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ABSTRACT

Motivation: Defining the precise location of structural variations

(SVs) at single-nucleotide breakpoint resolution is an important

problem, as it is a prerequisite for classifying SVs, evaluating their

functional impact and reconstructing personal genome sequences.

Given approximate breakpoint locations and a bridging assembly

or split read, the problem essentially reduces to finding a correct

sequence alignment. Classical algorithms for alignment and their

generalizations guarantee finding the optimal (in terms of scoring)

global or local alignment of two sequences. However, they cannot

generally be applied to finding the biologically correct alignment

of genomic sequences containing SVs because of the need to

simultaneously span the SV (e.g. make a large gap) and perform

precise local alignments at the flanking ends.

Results: Here, we formulate the computations involved in this

problem and describe a dynamic-programming algorithm for its

solution. Specifically, our algorithm, called AGE for Alignment with

Gap Excision, finds the optimal solution by simultaneously aligning

the 5′ and 3′ ends of two given sequences and introducing a

‘large-gap jump’ between the local end alignments to maximize

the total alignment score. We also describe extensions allowing the

application of AGE to tandem duplications, inversions and complex

events involving two large gaps. We develop a memory-efficient

implementation of AGE (allowing application to long contigs) and

make it available as a downloadable software package. Finally, we

applied AGE for breakpoint determination and standardization in the

1000 Genomes Project by aligning locally assembled contigs to the

human genome.

Availability and Implementation: AGE is freely available at

http://sv.gersteinlab.org/age.

Contact: pi@gersteinlab.org

Supplementary information: Supplementary data are available at

Bioinformatics online.
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1 INTRODUCTION

The problem of single-nucleotide breakpoint resolution for genome

structural variations (SVs) (deletions, insertions, inversions, etc.)

∗To whom correspondence should be addressed.

is of great importance for a number of reasons. First, as recently

demonstrated (Lam et al., 2010), single-nucleotide breakpoint

resolution is absolutely necessary for SV classification and

annotation. It is also important for genotyping known SVs in

newly sequenced genomes (Lam et al., 2010). Second, precise

breakpoints are required to evaluate the functional impact of SVs.

For example, uncertainty in breakpoints in just a few bases may

lead to ambiguous conclusions when an SV is close to a splice-

junction and/or regulation sites or overlaps exon(s). Last, but not

least, construction of personal diploid genomes (one of the ultimate

long-term goals of human genome analysis) cannot be done properly

without precise knowledge of SV breakpoints.

It might seem obvious, but the only plausible way to achieve

single-nucleotide breakpoint resolution is to align two sequences:

one without an SV (e.g. a region in the reference human genome) and

another containing an SV (e.g. locally assembled contig, completely

sequenced and assembled fosmid clone or long read). Most

commonly used methods for SV detection provide only approximate

breakpoint locations. Paired-end mapping (also called read-pair)

approaches inherently have uncertainty in breakpoint resolution,

due to uncertainty in the distance between sequenced ends and the

possibility of read mismapping (Korbel et al., 2009; Medvedev et al.,

2009). Resolution of breakpoints by array comparative genomic

hybridization analysis and read-depth approaches is limited by the

probe density (for array) and the genomic bin size (for read-depth)

used to produce the subsequently analyzed signal (Abyzov et al.,

2010; Medvedev et al., 2009; Wang et al., 2009).

While being imprecise in breakpoint resolution, the approaches

mentioned above yield approximate SV locations, where a local

assembly of a haplotype bridging an SV region could be

accomplished. Subsequently, alignment of the assembled contig

to the predicted SV region identifies precise SV breakpoints. The

described strategy is employed by the 1000 Genomes Project

(Durbin et al., 2010; Mills, 2010), where tens of thousands of local

haplotype assemblies in the SV regions are made. Proper alignment

of those contigs will and already is an important challenge that

must be fulfilled precisely and computationally efficiently, given the

number of expected local assemblies. Single-nucleotide resolution

of SV breakpoints will allow their standardization and analysis in a

single framework.

The problem of aligning two sequences containing SVs might

seem to be trivial, but upon deeper consideration it is not. The major

complications are due to possible repeats within aligned sequence,
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A.Abyzov and M.Gerstein

Fig. 1. Schematics of the expected optimal alignment around a structural variation (left) and alignments produced by global Needleman–Wunsch (NW) and

local Smith–Waterman (SW) algorithms (right). The structural variation, i.e. deletion, is in red. In (B), the deletion is accompanied by a small insertion (blue).

Throughout the figure, alignable flanking regions are shown in green and orange. Both SW and NW algorithms generally cannot arrive at a biologically correct

alignment.

sequence homology/identity around breakpoints and, the often

complex nature of SVs, where, for instance, a deletion/insertion

is accompanied by smaller insertion/deletion. More specifically,

classical algorithms, which guarantee the finding the optimal global

Needleman–Wunsch (Gotoh, 1982; Needleman and Wunsch, 1970)

and local SmithWaterman (Smith and Waterman, 1981) alignments,

generally cannot arrive at a biologically correct solution when

aligned sequences contain SVs (Fig. 1). The major problem with

those algorithms is the gap penalty. A large gap penalty does not

allow for the extension of alignment across an SV. Reducing the gap

penalty interferes with the alignment scoring scheme and jeopardizes

the construction of the proper alignment in regions flanking the SV

and when the sequence(s) contains repeats. In addition, it offers only

a partial solution to the problem, and cases when the SV is not a

pure deletion or insertion are still not solved (Fig. 1B).

A generalized global alignment (Huang and Chao, 2003)

algorithm is generally also unable to solve the formulated problem.

The algorithm works by introducing the concept of a ‘difference

block’, e.g. large gap, and imposing a cap on the penalty for having

such a block in an alignment. When a block is small, e.g. small gap,

it is penalized, as it would be in the classical Needleman–Wunsch

algorithm. For a large block, e.g. large gap, the penalty is constant.

Therefore, it can only be applied to the alignment of sequences

where the SV size is large enough for the algorithm to work in

the non-classical mode. More importantly, the algorithm can be

misled by sequence similarity around SV breakpoints. Specifically,

when sequences around breakpoints are homologous (Fig. 2A), the

algorithm has to choose between aligning with a higher sequence

identity—but introducing a large gap—or aligning with a lower

sequence identity and no gap (Fig. 2B). Only the former scenario is

correct, but either one can be chosen by the algorithm (considered

to be optimal) depending on the scoring scheme, size of deletion,

length and percent of homology around breakpoints, and the lengths

of aligned sequences flanking the breakpoints (longer flanking

sequences allow one to resolve breakpoints within longer and higher

homologous sequences). Incidentally, this problem is inherent to all

algorithms employing a concave/piecewise gap penalty. It is also

inherent to Needleman–Wunsch and Smith–Waterman algorithms.

Therefore, the described problem may hamper the discovery and

characterization of a particular class of NAHR (Lam et al., 2010)

SVs that are characterized by long similar/homologous sequences

around breakpoints.

The ‘sandwich dynamic programming’ algorithm, introduced

(Wu and Watanabe, 2005) to align cDNAs to exons, could be useful,

but even if adopted for aligning sequences containing SVs, it does

not offer a general solution, as it has the same problems as the

Needleman–Wunsch algorithm when handling events that are not

pure deletions or insertions (Fig. 1B). Also, none of the mentioned

algorithms could be applied to determine tandem duplication and

inversion breakpoints.

Hence, with the aim of achieving single-nucleotide SV breakpoint

resolution and standardization, we have developed an algorithm for

the correct alignment of sequences containing SVs. This article first

describes an algorithm for optimal sequence alignment containing

only a single SV deletion or insertion. We then describe algorithm

extensions to align sequences containing other SVs. To accomplish

the first aim, we formulated it as a problem of finding the optimal

local alignment of two sequences containing one unaligned and

unpenalized region/gap (corresponding to one SV) between two

aligned regions.

The rationale is that flanking regions of an SV are very similar

and can be aligned collinearly (5′ end to 5′ end and 3′ end to

3′ end) using a local Smith–Waterman algorithm (Fig. 2C). To

yield the final alignment, the two local ones should simply be

combined. However, if the alignments of the flanking regions

overlap, combining two local alignments becomes complicated,
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Alignment with gap excision

Fig. 2. Sequence similarity (see A) around SV breakpoints (shades of green) can mislead local and/or global alignment(s) to produce incorrect alignment

(see B). Conceptually, to produce correct alignment one has to find an optimal jump between overlapping local alignments. However, local alignment

calculation and jump finding have to be done simultaneously rather than successively to guarantee finding the optimal alignment (Supplementary Fig. S4).

and an optimal jump from one local alignment to another must

be found—that is, a gap must be introduced—to maximize the

alignment score. The optimal (highest scoring) alignment may not

be found if the jump is searched between already calculated local

alignments because trimming a local alignment does not guarantee

that it is still optimal (a simple example demonstrating the concept

is shown in Supplementary Fig. S4). Therefore, the calculation of

flanking sequence alignments and finding the optimal jump between

the two must be done simultaneously rather than successively.

When formulated this way, the problem explicitly addresses

only the issue of the largest gap in the alignment and does

not require adjustment or modifications of the alignment scoring

scheme. Therefore, substitution matrices and gap penalties tuned

to a particular alignment purpose, e.g. contig or short/long-read

alignment, can be used unchanged.

2 METHODS

2.1 Algorithm

Let us denote the lengths of two compared sequences as N and M. The

algorithm starts with the construction of two [0,N +1]x[0,M +1] alignment

scoring matrices SL and SR, a la the Smith–Waterman algorithm, for the

local alignment of two sequences (Fig. 3A). Indices [1,N] and [1,M] in

each matrix, respectively, are used to store alignment scores while indices

0, N +1, and M +1 are used for the convenience of filling the matrices

and tracing back. One matrix represents a score for the alignment initiated

from the 5′ ends (left flanking region of the SV), whereas the other one

represents a score for the alignment initiated from the 3′ ends (right flanking

regions of the SV). The maximum in each matrix defines a cell from

which to start tracing back to find the best local alignment. Importantly, the

maximum in the leading/trailing submatrix does so for the local alignment of

sequence ends. Specifically, the maximum ML(n,m) in the leading submatrix

[0,n]x[0,m] of SL , where n<=N and m<=M, anchors the best local

alignment for n and m nucleotides at the 5′ ends. Similarly, the maximum

MR(n+1,m+1) in the trailing submatrix [n+1,N+1]x[m+1,M+1] of SR,

anchors the best local alignment for N −n and M −m nucleotides at the 3′

ends: i.e.

ML(n,m)=max(SL(n′
,m′)),n′ ≤n,m′ ≤m

MR(n,m)=max(SR(n′
,m′)),n′ ≥n,m′ ≥m.

(1)

Then, the total score of aligning n and m nucleotides at the 5′ ends and

N −n and M −m nucleotides at the 3′ ends is ML(n,m)+MR(n+1,m+1).

The optimal alignment has the highest score; thus it maximizes the

sum: i.e.

BS=max(ML(n,m)+MR(n+1,m+1)), (2)

where BS is the best score. In other words, one has to maximize

the sum of the maxima in the paired submatrices of SL and SR

(Fig. 3B). Such a maximum can be found in quadratic time. Note

that

ML(n,m)=max(SL(n,m),ML(n−1,m),ML(n,m−1))

MR(n,m)=max(SR(n,m),MR(n+1,m),MR(n,m+1)).
(3)

Using (3), one can convert matrices SL and SR to have values ML(n,m)

and MR(n,m), respectively. During such conversion, one can trace from

whence the value in each cell was assigned, just like when constructing

an alignment score matrix. Having matrices ML and MR calculated, one

can find the highest score sum (2) in one pass through the matrices. The

corresponding alignment is then constructed by, first, tracing back the

maximum location in each matrix and, then, tracing back alignments for the

5′ and 3′ ends (i.e. alignment is inferred from each matrix) and combining

them (Fig. 3C). The unaligned region is the one between 5′ and 3′ end

alignments.

The best score can be redundant (Fig. 3B). However, redundancy does not

necessarily imply alternative alignments. As shown in the figure, the sum for

indices (n,m) falling in the bold area is equal to the best score. However,

tracing back for the maximum locations in each matrix will lead to the same

cells, i.e. the very northwest and southeast cells of the bold area for matrices

SL and SR
, respectively. Intuitively, one can think about finding the optimal

(maximum) score as a procedure of trying all possible sequence splitting

into two subsequences (5′ end and 3′ end) and optimally aligning those

subsequences. The splitting of one of the sequences within the SV region

does not change flanking alignment, and, thus, generates the same maximum

score (Supplementary Fig. S6). Thus, only different maximum locations are

indicative of alternative alignments. It is a trivial computational task to check

for such alternative alignments.

Another reason for a redundant maximum score sum is sequence identity

around SV breakpoints (Supplementary Fig. S2). In such cases, ‘shuttling’ of

one or a few pairs of aligned nucleotides in alignment from one breakpoint to

another does not change the overall score. Thus, in some cases, the resolution

of SV breakpoints is naturally limited to the length of sequences that are

identical around breakpoints. Note, that the limitation is not methodological,

but, rather, biological. Moreover, wherever the actual breakpoints within the

identical sequences are, the resulting sequence, after SV excision, is the same.

Therefore, breakpoint uncertainty caused by sequence identity will not affect

downstream analysis. Such cases can be easily identified and described by

post-processing the produced alignments.

2.2 Generalization of the algorithm

The generalizations described below allow for breakpoint inference for

multiple deletions/insertions, tandem duplication, inversions and for splice

sites within genes. As previously explained, approximate locations of

breakpoints and read/assembly bridging SV breakpoints or splice sites are a

prerequisite.

2.2.1 Inferring breakpoints when sequences contain multiple

deletions/insertions When aligned sequences contain two SVs (either

insertions or deletions) an optimal alignment with two unaligned regions

must be found. Thus, it is necessary to introduce two jumps between three

matrices (Supplementary Fig. S5). As before, two matrices ML and MR
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A.Abyzov and M.Gerstein

Fig. 3. Schematics of the algorithm. (A) Two alignment score matrices for the alignment of the 5′ ends (SL matrix) and the 3′ ends (SR matrix) are constructed

a la the Smith–Waterman local alignment. In this example, scoring is as follows: match = 1, mismatch = −1, gap open penalty = 4 and gap extend penalty = 2.

Orange arrows represent trace-back information. The best alignment maximizes the sum of the maximum in the leading submatrix (highlighted buff) in SL

and the maximum in the paired trailing submatrix (highlighted cyan) in SR. (B) Matrices are converted so that each cell contains the maximum score of the

leading submatrix in SL and the trailing submatrix in SR. The location of score maxima is traced (blue arrows), just like the score is traced in scoring matrices.

Maximum score sum (red) can now be found in one pass through the matrices. (C) Alignment is constructed by, first, tracing back the maximum location (red

arrows) in each matrix and then, tracing back alignments for the 5′ and 3′ ends (green arrow). The resulting alignment is the sum of the alignments at the

5′ and 3′ ends, with the unaligned region in-between. The maximum score can be redundant (bold rectangles). However, the resulting alignment will be the

same.
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Alignment with gap excision

represent the alignment of sequence 5′ and 3′ ends and one SR represents

the local alignment of sequence fragments between two SVs. The optimal

alignment will maximize the total score of aligning all three fragments: i.e.

BS=max(ML(n,m)+SR(n+1,m+1)−SR(n′
,m′)+MR(n′

,m′)),n<n′
,

m<m′
,TSR(n+1,m+1)=TSR(n′

,m′) (4)

where TSR(n,m) is a trace-back path for element (n,m) in matrix SR. The last

condition states that elements (n,m) and (n′,m′) are on the same alignment

path. The maximum can efficiently be found by checking all pairs of (n,m)

and only those (n′
,m′) pairs that can be traced back from the (n+1,m+1)

element in matrix SR. Tracing back is a linear procedure and may require

up to min(N,M) operations: thus, the optimal solution can be found in

O(NMmin(N,M)) time in the worst case.

Furthermore, the algorithm can be inductively generalized to produce

alignments with any given k number of SVs. For k =3, one needs to maximize

the sum of scores for Smith–Waterman alignment of 5′ end sequences and

that of 3′ end sequences with two SVs: i.e.

BS|k=3 =max(ML(n,m)+ BSr
∣

∣

k=2
),

where BSr is the best score for aligning residual sequences at 3′ ends, i.e.

[n+1,N] and [m+1,M]. Generally, for k >2 SVs in alignment, best score

can be found using the following induction

BS|k =max(ML(n,m)+ BSr
∣

∣

k−1
). (5)

For each increment of k >2, the time complexity of the algorithm increases

multiplicatively by a factor of O(NM).

2.2.2 Inferring splice sites by cDNA alignment Given a cDNA sequence

containing two exons and an approximate location of an intron between

the two exons, the described algorithm can be extended to determine the

splice site at breakpoint resolution. Aligning such cDNA to the genome is

similar to aligning sequences containing deletion/insertion SVs, but has an

important difference. The complete cDNA sequence is expected to align

to the genome, i.e. cases when deletion is accompanied by micro insertion

(Fig. 1B) do not happen. In other words, with an excised intron the sequence

should align to the genome globaly. This can be accomplished by introducing

two changes to the algorithm: (i) matrices SL and SR should be calculated a

la the Needelman–Wunsch algorithm; (ii) maxima should be calculated for

different submatrices

ML(n,m)=max(SL(n′
,m)),n′ ≤n

MR(n,m)=max(SR(n′
,m)),n′ ≥n,

(6)

where we assume that the second sequence is cDNA. Now ML(n,m) stores

the value of the the best global alignment for the 5′ end, while MR(n,m) does

so for the 3′ end. Subsequent steps (finding best score and tracking back)

should be done as before.

2.2.3 Inferring breakpoints for tandem duplications Aligning a contig

or a read that spans tandem duplication breakpoints is similar to aligning

sequences with deletions and insertions (Fig. 4). In particular, when a

contig/read spans an insertion site around a breakpoint that is farther from

the duplication original site (Fig. 4A), then the alignment procedure is

exactly the same as for sequences with simple deletion or insertion. In

cases when a contig/read spans an insertion site around a breakpoint that

is closer to the duplication original site (Fig. 4B), then the order of the

aligned fragments is different in the two sequences. Using the described

methodology, but maximizing a different function (assuming the second

sequence is a contig/read)

BS =max(ML(N,m)+MR(1,m+1)), (7)

one can find the highest scoring split-alignment for a contig’s 3′- and 5′-ends.

Subsequently, post-processing can be applied to ensure that end alignments

do not overlap.

2.2.4 Inferring breakpoints for inversions The algorithm for the optimal

alignment of inversions was described a number of years ago (Schoniger

and Waterman, 1992). However, it is only applicable to cases in which an

inversion is completely enclosed in either of the aligned sequences. Cases in

which an inversion is incomplete, i.e. one sequence spans only the inversion

breakpoint, are not handled by that algorithm, but this can be accomplished

by generalizing the algorithm described above. Indeed, if we have two

sequences, part of the first sequence will align to the second and another non-

overlapping part will align to the reverse complement of the second sequence

(see schematics in Fig. 4). Again, using the described methodology one can

find split-alignment for a contig’s 3′ and 5′ ends. Note that one should use

a reverse complement for one of the aligned sequences to construct matrix

SR together with maximizing the function in Equation (7). The same post-

processing as for tandem duplication breakpoint inference can be applied to

ensure that end alignments do not overlap.

2.3 Alternative recurrence

The described algorithm and generalizations can be restated using alternative

but equivalent recurrence. Namely, to infer deletion/insertion breakpoints,

the recurrence is

S1(n,m)=max

⎧

⎪

⎪

⎨

⎪

⎪

⎩

S1(n−1,m)−gap

S1(n,m−1)−gap

S1(n−1,m−1)+match(n,m)

0

M1(n,m)=max(M1(n−1,m),M1(n,m−1),S1(n,m))

S2(n,m)=max

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

S2(n−1,m)−gap

S2(n,m−1)−gap

S2(n−1,m−1)+match(n,m)

M1(n−1,m−1)+match(n,m)

0

, (8)

and to infer splice sites, the recurrence is

S1(n,m)=max

⎧

⎨

⎩

S1(n−1,m)−gap

S1(n,m−1)−gap

S1(n−1,m−1)+match(n,m)

M1(n,m)=max(S1(n,m),M1(n−1,m))

S2(n,m)=max

⎧

⎪

⎪

⎨

⎪

⎪

⎩

S2(n−1,m)−gap

S2(n,m−1)−gap

S2(n−1,m−1)+match(n,m)

M1(n−1,m−1)+match(n,m)

, (9)

where second sequence is cDNA, match(n,m) is match or mismatch between

nucleotides in positions n and m, and gap is a gap function. The matrices S1

and M1 are the same as SL and ML , while the matrix S2 keeps the alignment

score for the left flanking region (matrix S1) and (via M1) for the right

flanking region. Generalizing to two or more SVs/introns in an alignment

requires the use of additional pairs of matrices M i and Si for each SV/intron,

where the recurrence for M i utilizes values from Si (just as M1 does from S1),

and the recurrence for Si+1 utilizes values from M i (just as S2 does from M1).

Linear space alignment algorithms (Chao et al., 1994; Hirschberg, 1975) can

also be applied with this recurrence.

3 RESULTS

3.1 Implementation, Alignment with Gap Excision

program

We have implemented the algorithm described above in the

C++ language as the Alignment with Gap Excision (AGE )

program (freely available at http://sv.gersteinlab.org/age). The

current implementation is limited to aligning sequences containing

only one deletion, insertion or inversion. The major challenge in

implementation was to reduce memory usage, as the algorithm
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A.Abyzov and M.Gerstein

Fig. 4. Schematics for aligning sequences with tandem duplication and inversion. Color gradient reflects the directionality of sequences from the 5′-end to

the 3′-end. (A) Aligning a contig/read spanning a duplication breakpoint can be no different than aligning sequences with a deletion/insertion. (B) For contigs

spanning other duplication breakpoints, the order of the aligned fragments is different in the two se-quences. (C) Optimal split-alignment for sequences with

inversions is calculated by aligning the 5′-end of the first sequence to the 5′-end of the second one and aligning the 3′-end of the first sequence to the 3′-end

of the reverse complement of the second one.

operates on two matrices (unlike only one, in the case of the classical

Smith–Waterman algorithm) and requires additional storage for

recording of traces to locations of maxima (Fig. 3B). In addition,

genomics sequences containing SVs are typically thousands (at

times, hundreds of thousands) of nucleotides in length requiring

large matrices for alignment calculations. To reduce memory

usage, we used small integers for scoring and greedy affine gap

penalty calculations (Supplementary Material). Having done this,

we showed that AGE is practical even when aligning long sequences

of fosmid clones (Supplementary Material).

The input to the program is simple and consists of two

FASTA files, e.g. reference sequence and assembled contig,

specification of expected SV, e.g. option –inv for alignment with

inversions, and optional specification of sequence subranges and

scoring parameters. The output is comprehensive and includes

breakpoint coordinates of unaligned/excised region(s) for the two

best alignments, i.e. having the same maximum score (this can

be used to evaluate alignment uniqueness), coordinates of aligned

regions, i.e. regions flanking the SV from left and right, and

lengths of identical sequence at breakpoints calculated in three

different ways: around breakpoints, inside breakpoints and outside

breakpoints (Supplementary Fig. S2). The reported numbers are

followed by actual sequence alignment in blast-like format.

We have tested AGE to ensure that it reports accurate breakpoints.

To do this, we constructed a total of 312 contigs, by merging

the 500 bp flanking regions of large deletions (>1 kb), known

with breakpoint resolution from sequencing and assembly by long

Sanger reads (Levy et al., 2007). We then aligned these contigs

to deletion regions extended by 1 kb. In 303 (97%) cases, SV

breakpoints from optimal alignment(s) by AGE exactly matched

those we started from. In 8 (2.5%) cases, contigs could be perfectly

aligned (i.e. no mismatched and no gap) to the reference genome;

thus, no breakpoints were reported by AGE. In one case, however,

breakpoints were different. This may be due to the existence of

more than two optimal solutions, with the solution containing

actual deletion breakpoints simply not being reported. Indeed, when

increasing contig length up to 5 kb we found exact breakpoints for

all deletions. Thus, AGE is perfectly accurate in SV breakpoint

determination.

3.2 Application to 1000 Genomes Project data

The AGE program has been used to align genomic contigs that were

locally assembled by the 1000 Genome Project around predicted SV

regions (mostly deletions), with the aim of confirming predictions

and standardizing deletion breakpoints. Due to technical limitations,

current local assembly was done for a fraction (∼50%) of predicted

deletions and mostly for predictions made by read-pair and split-

read approaches, with only a tiny fraction of contigs assembled for

SV regions predicted by read-depth approaches. Thus, assembled

regions are not representative of all predicted deletions but are still

suited for demonstration purposes. The length of contigs ranged

from 43 to 2472, with an average of 915 nt. A total of 38 226 contigs

were aligned.

Below we will refer to predicted breakpoints, determined by a

variety of approaches (read-pair, read-depth, etc.) as ‘predicted’
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Alignment with gap excision

and to breakpoints inferred from contig alignment using AGE

as ‘derived’. ‘Predicted’ breakpoints are typically a few dozen

nucleotides away from the true ones. Of all SV predictions, 35 822

(94%) have regions between predicted and derived breakpoints

overlapping by 80%, reciprocally. Moreover, for 36 290 (95%)

predictions, we observed excellent (within 50 bases) agreement of

breakpoints (Supplementary Fig. S3). The analyzed set of deletions

was a union of predictions made using different data and approaches

that have different breakpoint resolutions. Therefore, we use either

criterion: 80% reciprocal overall or 50 bases difference at each

breakpoint, to consider a prediction confirmed by assembly. A total

of 36 986 (97%) deletions have been confirmed, ranging in size

from 51 to 994 703 nt in length. For the confirmed deletions, we

investigated sequence identity around breakpoints (see definition in

Supplementary Fig. S2). We observed that 97% of sequences that

are identical around breakpoints are shorter than 20 nt, but can be as

long as 100 nt. Distribution of sequence identity around breakpoints

has two distinct peaks (around 0 and 15 bp). The first one is likely

to represent random sequence matches, while the second one is

indicative of transposable elements (Lam et al., 2010), characterized

by Target Site Duplication around breakpoints (∼15 nt in length).

Identical sequences outside breakpoints (Supplementary Fig. S3)

were almost all no longer than 30 nt and were typically shorter than

10 nt. Similarly, 98% of identical sequences inside breakpoints were

shorter than 10 nt.

Most of the contigs could be aligned as pure deletions, but in

4340 (11%) cases, deletion was accompanied by micro-insertion

(as on schematics in Fig. 1B). We further analyzed such cases

(Supplementary Fig. S3). The distribution of insertion lengths peaks

around 1 nt and decays exponentially. There is a slight elevation

in the event frequency for insertions of length 12 and 15 nt. This

could be further studied to determine whether this is a biological

phenomenon. In one case, the inserted sequences was extremely

long (1385 nt) and could be partially aligned to the opposite DNA

strand in the region of deletion and to the genome in the region next

to corresponding deletion. Thus, the region is a complex SV event

that has a deletion, duplication and inversion. Another alternative is

that the region was misassembled.

3.3 Examples

Application of other existing programs aimed at long gap alignment

to the same set of contigs from the 1000 Genomes Project revealed a

substantially higher SV confirmation rate when using AGE, thereby

suggesting its superior performance in determining SV breakpoints

(Supplementary Material). As it was pointed out in Section 1,

SV breakpoints with sequences homology around them are the

most challenging to determine (Fig. 2). For such SVs, successful

resolution of breakpoints depends on the length and percent of

homology of breakpoint sequences as well as the lengths of the

aligned sequence. To demonstrate the advantage of using AGE

in practice, we provide a few examples of alignments in such

cases. We chose to demonstrate examples for AGE, CrossMatch

(http://www.phrap.org/phredphrapconsed.html, implementing the

Smith–Waterman alignment), GAP3 (Huang and Chao, 2003)

(implementing a generalized global alignment with piecewise gap

penalty), and Blat (Kent, 2002), a popular heuristic alignment

program aimed at aligning highly similar sequences with large gaps.

Figure 5A shows an example of comparative contig-to-genome

alignments made by these programs. The contig is the local

assembly of the alternative (to the reference genome) haplotype

around the region of predicted deletion chr20:2,969,769-2,970,056.

AGE alignment clearly identifies a large unaligned region,

confirms the predicted deletion and derives deletion breakpoints

as chr20:2,969,756-2,970,052—in excellent agreement with the

prediction. GAP3 was challenged by sequence homology around

deletion breakpoints and did not introduce a large gap. Instead,

it aligned the left flanking sequence with gaps and mismatches.

CrossMatch aligned two regions, but contig sequence fragments

in those two alignments overlap by 315 bases and additional

analysis is required for breakpoints identification. Note that, as

mentioned, post-processing of local overlapping alignment does not

guarantee finding optimal alignment around breakpoints (see also

Supplementary Fig. S4). Blat heuristically starts alignment from

near-exact matches and, in fact, penalizes large gaps. Exact repeats

within homologous regions flanking breakpoints misled the program

into initiating alignment in the wrong regions and, as a result,

produced incorrect alignment. Another example (Supplementary

Fig. 5B) demonstrates the difficulty the GAP3 program has

producing the correct alignment in cases when SV flanking

sequences are not long enough. Note all alignment methods that

utilize concave/piecewise gap penalty will face the same challenge.

4 DISCUSSION

We have described an algorithm for the correct alignment of two

nucleotide sequences containing SVs, i.e. deletion, insertion, tandem

duplication or inversion, called AGE. The algorithm does not

require the adjustment or modification of the alignment scoring

scheme(s) that is usually tuned for a particular alignment purpose,

e.g. cross-species, contig or read alignments. Thus, the algorithm

can be universally applied in various biological studies relying

on alignment. Its distinguishing feature is that it produces correct

alignments in cases that are challenging for methods utilizing

concave/piecewise gap penalty, i.e. cases with long sequence

homology around breakpoints and/or a short SV region and/or short

flanking sequences. The algorithm naturally handles certain cases

of complex SV events, such as when deletion is accompanied by

insertion.

The most straightforward application of AGE is single-nucleotide

SV breakpoint resolution and standardization, as has just been

demonstrated by using the algorithm implemented in AGE software.

While the algorithm can be generalized to align sequences

containing any number of SVs, its most practical (due to

computational scalability) application is to align sequence with

one SV, which are also the most common. Sequences containing

more SVs are very rare, even when aligning long sequences of

fosmid clones (Kidd et al., 2008). Still, AGE can also be useful

in aligning such sequences. One may envision a strategy in which

SV breakpoints are approximately localized (e.g. by analysis of local

alignments) and then precisely identified using AGE to align only

subsequences that flank SVs.

Of perhaps equal importance, the algorithm can be used to refine

read alignment once a read has been heuristically mapped to a

particular genomic location that is expected to contain an SV.

Such read realignment has potential implications for genotyping

known SVs in newly sequenced individuals, and/or discovering
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Fig. 5. Comparison of assembled contig alignments in the region of predicted deletions. The first line in each alignment is the sequence for the genomic region,

while the second is for the contig sequence. Nucleotide numbering is sequential, starting from one in both compared sequences. Each alignment is accompanied

by a schematic representation underneath. (A) The predicted deletion is chr20:2,969,769-2,970,056. The contig that is 614 bp in length has been aligned by the

AGE, GAP3, CrossMatch and Blat programs to the predicted region of deletion, which is extended by 1 kb in each direction, i.e. from 2,968,769-2,971,056.

The first sequence (genomic region) has two pairs of homologous sequences: orange to yellow and dark green to light green. AGE alignment clearly identifies

a large unaligned region, confirms a predicted deletion, and derives deletion breakpoints as chr20:2,969,756-2,970,052 (coordinates are for the first and the

last deleted bases). Note that the resulting breakpoints are in excellent agreement (within 13 bp) with the prediction. No other program was able to produce the

correct alignment. (B) Predicted deletion is chr8:118,292,728-118,292,987. The contig of 530 bp in length has been aligned by the AGE and GAP3 programs

to the predicted region of deletion, which is extended by 1 kb in each direction, i.e. from 118 291 728 to 118 293 987. AGE alignment clearly identifies a large

unaligned region, confirms a predicted deletion, and derives deletion breakpoints as chr8:118,292,711-118,292,990 (coordinates are for first and last deleted

bases). GAP3 is not able to align the left flanking sequence, as the penalty for a long gap outweighs the matches at the left flanking sequence. All coordinates

are for human hg18 reference.
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Alignment with gap excision

de novo SVs within loci that are known or expected to have a

strong copy-number association with genetic diseases (McCarroll

and Altshuler, 2007). Finally, the algorithm is not alphabet specific

and can therefore be applied to the alignment of protein sequences.
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