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Abstract. For decades, concrete plays an important role worldwide as a structural material. 

Construction planning and reliability assessment require a thorough insight of the effects that 

determine concrete lifetime evolution. This study shows the experimental characterization as well 

as the results of subsequent aging simulations utilizing and coupling a Hygro-thermo-chemical 

(HTC) model and the Lattice Discrete Particle Model (LDPM) with aging effects for concretes at 

various early ages. The HTC component of the computational framework allows taking into account 

any form of environmental curing conditions as well as known material constituents and predicts 

the level of concrete maturity. Mechanical response and damage are captured by the well-

established LDPM, which is formulated in the framework of discrete meso-scale constitutive 

models. The chemo-mechanical coupling is accomplished by a set of aging functions that link the 

meso-scale material properties to an effective aging degree, accounting for cement hydration, silica 

fume reaction, polymerization, and temperature effects. After introducing the formulations the 

framework is applied to experimental data of 3 standard low and higher strength concretes. 

Investigated tests include two types of unconfined compression, Brazilian splitting, three-point-

bending, and wedge splitting. Following the model calibration the framework is validated by purely 

predictive simulations of structural level experimental data obtained at different ages for the same 

concretes.  

Introduction 

Nowadays, in the modern world, concrete plays a major role as a structural material and is 

inseparably linked to a significant part of our infrastructure. Concrete is used more than any other 

manmade material in the world. The behavior of a concrete structure is determined by the properties 

of each involved material (e.g. steel, fibers). The role of concrete is decisive, since it exhibits large 

statistical and spatial variability and time-dependent effects. Consequently, it is mandatory to have 

knowledge about the development of its mechanical characteristics as well as time dependent 

properties. Considering the standards, concrete structures are designed for a life span of at least 50 

years. In order to ensure sufficiently high safety during the full intended life-time in a sustainable 

way without wasting resources accurate prediction models for time-dependent effects are 

quintessential. 

As it is well known, concrete is an aging composite material, characterized by ongoing chemical 

reactions (hydration) which are dependent on the environmental conditions. As a consequence, time 

dependent phenomena occur during the life span of a structural element. The development of creep 

and shrinkage deformations on one side but also the positive development of material properties 

(strength and modulus) should be known over a sufficient time period in order to guarantee a safe 

and sustainable design of our infrastructure. Consequently, due to generally restricted testing 

durations it is necessary to build predictive models which include all time-dependent phenomena in 



 

concrete. Numerical models need to be calibrated by a certain number of experimental tests to 

ensure an acceptable quality of the required extrapolations.  

The evolution of the above listed mechanical properties of concrete was investigated in this 

study. Further measurements include the evolution of internal relative humidity and temperature 

under given environmental conditions. As essential input information for numerical modelling 

attempts also the hydration energy was determined by a differential-calorimeter test. The internal 

humidity and temperature evolution is measured in three cubes of 20 cm edge length. The generated 

data was used in order to calibrate a hygro-thermal-chemical model (HTC) [1, 2] in order to 

investigate the advanced problem of curing degree related mechanical properties. The link between 

the HTC model and the mechanical constitutive equations are represented by a set of aging 

equations. This framework for the chemo-mechanical coupling is at the center of this investigation, 

for more see at [3, 4]. The mechanical behavior is captured by the Lattice Discrete Particle Model 

(LDPM) [5, 6], a well established constitutive model that is formulated in the framework of discrete 

elements.  

The HTC component of the computational framework allows taking into account any form of 

curing conditions as well as known material constituents and predicts the level of concrete aging. 

The LDPM component simulates the failure behavior of concrete at the coarse aggregate mesoscale 

level and can be used to simulate the mechanical behavior of concrete structures loaded on the 

macroscopic level.  

Numerical approaches for characterize aging 

In the present paper two main components have been used to numerically model the coupled 

problem of chemical reaction, humidity transport and heat transfer on one side and the mechanical 

problem on the other side in order to ultimately predict the local curing level dependent material 

properties. 

Hygro-Thermo-Chemical (HTC) model 

The hydration process, especially in the early age, can be assumed to be the main cause of many 

time-dependent phenomena in concrete. The mechanical properties of concrete such as compressive 

and tensile strength, Young’s modulus and fracture energy are closely related to the hydration 

degree. Furthermore hydration has a major impact on time dependent properties such as shrinkage 

and creep. During the reaction of water with cement (hydration), water is consumed and a volume 

decrease is caused. This phenomenon is called autogenous shrinkage. Additionally, drying 

shrinkage is caused due to drying related water loss. The hydration process is affected by the 

environmental conditions such as temperature and humidity which affect the availability of water 

for the ongoing chemical reaction as well as the reaction kinetics. Early age shrinkage and thermal 

strains are especially important for large concrete structures.   

In order to capture the complexity and interaction of all relevant phenomena, which affect aging 

a numerical framework is needed. The HTC model [1, 2] is a model which is able to capture 

moisture transport, heat transfer and the ongoing chemical reactions. The different phenomena, 

which lead to aging are taken into account by mass and heat balance equations, equations describing 

chemical reactions and coupled transport equations. The results are reaction degrees, aging degrees 

and evolution of humidity and temperature. Evolution of humidity and temperature is given with the 

following equations: 

  ∙ 0        (1) ∙ λ T ∞ ∞ 0         (2) 

 

where Dh permeability, we evaporable water, αc and s hydration and silica fume reaction degrees 

respectively, wn non-evaporable water,  concrete density, ct isobaric heat capacity, t heat 



 

conductivity, c and s, cement and silica fume content, ∞ and ∞ cement hydration and silica fume 

reaction enthalpies, respectively. Aging degree λ is typically used and formulated as:  

 ∙ 2 ∙                     (3) 

 

where ,  , and  are model parameters obtained from fitting experimental data, and  is the 

overall degree of reaction. The maximum temperature, Tmax, usually is taken as 100
o
C, while Tref   is 

the reference temperature of mechanical tests used for the calibration of aging degree parameters. 

The hygro-thermal-chemical model is formulated using the Finite Element method with an 

implicit solver. 

Lattice Discrete Particle Model (LDPM) 

LDPM [5, 6] presents a suitable discrete model to simulate the systems governed by the concrete 

failure modes and simulates concrete at meso-scale. Coarse aggregates are assumed to be 

spherically shaped in this model and are enclosed in a cementitious matrix. The connection of the 

aggregate centers is obtained by Delaunay tetrahedralization. The utilization of boundary conditions 

is ensured by randomly placed zero-radius aggregate pieces over the surfaces. The full description 

of the LDPM geometry is reported in [5, 6]. Taking into account that concrete ages, the local meso-

scale (LDPM) material properties change and can be formulated as functions of the aging degree. In 

this contribution we investigate the applicability of the set of aging functions that was developed for 

ultra high performance concretes modelled with the same computational framework by Wan et al. 

[7]. 

  

             (4) 

 ;  ;         (5) 1 1            (6) 

 

The above given eq. 4 proposes that the normal modulus E0 has a linear relation with aging 

degree . The normal modulus is related to the elastic modulus. Eq. 5 presents tensile strength , 

compressive strength  and transitional stress  expressed as a power-law type function 

depending on aging degree . The last eq. 6 proposes the tensile characteristic length , to be 

linearly decreasing with aging degree. The tensile characteristic length	  governs the softening 

behavior in tensile fracture and gives information about material brittleness. According to 

Hillerborg [8] the tensile characteristic length is directly related to the total fracture energy by ∙ / . The mesoscale fracture energy is calculated as /2 . 

All above aging functions given by eq. (4-6) are formulated such that the corresponding 

parameters approach their asymptotic values for the aging degree  approaching the value of 1. 

Consequently, the input variables become the asymptotic material properties for the fully cured 

state. 

Experimental program and results  

The experimental program was carried out to characterize three standard low strength and two high 

strength concretes. Especially the early age mechanical behavior is investigated. The data of the 

experimental program has been used to calibrate and validate the presented early age model. In 

order to determine mechanical properties different kinds of tests were performed including 

compressive strength tests for cubes and cylinders (unconfined), brazilian splitting tests, three point 

bending and wedge splitting tests. Apart from the mechanical tests, pull-out and shear tests on slabs 

with headed studs, bonded anchors and threaded bars were performed. In Table 1 and Table 2 an 

overview of the different tests is given. In Table 3 concrete mix design for each batch can be seen. 



 

The concrete mixes were split into five batches due to time and storage limitations. The five batches 

cover two concrete strength classes; three batches for low strength concrete (A2, A3 and A4 for 

C25/30 concrete) and two batches (B1 and C1 for C50/60 concrete) were tested. 

 

Tests for C25/30 Days: Specimens/day:

Compression cylinders and three 

point bending 
2,7,14,17,23,28,52(56),87,112,(155),172,365 3-4 

Compression cubes 3,8,29,134 6  

Brazilian and wedge splitting 9,29 3-4 

Creep 3,9,28 4  

Shrinkage 1,3,9,28 2  

Pull-out/shear tests 3,8,29,134 1 slab 

Temperature and humidity 0 3 

Table 1 Low strength concrete tests 

 

Tests for C50/60 Days: Specimens/day:

Compression cylinders and three 

point bending 
1,7,14,28 4 

Compression cubes 1,7,14,28,78 3-5  

Brazilian splitting 1,7,14,28 4 

Creep  1,6 4  

Shrinkage 1,6 2  

Pull-out/shear tests 7,28,78 1 slab 

Temperature and humidity 0 3 

Table 2 High strength concrete tests 

 

components A2 A3 A4 B1 C1 

cement type CEM II 42.5 R CEM I 52.5 R 

aggregate content [kg] 1994 1985 1979 1928 1902 

cement content [kg] 242 240 237 455 464 

water content [kg] 172 176 197 167 168 

water/cement ratio /  0.71 0.73 0.83 0.37 0.36 

aggregate/cement ratio /  8.24 8.27 8.35 4.24 4.1 

Table 3 Concrete mix design 

 

Fig. 1 shows four different nominal stress-opening curves at different ages determined by means 

of three point bending. It is noticed that the stiffness K as well as the peak load increase over time. 

The results obtained, show good quality and the curves correspond well with each other.  

Fig. 2 presents the evolution of nominal bending strength from three point bending tests obtained 

by equation 3 ∙ ∙ /2 ∙ ∙ . The solid and dashed line represent fitted aging laws suggested 

by EC 2. Two different approaches are considered here. First the aging law is fitted in order to get 

an optimized parameter s and 28 day value. The second approach uses the s value given by 

Eurocode for the used cement mix (CEM II: s = 0.20). It can be noticed that the obtained values for 

the 28 day values are similar for both approaches. The optimized fit presents an s value of 0.33 

obtained with a high R
2
 value of 0.92. The fixed approach gives slightly different results for the 

available experimental data with an R
2
 of 0.81. However, the rate of strength evolution is 

substantially different as is the asymptotic strength. Conversely, the optimized aging law results in 

lower initial values and higher stresses at higher ages. 
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As it has already been mentioned, tensile strength , compressive strength  and transitional stress 

 were proposed with power-law type relations to aging degree  which would match the 

experimental data. 

Conclusions 

Meso-scale material properties used in the LDPM framework change while concrete ages and 

they can be formulated as functions of the aging degree .	 As a consequence, the evolution of the 

compressive and tensile strengths and moduli can be predicted in terms of the evolution of the aging 

degree. The logical next steps in this investigation will entail an inverse analysis running the full 

aging framework for all experimentally tested low strength and normal strength concretes, in order 

to have a wider spectrum of results for different ages. The outcome will be a set of aging functions 

that have been extensively validated for several different low and higher strength concretes. 
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