are respectively 1.00 and 0.17 for the positive and negative returns, and thus we cannot reject the 
power-law hypotheses.

After sampling the entire price return series, we obtain time series for the power-law exponents ( αt ) associ-
ated with positive and negative returns as well as the corresponding p-values time series for each step t of the 
expanding time window. These time series allow us to reconstruct the aging process of the return distributions 
over the entire history of each cryptoasset and probe possible time-dependent patterns. Figure 1c and 1d show 
the power-law exponents and p-values time series for the case of Bitcoin. The power-law hypothesis is never 
rejected for positive returns and rarely rejected for negative returns (about 4% of times). Moreover, the power-
law exponents exhibit large fluctuations at the beginning of the time series and become more stable as Bitcoin 
matures as a financial asset (a similar tendency as reported by Begušić et al.26). The time evolution of these 
exponents further shows that the asymmetry between positive and negative returns observed in Fig. 1b is not 
an incidental feature of a particular moment in Bitcoin’s history. Indeed, the power-law exponent for positive 
returns is almost always larger than the exponent for negative returns, implying that large negative price returns 
have been more likely to occur than their positive counterparts over nearly the entire history of Bitcoin covered 

Figure 1.   Illustration of the approach used to probe patterns in price returns of digital currencies. (a) Bitcoin’s 
time series of daily returns ( rt ) between 29 April 2013 ( t = 1 ) and 25 July 2022 ( t = 3375 ). The black horizontal 
arrow represents a given position of the expanding time window (at t = 2004 days) used to sample the 
return series over the entire history of Bitcoin. This time window expands in weekly steps (seven time series 
observations), and for each position, we separate the positive (blue) from the negative (red) price returns. 
The gray line illustrates observations that will be included in future positions of the expanding time window 
( t > 2004 ). (b) Survival functions or the complementary cumulative distributions of positive (blue) and 
negative (red) price returns within the expanding time window for t = 2004 days and above the lower bound 
of the power-law regime estimated from the Clauset-Shalizi-Newman method40. The dashed lines show the 
adjusted power-law functions, p(r) ∼ r−α , with α = 4.5 for positive returns and α = 3.0 for negative returns. 
(c) Time series of the power-law exponents αt for the positive (blue) and negative (red) return distributions 
obtained by expanding the time window from the hundredth observation ( t = 100 ) to the latest available price 
return of Bitcoin. The circular markers represent the values for the window position at t = 2004 days and the 
dashed lines indicate the median of the power-law exponents ( ̃α+ = 4.50 for positive returns and α̃− = 2.99 
for negative returns). (d) Time series of the p-values related to the power-law hypothesis of positive (blue) 
and negative (red) price returns for every position of the expanding time window. The dashed line indicates 
the threshold ( p = 0.1 ) above which the power-law hypothesis cannot be rejected. For Bitcoin, the power-law 
hypothesis is never rejected for positive returns (fraction of rejection fr = 0 ) and rejected in only 4% of the 
expanding time window positions for negative returns (fraction of rejection fr = 0.04).
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by our data. However, while the difference between positive and negative exponents has approached a constant 
value, both exponents exhibit an increasing trend, indicating that large price variations are becoming less frequent 
with the coming-of-age of Bitcoin.

The previous analysis motivates us to ask whether the entire cryptocurrency market behaves similarly to 
Bitcoin and what other common patterns digital currencies tend to follow. To start answering this question, we 
have considered the p-values series of all cryptocurrencies to verify if the power-law hypothesis holds in general. 
Figure 2a shows the percentage of cryptoassets rejecting the power-law hypothesis in at most a given fraction of 
the weekly positions of the expanding time window ( fr ). Remarkably, the hypothesis that large price movements 
(positive or negative) follow a power-law distribution is never rejected over the entire history of about 70% of all 
digital currencies in our dataset. This analysis also shows that only ≈ 2 % of cryptocurrencies reject the power-law 
hypothesis in more than half of the positions of the expanding time window ( fr ≥ 0.5 ). For instance, considering 
a 10% threshold as a criterion ( fr ≤ 0.1 ), we find that about 85% of cryptocurrencies have return distributions 
adequately modeled by power laws. Increasing this threshold to a more lenient 20% threshold ( fr ≤ 0.2 ), we 
find large price movements to be power-law distributed for about 91% of cryptocurrencies. These results thus 
provide strong evidence that cryptoassets, fairly generally, present large price movements quite well described by 

Figure 2.   Large price movements are power-law distributed over the entire history of most cryptocurrencies 
with median values typically smaller than those found for traditional assets. (a) Percentage of cryptoassets 
rejecting the power-law hypothesis for large positive (blue) or negative (red) price returns in at most a 
given fraction of the weekly positions of the expanding time window ( fr ) used to sample the return series. 
Remarkably, 68% of all 7111 digital currencies are compatible with the power-law hypothesis over their 
entire history, and about 91% of them reject the power-law hypothesis in less than 20% of the positions of the 
expanding time window ( fr ≤ 0.2 ). (b) Probability distributions obtained via kernel density estimation of the 
median values of the power-law exponents along the history of each digital currency. The blue curve shows 
the distribution of the median exponents related to positive returns ( ̃α+ ) and the red curve does the same for 
negative returns ( ̃α− ). The medians of α̃+ and α̃− are indicated by vertical dashed lines. Panels (c) and (d) show 
the distributions of these median exponents when considering the top 2000 and the top 200 cryptocurrencies 
by market capitalization, respectively. We observe that the distributions of α̃+ and α̃− tend to shift toward larger 
values when considering the largest cryptoassets.
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power-law distributions. Moreover, this conclusion is robust when starting the expanding window with a greater 
number of return observations (between 100 and 300 days) and filtering out cryptoassets with missing observa-
tions (Supplementary Figs. S2 and S3). Still, it is worth noticing the existence of a few cryptoassets (9 of them) 
with relatively small market capitalization (ranking below the top 1000) for which the power-law hypothesis is 
always rejected (Supplementary Table S1).

Having verified that large price movements in the cryptocurrency market are generally well-described by 
power-law distributions, we now focus on the power-law exponents that typically characterize each cryptoasset. 
To do so, we select all exponent estimates over the entire history of each digital asset for which the power-law 
hypothesis is not rejected and calculate their median values for both the positive ( ̃α+ ) and negative ( ̃α− ) returns. 
The dashed lines in Fig. 1c show these median values for Bitcoin where α̃+ = 4.50 and α̃− = 2.99 . It is worth 
noticing that the variance of large price movements σ 2 is finite only for α > 3 , as the integral σ 2 ∼

∫∞

rmin
r2p(r)dr 

diverges outside this interval. Thus, while the typical variance of large positive returns is finite for Bitcoin, 
negative returns are at the limit of not having a typical scale and are thus susceptible to much larger variations. 
Figure 2b shows the probability distribution for the median power-law exponents of all cryptoassets grouped 
by large positive and negative returns. We note that the distribution of typical power-law exponents associated 
with large positive returns is shifted to smaller values when compared with the distribution of exponents related 
to large negative returns. The medians of these typical exponents are respectively 2.78 and 3.11 for positive and 
negative returns. This result suggests that the asymmetry in large price movements we have observed for Bitcoin 
is an overall feature of the cryptocurrency market. By calculating the difference between the typical exponents 
related to positive and negative large returns ( �α = α̃+ − α̃− ) for each digital currency, we find that about 2/3 
of cryptocurrencies have α̃+ < α̃− (see Supplementary Fig. S4 for the probability distribution of �α ). Thus, 
unlike Bitcoin, most cryptocurrencies have been more susceptible to large positive price variations than nega-
tive ones. While this asymmetry in the return distributions indicates that extremely large price variations tend 
to be positive, it does not necessarily imply positive price variations are more common for any threshold in the 
return values. This happens because the fraction of events in each tail is also related to the lower bound of the 
power-law regime ( rmin ). However, we have found the distribution of rmin to be similar among the positive and 
negative returns [Supplementary Fig. S5a]. The distribution of high percentile scores (such as the 90th percen-
tile) is also shifted to larger values for positive returns [Supplementary Fig. S5b]. Moreover, this asymmetry in 
high percentile scores related to positive and negative returns is systematic along the evolution of the power-law 
exponents [Supplementary Fig. S5c]. These results thus indicate that there is indeed more probability mass in 
the positive tails than in the negative ones, a feature that likely reflects the current expansion of the cryptocur-
rency market as a whole. The distributions in Fig. 2b also show that large price variations do not have a finite 
variance for a significant part of cryptoassets, that is, α̃+ ≤ 3 for 62% of cryptocurrencies and α̃− ≤ 3 for 44% 
of cryptocurrencies. A significant part of the cryptocurrency market is thus prone to price variations with 
no typical scale. Intriguingly, we further note the existence of a minority group of cryptoassets with α̃+ ≤ 2 
(7%) or α̃− ≤ 2 (3%). These cryptocurrencies, whose representative members are Counos X (CCXX, rank 216) 
with α− = 1.96 and α+ = 1.84 and Chainbing (CBG, rank 236) with α+ = 1.87 , are even more susceptible to 
extreme price variations as one cannot even define the average value µ for large price returns, as the integral 
µ ∼

∫∞

rmin
rp(r)dr diverges for α ≤ 2.

We have also replicated the previous analysis when considering cryptocurrencies in the top 2000 and top 
200 rankings of market capitalization (as of July 2022). Figure 2c and 2d show the probability distribution for 
the median power-law exponents of these two groups. We observe that these distributions are more localized 
(particularly for the top 200) than the equivalent distributions for all cryptocurrencies. The fraction of crypto-
currencies with no typical scale for large price returns ( ̃α+ ≤ 3 and α̃− ≤ 3 ) is significantly lower in these two 
groups compared to all cryptocurrencies. In the top 2000 cryptocurrencies, 51% have α̃+ ≤ 3 and 26% have 
α̃− ≤ 3 . These fractions are even smaller among the top 200 cryptocurrencies, with only 44% and 15% not pre-
senting a typical scale for large positive and negative price returns, respectively. We further observe a decrease 
in the fraction of cryptoassets for which the average value for large price returns is not even finite, as only 2% 
and 1% of top 2000 cryptoassets have α̃+ ≤ 2 and α̃− ≤ 2 . This reduction is more impressive among the top 
200 cryptocurrencies as only the cryptoasset Fei USD (FEI, rank 78) has α̃+ = 1.97 and none is characterized 
by α̃− ≤ 2 . The medians of α̃+ and α̃− also increase from 2.78 and 3.11 for all cryptocurrencies to 2.98 and 3.35 
for the top 2000 and to 3.08 and 3.58 for the top 200 cryptocurrencies. Conversely, the asymmetry between posi-
tive and negative large price returns does not differ much among the three groups, with the condition α̃+ < α̃− 
holding only for a slightly larger fraction of top 2000 (69.1%) and top 200 (70.6%) cryptoassets compared to all 
cryptocurrencies (66.4%). Moreover, all these patterns are robust when filtering out time series with sampling 
issues or when considering only cryptoassets that stay compatible with the power-law hypothesis in more than 
90% of the positions of the expanding time window (Supplementary Figs. S6 and S7).

We also investigate whether the patterns related to the median of the power-law exponents differ among 
groups of cryptocurrencies with different designs and purposes. To do so, we group digital assets using the 50 
most common tags in our dataset (e.g. “bnb-chain”, “defi”, and “collectibles-nfts”) and estimate the probability 
distributions of the median exponents α̃+ and α̃− (Supplementary Figs. S8 and S9). These results show that 
design and purpose affect the dynamics of large price variations in the cryptocurrency market as the medians of 
typical exponents range from 2.4 to 3.7 among the groups. The lowest values occur for cryptocurrencies tagged 
as “doggone-doggerel” (medians of α̃+ and α̃− are 2.38 and 2.83), “memes” (2.41 and 2.87), and “stablecoin” 
(2.65 and 2.79). Digital currencies belonging to the first two tags overlap a lot and have Dogecoin (DOGE, rank 
9) and Shiba Inu (SHIB, rank 13) as the most important representatives. Cryptoassets with these tags usually 
have humorous characteristics (such as an Internet meme) and several have been considered as a form of pump-
and-dump scheme42–44, a type of financial fraud in which false statements artificially inflate asset prices so the 
scheme operators sell their overvalued cryptoassets. Conversely, cryptoassets tagged as “stablecoin” represent a 
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class of cryptocurrencies designed to have a fixed exchange rate to a reference asset (such as a national currency 
or precious metal)3,4. While the price of stablecoins tends to stay around the target values, their price series are 
also marked by sharp variations, which in turn are responsible for their typically small power-law exponents. 
This type of cryptoasset has been shown to be prone to failures45–47, such as the recent examples of TerraUSD 
(UST) and Tron’s USDD (USDD) that lost their pegs to the US Dollar producing large variations in their price 
series. The asymmetry between positive and negative large returns also emerges when grouping the cryptocur-
rencies using their tags. All 50 tags have distributions of α̃+ shifted to smaller values when compared with the 
distributions of α̃− , with differences between their medians ranging from −0.74 (“okex-blockdream-ventures-
portfolio”) to −0.14 (“stablecoin”). Indeed, only four (‘stablecoin”, “scrypt”, “fantom-ecosystem” and “alameda-
research-portfolio”) out of the fifty groupings have both distributions indistinguishable under a two-sample 
Kolmogorov-Smirnov test (p-value > 0.05).

Focusing now on the evolution of the power-law exponents quantified by the time series αt for positive and 
negative returns, we ask whether these exponents present particular time trends. For Bitcoin (Fig. 1c), αt seems 
to increase with time for both positive and negative returns. At the same time, the results of Fig. 2 also sug-
gest that market capitalization affects these power-law exponents. To verify these possibilities, we assume the 
power-law exponents ( αt ) to be linearly associated with the cryptocurrency’s age ( yt , measured in years) and the 
logarithm of market capitalization ( log ct ). As detailed in the “Methods” section, we frame this problem using a 
hierarchical Bayesian model. This approach assumes that the linear coefficients associated with the effects of age 
(A) and market capitalization (C) of each digital currency are drawn from distributions with means µA and µC 
and standard deviations σA and σC , which are in turn distributed according to global distributions representing 
the overall impact of these quantities on the cryptocurrency market. The Bayesian inference process consists 
of estimating the posterior probability distributions of the linear coefficients for each cryptocurrency as well as 
the posterior distributions of µA , µC , σA , and σC , allowing us to simultaneously probe asset-specific tendencies 
and overall market characteristics. Moreover, we restrict this analysis to the 2140 digital currencies having more 
than 50 observations of market capitalization concomitantly to the time series of the power-law exponents in 
order to have enough data points for detecting possible trends.

When considering the overall market characteristics, we find that the 94% highest density intervals for µA 
([− 0.01, 0.06] for positive and [− 0.02, 0.03] for negative returns) and µC ([− 0.02, 0.03] for positive and [− 0.001, 
0.04] for negative returns) include the zero (see Supplementary Fig. S10 for their distributions). Thus, there is 
no evidence of a unique overall pattern for the association between the power-law exponents and age or mar-
ket capitalization followed by a significant part of the cryptocurrency market. Indeed, the 94% highest density 
intervals for σA ([0.87, 0.93] for positive and [0.63, 0.70] for negative returns) and σC ([0.57, 0.61] for positive 
and [0.49, 0.52] for negative returns) indicate that the cryptocurrency market is highly heterogeneous regarding 
the evolution of power-law exponents associated with large price variations (see Supplementary Fig. S10 for the 
distributions of σA and σC ). Figure 3 illustrates these heterogeneous behaviors by plotting the posterior prob-
ability distributions for the linear coefficients associated with the effects of age (A) and market capitalization 
(C) for the top 20 digital assets, where cryptocurrencies which are significantly affected (that is, the 94% highest 
density intervals for A or C do not include the zero) by these quantities are highlighted in boldface. Even this 
small selection of digital currencies already presents a myriad of patterns. First, we observe that the power-law 
exponents of a few top 20 cryptocurrencies are neither correlated with age nor market capitalization. That is the 
case of Shiba Inu (SHIB, rank 13) and Dai (DAI, rank 11) for both positive and negative returns, UNUS SED 
LEO (LEO, rank 18) and Polkadot (DOT, rank 12) for the positive returns, and USDCoin (USDC, rank 4) and 
Solana (SOL, rank 9) for negative returns. There are also cryptocurrencies with exponents positively or negatively 
correlated only with market capitalization. Examples include Tether (USDT, rank 3) and Dogecoin (DOGE, rank 
10), for which the power-law exponents associated with positive returns increase with market capitalization, 
and Binance USD (BUSD, rank 6), for which power-law exponents associated with positive and negative returns 
decrease with market capitalization. We also observe cryptocurrencies for which age and market capitalization 
simultaneously affect the power-law exponents. Polygon (MATIC, rank 14) is an example where the power-law 
exponents associated with positive returns tend to increase with age and decrease with market capitalization. 
Finally, there are also cryptocurrencies with power-law exponents only associated with age. That is the case of 
Bitcoin (BTC, rank 1), Ethereum (ETH, rank 2), and Cardano (ADA, rank 8), for which the power-law exponents 
related to positive and negative returns increase with age, but also the case of Uniswap (UNI, rank 19), for which 
the exponents decrease with age.

Figure 4 systematically extends the observations made for the top 20 cryptoassets to all 2140 digital currencies 
for which we have modeled the changes in the power-law exponents as a function of age and market capitaliza-
tion. First, we note that only 10% of cryptocurrencies have power-law exponents not significantly affected by age 
and market capitalization. The vast majority (90%) displays some relationship with these quantities. However, 
these associations are as varied as the ones we have observed for the top 20 cryptoassets. About 52% of cryptocur-
rencies have power-law exponents simultaneously affected by age and market capitalization. In this group, these 
quantities simultaneously impact the exponents related to positive and negative returns of 34% of cryptoassets, 
whereas the remainder is affected only in the positive tail (9%) or only in the negative tail (9%). Moving back in 
the hierarchy, we find that the power-law exponents of 32% of cryptocurrencies are affected only by age while 
a much minor fraction (6%) is affected only by market capitalization. Within the group only affected by age, 
we observe that the effects are slightly more frequent only on the exponents related to negative returns (12%), 
compared to cases where effects are restricted only to positive returns (10%) or simultaneously affect both tails 
(10%). Finally, within the minor group only affected by market capitalization, we note that associations more 
frequently involve only exponents related to negative returns (3%) compared to the other two cases (2% only 
positive returns and 1% for both positive and negative returns).
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Figure 3.   Illustration of different effects of age and market capitalization on power-law exponents of cryptocurrencies. 
(a) Posterior probability distributions of the linear coefficients associated with the effects of age [p(A)] and (b) the 
effects of market capitalization [p(C)] on power-law exponents related to large positive returns. Panels (c) and (d) 
show the analogous distributions for the association with power-law exponents related to large negative returns. In 
all panels, the different curves show the distributions for each of the top 20 cryptoassets by market capitalization. 
Cryptocurrencies significantly affected by age or market capitalization are highlighted in boldface, and the numbers 
between brackets show their positions in the market capitalization rank.
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3% only negative returns 2% only negative returns 1%
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increasing

1.5%
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Figure 4.   Summary of the effects of age and market capitalization on power-law exponents of the 
cryptocurrency market. Hierarchical visualization or a tree map of the possible effects of age and market 
capitalization on the power-law exponents. The first level (two outermost rectangles) separates cryptocurrencies 
that are affected by age or market capitalization (90%) from those unaffected by any of these quantities (10%). 
Cryptocurrencies affected by age or market capitalization are classified as those simultaneously affected by 
both quantities (52%), those affected only by age (32%), and those affected only by market capitalization (6%). 
Each of the previous three levels is further classified regarding whether both positive and negative returns are 
simultaneously affected or whether the effect involves only positive or only negative returns. Finally, the former 
levels are classified regarding whether the power-law exponents increase, decrease or have a mixed trend with 
the predictive variables. Overall, 36% of the associations are classified as mixed trends (green rectangles), 28% 
are increasing trends (blue rectangles), and 26% are decreasing trends (red rectangles).
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Beyond the previous discussion about whether positive or negative returns are simultaneously or individually 
affected by age and market capitalization, we have also categorized the direction of the trend imposed by these 
two quantities on the power-law exponents. Blue rectangles in Fig. 4 represent the fraction of relationships for 
which increasing age or market capitalization (or both) is associated with a raise in the power-law exponents. 
About 28% of all cryptocurrencies exhibit this pattern in which large price variations are expected to occur less 
frequently as they grow and age. Conversely, the red rectangles in Fig. 4 depict the fraction of relationships for 
which increasing age or market capitalization (or both) is associated with a reduction in the power-law exponents. 
This case comprises about 25% of all cryptocurrencies for which large price variations are likely to become more 
frequent as they grow in market capitalization and age. Still, the majority of associations represented by green 
rectangles refer to the case where the effects of age and market capitalization point in different directions (e.g. 
exponents increasing with age while decreasing with market capitalization). About 36% of cryptocurrencies fit 
this condition which in turn contributes to consolidating the cumbersome hierarchical structure of patterns 
displayed by cryptocurrencies regarding the dynamics of large price variations. This complex picture is not much 
different when considering only cryptocurrencies in the top 200 market capitalization rank (Supplementary 
Fig. S11). However, we do observe an increased prevalence of patterns characterized by exponents that rise with 
age and market capitalization (37%), suggesting that large price variations are becoming less frequent among 
the top 200 cryptocurrencies than in the overall market.

Discussion
We have studied the distributions of large price variations of a significant part of the digital assets that currently 
comprise the entirety of the cryptocurrency market. Unlike previous work, we have estimated these distribu-
tions for entire historical price records of each digital currency, and we have identified the patterns under which 
the return distributions change as cryptoassets age and grow in market capitalization. Similarly to conventional 
financial assets37–39, our findings show that the return distributions of the vast majority of cryptoassets have tails 
that are described well by power-law functions along their entire history. The typical power-law exponents of 
cryptocurrencies ( α ∼ 3 ) are, however, significantly smaller than those reported for conventional assets ( α ∼ 4
)37–39. This feature corroborates the widespread belief that cryptoassets are indeed considerably more risky for 
investments than stocks or other more traditional financial assets. Indeed, we have found that about half of the 
cryptocurrencies in our analysis do not have a characteristic scale for price variations, and are thus prone to 
much higher price variations than those typically observed in stock markets. On the upside, we have also identi-
fied an asymmetry in the power-law exponents for positive and negative returns in about 2/3 of all considered 
cryptocurrencies, such that these exponents are smaller for positive than they are for negative returns. This means 
that sizable positive price variations have generally been more likely to occur than equally sizable negative price 
variations, which in turn may also reflect the recent overall expansion of the cryptocurrency market.

Using a hierarchical Bayesian linear model, we have also simultaneously investigated the overall market 
characteristics and asset-specific tendencies regarding the effects of age and market capitalization on the power-
law exponents. We have found that the cryptocurrency market is highly heterogeneous regarding the trends 
exhibited by each cryptocurrency; however, only a small fraction of cryptocurrencies (10%) have power-law 
exponents neither correlated with age nor market capitalization. These associations have been mostly ignored 
by the current literature and are probably related to the still-early developmental stage of the cryptocurrency 
market as a whole. Overall, 36% of cryptocurrencies present trends that do not systematically contribute to 
increasing or decreasing their power-law exponents as they age and grow in market capitalization. On the other 
hand, for 26% of cryptocurrencies, aging and growing market capitalization are both associated with a reduction 
in their power-law exponents, thus contributing to the rise in the frequency of large price variations in their 
dynamics. Only about 28% of cryptocurrencies present trends in which the power-law exponents increase with 
age and market capitalization, favoring thus large price variations to become less likely. These results somehow 
juxtapose with findings about the increasing informational efficiency of the cryptocurrency market22. In fact, 
if on the one hand the cryptocurrency market is becoming more informationally efficient, then on the other 
our findings indicate that there is no clear trend toward decreasing the risks of sizable variations in the prices 
of most considered cryptoassets. In other words, risk and efficiency thus appear to be moving towards different 
directions in the cryptocurrency market.

To conclude, we hope that our findings will contribute significantly to the better understanding of the dynam-
ics of large price variations in the cryptocurrency market as a whole, and not just for a small subset of selected 
digital assets, which is especially relevant due to the diminishing concentration of market capitalization among 
the top digital currencies, and also because of the considerable impact these new assets may have in our increas-
ingly digital economy.

Methods
Data.  Our results are based on time series of the daily closing prices (in USD) for all cryptoassets listed on 
CoinMarketCap (coinm​arket​cap.​com) as of 25 July 2022 [see Supplementary Fig. S1a for a visualization of the 
increasing number cryptoassets listed on CoinMarketCap since 2013]. These time series were automatically 
gathered using the cryptoCMD Python package48 and other information such as the tags associated with each 
cryptoasset were obtained via the CoinMarketCap API49. In addition, we have also obtained the daily market 
capitalization time series (in USD) from all cryptoassets which had this information available at the time. Earli-
est records available from CoinMarketCap date from 29 April 2013 and the latest records used in our analysis 
correspond to 25 July 2022. Out of 9943 cryptocurrencies, we have restricted our analysis to the 7111 with at 
least 200 price-return observations. The median length of these time series is 446 observations [see the distribu-
tion of series length in Supplementary Fig. S1b].

http://coinmarketcap.com
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Estimating power‑law exponents.  We have estimated the power-law behavior of the return distribu-
tions by applying the Clauset-Shalizi-Newman method40 to the return time series rt . In particular, we have sam-
pled each of these time series using an expanding time window that starts at the hundredth observation and 
grows in weekly steps (seven data points each step). For each position of the expanding time window, we have 
separated the positive returns from the negative ones and applied the Clauset-Shalizi-Newman method40 to 
each set. This approach consists of obtaining the maximum likelihood estimate for the power-law exponent, 
α = 1+ n/

(
∑n

t=1 ln rt/rmin

)

, where rmin is the lower bound of the power-law regime and n is the number of 
(positive or negative) return observations in the power-law regime for a given position of the expanding time 
window. The value rmin is estimated from data by minimizing the Kolmogorov-Smirnov statistic between the 
empirical distribution and the power-law model. The Clauset-Shalizi-Newman method40 yields an unbiased and 
consistent estimator50, in a sense that as the sample increases indefinitely, the estimated power-law exponent 
converges in distribution to the actual value. Moreover, we have used the implementation available on the pow-
erlaw Python package51.

In addition to obtaining the power-law exponents, we have also verified the adequacy of the power-law 
hypothesis using the procedure originally proposed by Clauset et al.40 as adapted by Preis et al.41. This procedure 
consists of generating synthetic samples under the power-law hypothesis with the same properties of the empiri-
cal data under analysis (that is, same length and parameters α and rmin ), adjusting the simulated data with the 
power-law model via the Clauset-Shalizi-Newman method, and calculating the Kolmogorov-Smirnov statistic 
( κsyn ) between the distributions obtained from the simulated samples and the adjusted power-law model. Next, 
the values of κsyn are compared to the Kolmogorov-Smirnov statistic calculated between empirical data and 
the power-law model ( κ ). Finally, a p-value is defined by calculating the fraction of times for which κsyn > κ . 
We have used one thousand synthetic samples for each position of the expanding time window and the more 
conservative 90% confidence level (instead of the more lenient and commonly used 95% confidence level), such 
that the power-law hypothesis is rejected whenever p-value ≤ 0.1.

Modelling the effects of age and market capitalization on the power‑law exponents.  We have 
estimated the effects of age and market capitalization on the power-law exponents associated with positive or 
negative returns of a given cryptocurrency using the linear model

where αt represents the power-law exponent, log ct is the logarithm of the market capitalization, and yt is the age 
(in years) of the cryptocurrency at t-th observation. Moreover, K is the intercept of the association, while C and 
A are linear coefficients quantifying the effects of market capitalization and age, respectively. Finally, N(µ, σ) 
stands for the normal distribution with mean µ and standard deviation σ , such that the parameter ǫ accounts for 
the unobserved determinants in the dynamics of the power-law exponents. We have framed this problem using 
the hierarchical Bayesian approach such that each power-law exponent αt is nested within a cryptocurrency with 
model parameters considered as random variables normally distributed with parameters that are also random 
variables. Mathematically, for each cryptocurrency, we have

where µK , σK , µC , σC , µA , and σA are hyperparameters. These hyperparameters are assumed to be distributed 
according to distributions that quantify the overall impact of age and market capitalization on the cryptocur-
rency market as a whole.

We have performed this Bayesian regression for exponents related to positive and negative returns separately, 
and used noninformative prior and hyperprior distributions in order not to bias the posterior estimation52. 
Specifically, we have considered

and ε ∼ U (0, 102), where U (a, b) stands for the uniform distribution in the interval [a, b] and Inv−Ŵ(θ , γ ) rep-
resents the inverse gamma distribution with shape and scale parameters θ and γ , respectively. For the numerical 
implementation, we have relied on the PyMC53 Python package and sampled the posterior distributions via the 
gradient-based Hamiltonian Monte Carlo no-U-Turn-sampler method. We have run four parallel chains with 
2500 iterations each (1000 burn-in samples) to allow good mixing and estimated the Gelman-Rubin convergence 
statistic (R-hat) to ensure the convergence of the sampling approach (R-hat was always close to one).

In addition, we have also verified that models describing the power-law exponents as a function of only age 
( C → 0 in Eq. 3) or only market capitalization ( A → 0 in Eq. 3) yield significantly worse descriptions of our data 
as quantified by the Widely Applicable Information Criterion (WAIC) and the Pareto Smoothed Importance 
Sampling Leave-One-Out cross-validation (PSIS-LOO)54 (see Supplementary Table S2).

Data Availability
Data and code necessary to reproduce all results presented in this manuscript are available at https://​gitlab.​com/​
arthu​rpessa/​crypto-​retur​ns.

(3)αt ∼ N(K + C log ct + A yt , ε),

(4)K ∼ N(µK , σK ), C ∼ N(µC , σC), A ∼ N(µA, σA),

(5)

µK ∼ N(0, 105), σK ∼ Inv−Ŵ(1, 1),

µC ∼ N(0, 105), σC ∼ Inv−Ŵ(1, 1),

µA ∼ N(0, 105), σA ∼ Inv−Ŵ(1, 1),

https://gitlab.com/arthurpessa/crypto-returns
https://gitlab.com/arthurpessa/crypto-returns
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