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Abstract
Older adults typically show slower response times in basic cognitive tasks than younger adults. A diffusion model analysis 
allows the clarification of why older adults react more slowly by estimating parameters that map distinct cognitive components 
of decision making. The main components of the diffusion model are the speed of information uptake (drift rate), the degree 
of conservatism regarding the decision criterion (boundary separation), and the time taken up by non-decisional processes 
(i.e., encoding and motoric response execution; non-decision time). While the literature shows consistent results regarding 
higher boundary separation and longer non-decision time for older adults, results are more complex when it comes to age 
differences in drift rates. We conducted a multi-level meta-analysis to identify possible sources of this variance. As possible 
moderators, we included task difficulty and task type. We found that age differences in drift rate are moderated both by task 
type and task difficulty. Older adults were inferior in drift rate in perceptual and memory tasks, but information accumula-
tion was even increased in lexical decision tasks for the older participants. Additionally, in perceptual and lexical decision 
tasks, older individuals benefitted from high task difficulty. In the memory tasks, task difficulty did not moderate the negative 
impact of age on drift. The finding of higher boundary separation and longer non-decision time in older than younger adults 
generalized over task type and task difficulty. The results of our meta-analysis are consistent with recent findings of a more 
pronounced age-related decline in memory than in vocabulary performance.

Introduction

It is a common finding from the literature on cognitive 
aging that older people show larger response times (RTs) 
in basic cognitive tasks than younger adults (Jensen, 2006). 
In the last decades, the mechanisms underlying this age-
related slowing have become a subject of debate. On the 
one hand, the higher RTs of the older adults might be the 
result of a general decline in cognitive processing speed due 
to increased neural noise (Salthouse, 1996). On the other 
hand, however, it is also possible that the slow responses are 
based on encoding problems (e.g., due to impaired vision), 
reduced motoric speed, or more cautious response criteria. 
Such different accounts can be differentiated by means of 

diffusion model analyses (Voss, Nagler, & Lerche, 2013). 
The diffusion model (Ratcliff, 1978) is a stochastic model 
used to analyze response time distributions and error rates 
in binary decision tasks. It thus utilizes a more complete 
representation of decision outcomes than just mean RTs. 
The model aims to disentangle three main components of 
the decision process: the speed of information uptake (drift 
rate), the degree of conservatism regarding the decision 
criterion (i.e., speed-accuracy trade-offs; boundary separa-
tion) and the time taken up by non-decisional processes such 
as encoding and motoric response execution (non-decision 
time).

Several diffusion model studies have challenged the view 
that age differences in RT are indicative of a general decline 
in cognitive speed (e.g., Spaniol, Madden, & Voss, 2006). 
Quite often, age differences in RT were not due to differ-
ences in the mean speed of information uptake, but due to 
the fact that older people tended to be more cautious (i.e., 
they favored accurate over fast responses) and that they 
took longer in terms of the non-decisional components of 
the response time (e.g., Ratcliff, Thapar, & McKoon, 2001). 
However, in some studies, older people additionally showed 
a lower speed of information uptake (Voskuilen, Ratcliff, & 
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McKoon, 2018), consistent with the notion that processing 
speed declines with age.

So far, to our knowledge no attempt has been made to 
bring together the inconsistent results regarding drift rates 
in a quantitative way. It is an open question whether the 
discrepancies are simply due to random sample differences 
or can be explained by specific study attributes. As Dully, 
McGovern, and O’Connell (2018) note in their literature 
review, there are “task-specific differences in evidence accu-
mulation rates” (p. 3). However, these task-specific differ-
ences have not yet been examined quantitatively.

In this paper, we present the results of a meta-analysis 
regarding age differences in diffusion model parameters. The 
focus is on drift rates because of the variability in findings 
for this parameter. We were interested in whether character-
istics of the task (specifically, content and difficulty of task) 
might explain the inconsistent findings in the literature. We 
also analyzed the parameters boundary separation and non-
decision time. In terms of these parameters, we expected that 
age differences generalize across tasks. In the next chapter, 
we briefly introduce the diffusion model (for further intro-
ductory information, see e.g., Ratcliff & McKoon, 2008; 
Voss et al., 2013; Wagenmakers, 2009).

Introduction to diffusion modeling

The diffusion model is a mathematical model that can be 
applied to examine the processes underlying RT tasks with 
two response options. It has most frequently been used with 
three main task types (Voss et al., 2013). The first group 
of tasks comprise memory tasks. Here, participants usually 
have to decide whether a stimulus has been presented to 
them before or not (recognition memory tasks, e.g., Spaniol 
et al., 2006; Yap, Sibley, Balota, Ratcliff, & Rueckl, 2015). 
Second, there are perceptual tasks in which participants have 
to discriminate, for example, between two levels of bright-
ness (bright vs. dark, e.g., Ratcliff, 2002; Ratcliff, Thapar, & 
McKoon, 2003), between two different letters (e.g., F vs. Q, 
Thapar, Ratcliff, & McKoon, 2003) or between two different 
quantities of stimuli (small vs. large, e.g., Ratcliff, Thomp-
son, & McKoon, 2015; Ratcliff & Van Dongen, 2009). The 
third category of task types includes lexical decision tasks. 
In these tasks, participants have to assess whether a pre-
sented letter string is a word or not (e.g., Ratcliff, Gomez, & 
McKoon, 2004; Wagenmakers, Ratcliff, Gomez, & McKoon, 
2008).

For these three categories of tasks, it is assumed that the 
four central assumptions of the diffusion model are met: 
(1) Information about the two response options is accumu-
lated continuously, (2) decisions are based on single-stage 
processing, (3) parameters are constant over time, and (4) 
the tasks are fast response time tasks with mean RTs below 

1.5 s. Note, however, that this latter criterion has recently 
been questioned. Studies demonstrated that also for RT tasks 
that take up to several seconds per trial, the diffusion model 
fits well and provides valid parameter estimates (Aschen-
brenner, Balota, Gordon, Ratcliff, & Morris, 2016; Lerche, 
Christmann, & Voss, 2018; Lerche & Voss, 2017). In fact, 
for such slower tasks, the standard diffusion model that is 
based on random Gaussian noise might even fit better than 
for very fast response time tasks (Voss, Lerche, Mertens, & 
Voss, 2019).

Four main parameters affect the position and shape of 
response time distributions in the diffusion model frame-
work. These parameters are also visualized in Fig. 1. First, 
there is the distance between the two boundaries that 
are associated with correct (upper boundary) and error 
responses (lower boundary) in the example figure. This 
boundary separation (a) defines the quantity of informa-
tion that needs to be accumulated before a decision is made. 
Under accuracy (speed) instructions, participants typically 
adopt more distant (more close) boundaries (e.g., Ratcliff & 
Rouder, 1998; Voss, Rothermund, & Voss, 2004). Second, 
there is the speed of information accumulation, the so-called 
drift rate (ν). Drift rate is higher in easier compared to more 
difficult tasks (e.g., Arnold, Bröder, & Bayen, 2015; Lerche 
& Voss, 2017) and drift is also positively related to cogni-
tive abilities (e.g., Schmiedek, Oberauer, Wilhelm, Süß, & 
Wittmann, 2007; Schubert, Hagemann, Voss, Schankin, & 
Bergmann, 2015).

Third, the starting point (z) of the accumulation process 
is modelled. In many tasks, decision processes start from the 

Fig. 1  Diffusion model with its four main parameters. The bounda-
ries are associated with correct and erroneous responses here. One 
exemplary trial is illustrated. In this trial, the accumulation process 
starts at starting point z, which is here right in the center between the 
two boundaries (0 and a). The process moves with speed ν toward the 
upper boundary. To this straight process adds random Gaussian noise. 
For convenience, parameter t0 is illustrated at the left from the deci-
sion process. Note that it also includes processes succeeding the deci-
sional process (the motoric response)
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center between the two boundaries. However, if one of the 
two response options has a higher expected value (e.g., the 
response is correct in more trials or higher reward is associ-
ated with this response), participants shift the starting point 
towards the favored option (e.g., Leite & Ratcliff, 2011; Voss 
et al., 2004).

Finally, non-decision time (t0) subsumes the total dura-
tion of all the non-decisional processes (e.g., encoding of 
information and motor response). Moreover, inter-trial vari-
abilities are often included in the model. However, these 
variability parameters (in particular, inter-trial variability 
of drift rate and starting point) often cannot be estimated 
very reliably (Boehm et al., 2018; Lerche & Voss, 2016; van 
Ravenzwaaij, Donkin, & Vandekerckhove, 2017) and thus 
are not very useful to assess inter-individual differences in 
decision making.

Methods

As the main focus of this meta-analysis is on examining 
inconsistent findings concerning age differences in drift 
rate, the literature search concentrated on studies comparing 
mean drift rates between two age groups. For these studies, 
we additionally coded effect sizes for boundary separation 
and non-decision time. Below, we report our procedure in 
detail.

Inclusion criteria and literature search

For our literature search, we used the following two inclu-
sion criteria:

1. All studies had to refer to the original publication intro-
ducing the diffusion model in psychology (Ratcliff, 
1978) and they had to report results from a diffusion 
model analysis. Articles applying the EZ-diffusion 
model (Wagenmakers, van der Maas, & Grasman, 
2007) were included. However, we excluded all studies 
in which parameter estimation was based on fitting the 
Ex-Gaussian or the shifted Wald distributions due to 
concerns about the interpretability of their parameters 
(Matzke & Wagenmakers, 2009).

2. The second required inclusion criterion regards an oblig-
atory comparison between younger adults (college age) 
and healthy older adults (youngest participant older than 
55 or mean age > 60). We excluded studies reporting 
continuous age analyses if no categorical age data could 
be extracted from the reported results (e.g., the relation 
between age and the corresponding parameter of the dif-
fusion model was only provided as a correlation, without 
raw data being available). We included studies reporting 
results from more than two age groups if college-aged 

adults and older adults were among these groups. In case 
of two higher age groups, we used only the younger one 
of them to enhance comparability between studies.

We used Google Scholar’s search engine to collect stud-
ies, as it allows to combine a descendant approach with the 
use of specific keywords(for the comparability of Google 
Scholar with established scientific databases, see Anders & 
Evans, 2010; Gehanno, Rollin, & Darmoni, 2013; Shultz, 
2007). In a first step, we identified all the papers citing 
Ratcliff’s seminal work on the diffusion model (1978) 
(k = 3341). The next step consisted in searching these studies 
using age-related terms,1 resulting in k = 561 publications. 
The search was finished on January 16, 2019.

We conducted a full-text scan of these papers searching 
for studies that fulfilled the inclusion criteria, resulting in 
k = 48 articles. After removal of duplicates, k = 46 articles 
remained. Several articles did not report sufficient data to 
calculate effect sizes on drift rate, resulting in a final dataset 
of 21 papers. Some papers reported data from more than 
one sample (e.g., if more than one experiment conducted 
on different participants is reported in the same publica-
tion) and/or more than one effect size per sample (e.g., if 
different tasks were reported for the same participants). We 
retrieved effect sizes from 25 samples. For boundary separa-
tion and non-decision time, we had to exclude one sample, 
respectively, as the reported data was not sufficient. In total, 
we retrieved 146 effect sizes for drift rate, 47 effect sizes for 
boundary separation, and 40 effect sizes for non-decision 
time.

Calculation of effect sizes

As effect size measure we used Hedges’ g (Hedges, 1981). 
We computed effect sizes using the compute.es package (ver-
sion 0.2-4; Del Re, 2013) of the R open-source software 
environment (version 3.5.1; R Core Team, 2018). If a paper 
did not report means or standard deviations, we used infer-
ential statistics to determine effect sizes. Positive effect sizes 
indicate higher values for higher age.

Coding of moderator variables

For each study, we coded the type of task using the catego-
ries described in Voss, Nagler, and Lerche (2013). Following 
this classification, most binary decision tasks analyzed with 
the diffusion model are either perceptual, lexical decision 

1 search string: ("age differences" OR "old adults" OR "old partici-
pants" OR "older adult" OR "older adults" OR "older participants" 
OR "higher age" OR "older group" OR "old group" OR "age-related" 
OR "effects of aging" OR "effects of age" OR "aging effects" OR 
"age effects").
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or memory tasks. Some experimental tasks did not fit this 
classification scheme. We omitted the according effect sizes 
from the analyses (11 effect sizes for drift rate, 2 effect sizes 
for boundary separation and 4 effect sizes for non-decision 
time). See Table 1 for the articles included in this final 
dataset.

A second moderator variable in our analyses was task 
difficulty. We used drift rate as measure of task difficulty as 
the literature suggests that more difficult tasks go along with 
lower drift rates (e.g., Arnold, Bröder, & Bayen, 2015; Voss 
et al., 2004). In several studies, task difficulty varied between 
conditions. Here we computed a mean drift rate across the 
different difficulty levels and age groups (weighting by the 
number of participants per group). Next, we z-transformed 
and inverted the mean drift so that higher values of the vari-
able indicate enhanced task difficulty.

Statistical analyses

As several effect sizes are based on the same samples, we 
assumed effect sizes to be dependent. We accounted for this 
dependent structure by conducting multilevel meta-analy-
ses using the metafor package (version 2.0-0; Viechtbauer, 

2010) in R. We specified the levels as effect size nested in 
sample with task type as an inner grouping factor. This 
means that effects stemming from different samples are 
assumed to be independent, while effects of the same task 
type within a sample share correlated random effects. The 
variance structure of the inner factor was assumed to be a 
heteroscedastic compound symmetric structure.2

We used the maximum likelihood estimation procedure 
included in the function rma.mv() and analyzed the three 
outcome variables in independent sets of analyses (i.e., drift 
rate, boundary separation, and non-decision time). In a first 
step, we ran multilevel meta-analyses without any modera-
tors (Model 1). Then, in a second step, we included task type 
and task difficulty as moderators (Model 2). As we were also 
interested in a possible interaction between task type and 
task difficulty, we further added the interactions in a third 
step (Model 3).

The validity of meta-analytical models can suffer because 
of influential outliers. To date, the development of tools 

Table 1  Samples included in the final dataset of the meta-analysis

Articles n n young n old Age range young Age range old Mean age young Mean age old

Allen, Lien, Ruthruff, and Voss (2014) 21 11 10 18–24 64–80 21.7 71.8
Ball and Aschenbrenner (2018) 125 67 58 18–21 60–90 18.9 75.0
Dirk et al. (2017) 40 20 20 18–36 64–75 25.7 68.1
Huff and Aschenbrenner (2018) 163 85 78 21 74.6
Kapucu (2010) 56 30 26 19.8 71.9
Kordella (2009)
 Experiment 2 41 22 19 18–24 61–74 20.2 68.9
 Experiment 3 38 22 16 18–25 60–74 20.1 68.3

Kühn et al. (2011) 39 24 15 20–31 65–80 25.2 70.2
McKoon and Ratcliff (2012) 78 39 39 18–25 60–74 20.6 68.4
McKoon and Ratcliff (2013) 67 30 37 60–74 20.8 69.7
Ratcliff (2008) 38 19 19 60–75 20.8 69.2
Ratcliff, Thapar, Gomez, and McKoon (2004)
 Experiment 1 98 54 44 19.8 68.5
 Experiment 2 94 54 40 20.2 67.2

Ratcliff, Thapar, and McKoon (2004) 80 39 41 60–74 19.6 70
Ratcliff, Thapar, and McKoon (2006) 20 10 10 60–74
Ratcliff, Thapar, and McKoon (2010) 88 45 43 18–25 60–74 20.8 68.6
Ratcliff, Thapar, and McKoon (2011) 91 46 45 60–74 20.4 68.3
Spaniol, Voss, and Grady (2008)
 Experiment 1 43 22 21 19–28 60–75 22.5 67.5
 Experiment 2 47 24 23 18–32 61–85 22.3 71.8

Spaniol, Voss, Bowen, and Grady (2011) 53 26 27 18–32 61–85 23.0 71.5
Thapar, Ratcliff, and McKoon (2003) 78 40 38 60–75 19.8 69.1
Voskuilen et al. (2018) 23 11 12 60–80

2 As recommended by Wolfgang Viechtbauer (Personal communica-
tion, April 2018).
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for outlier and influence diagnostics for multilevel meta-
analyses is still in progress (Viechtbauer & Cheung, 2010). 
We followed the procedure of Habeck and Schultz (2015), 
removing any influential outliers, defined by effect sizes with 
both hat values greater than two times the average hat value 
and standardized residual values exceeding 3.29.

We tested for publication bias using Egger’s regression 
test (Egger, Smith, Schneider, & Minder, 1997; Sterne & 
Egger, 2005) by modifying Model 1 to include the variance 
of the effect size as moderator (Moreno et al., 2009). If the 
intercept of this model significantly deviates from zero, the 
relationship between variance and effect size can be assumed 
to be asymmetrical, indicating a bias. Because of the low 
power of this test for publication bias, we set the alpha-level 
to α = 0.10 (Egger et al., 1997).

Furthermore, we assessed heterogeneity among effect 
sizes using Cochran’s Q statistic and the I2 statistic. Large 
Q values indicate that differences among effect sizes can be 
attributed to differences among the true effects and do not 
solely result from sampling errors. If the Q test is significant, 
the integrated effect size is not an estimator of the true effect 
but rather an estimator of the mean of the distribution of 
different true effect sizes (Borenstein, Hedges, Higgins, & 
Rothstein, 2009).

Results

Study characteristics

The included studies stem from the period of 2003–2018. In 
total, we analyzed the data of 1503 participants (M = 62.63 
per sample, SD = 34.90). The mean age of the young groups 
was 21.15 (SD = 1.75), the mean age of the older groups 
was 69.77 (SD = 2.17). Table 2 shows the distribution of 
task types over the three diffusion model parameters (see 
Table  S1 in the Supplementary Material for a detailed 
description of the respective task and condition for each 
included effect size).

Diagnostics

For drift rate, there were two cases with standard residual 
values greater than 3.29. However, their hat values did not 
exceed 2 and, therefore, we did not omit them from the 
analyses. For boundary separation and non-decision time, 
we found no outliers. The intercepts of Egger’s regression 
models indicated publication bias for all three diffusion 
model parameters (drift rate: β0 = 1.049, p < 0.001; non-
decision time: β0 = 0.988, p < 0.001; boundary separation: 
β0 = – 0.637, p = 0.063).

Meta‑analysis

Drift rate

The meta-analytical model with task type and task difficulty 
as moderators (Model 2; AICc = 376.2) had a better fit than 
the model without moderators (Model 1; AICc = 379.1, 
p = 0.022). Including the interaction between task type and 
difficulty improved the model fit even further (Model 3; 
AICc = 374.1, p = 0.034). Thus, our final meta-analytical 
model contained task type, task difficulty, and their inter-
action as moderator variables (see Figure S1 in the Sup-
plementary Material for a forest plot of the final model). 
For the final model, the Q test was highly significant, 
Q(129) = 1016.331, p < 0.001. The estimated standard devia-
tions of true effects per task type were τ = 0.848 (percep-
tual tasks), τ = 1.153 (lexical decision tasks), and τ = 0.549 
(memory tasks). The I2 values for the three levels of task 
type were 91.61% (perceptual tasks), 95.28% (lexical deci-
sion tasks), and 82.07% (memory tasks).3

The mean effect sizes per task type were g = − 0.608, 
95% CI [− 1.032, − 0.184], p = 0.005 for perceptual tasks, 
g = 0.620, 95% CI [0.037, 1.203], p = 0.037 for lexical deci-
sion tasks and g = − 0.326, 95% CI [− 0.587, − 0.065], 
p = 0.014 for memory tasks (see Fig. 2 for a graphical repre-
sentation). This indicates reduced drift rates for older adults 
in perceptual and memory tasks but increased drift rates of 
older adults for lexical decision tasks. Furthermore, in more 
difficult tasks older adults performed relatively better com-
pared to younger adults (β = 0.181, p = 0.010).

To examine the task type by task difficulty interaction, 
we additionally conducted separate analyses for each type 
of task, with and without task difficulty as moderator. We 
then compared the fit of the model with and without diffi-
culty to test if this moderator explains variance within a task 

Table 2  Number of available effect sizes for each diffusion model 
parameter depending on the task type

Parameter Perceptual 
tasks

Lexical deci-
sion tasks

Memory tasks

Drift rate 30 16 89
Boundary separation 16 6 23
Non-decision time 14 6 16

3 To compute the I2 on task type level we used the approach for mul-
tivariate models as described in Viechtbauer (2018, December 8). To 
compute the I2 for boundary separation and non-decision time, we 
used Higgins and Thompson’s (2002) formula.
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type (Table 3). For perceptual and lexical decision tasks, the 
model with difficulty as moderator performed significantly 
better than the model without moderator. More specifi-
cally, task difficulty significantly predicted effect sizes for 
perceptual (β = 0.203, p = 0.004) and lexical decision tasks 
(β = 0.719, p = 0.022): Older adults profited from high task 
difficulty. For memory tasks, on the other hand, task dif-
ficulty did not predict effect sizes, β = 0.016, p = 0.816. In 
the supplementary materials, we provide a full forest plot 
showing all drift rate effect sizes analyzed.

Boundary separation

The meta-analytical model without any moderators 
(AICc = 143.8) showed a better fit to the data than the 
model with task type and task difficulty as moderators 
(AICc = 149.1, p = 0.372). Therefore, we kept the model 
without any moderators. The mean effect size of age on 
boundary separation was g = 0.731, 95% CI [0.472, 0.989], 
p < 0.001. Results indicate that older adults generally adopt 
higher boundary separations (i.e., a more conservative 
response criterion) than young adults. The Q test was highly 
significant, Q(44) = 669.203, p < 0.001; I2 for the whole 
model was 93.13%.

Non‑decision time

The meta-analytical model without any moderators 
(AICc = 89.9) showed a better fit than the model with task 
type and task difficulty (AICc = 96.1, p = 0.379). There-
fore, we kept the model without any moderators. The mean 
effect size of age on non-decision time was g = 1.673, 95% 
CI [1.404, 1.942], p < 0.001. Our results suggest that older 
people show a longer non-decision time than younger peo-
ple. The Q test was highly significant, Q(37) = 388.946, 
p < 0.001; I2 for the whole model was 90.487%.

Discussion

In the last decades, the diffusion model (Ratcliff, 1978) has 
become a popular approach for the analysis of age differ-
ences in response time tasks. The findings from the diffu-
sion model analyses have challenged the view that cognitive 
processing speed generally declines with age. Rather, the 
studies revealed a more complex picture, which we wanted 
to examine further in our meta-analysis. Most importantly, 
we were interested in the drift rate, which is a measure of 
speed of information accumulation that is closely related 
to intelligence (e.g., Ratcliff, Thapar, & McKoon, 2011; 
Schmitz & Wilhelm, 2016). Regarding age effects on drift, 
previous studies provided inconsistent findings. Whereas 
some studies report reduced drift rates for older adults (e.g., 
Thapar et al., 2003), other studies do not find differences 
in this model parameter (e.g., Ratcliff et al., 2001), or even 
higher drift rates for older adults (e.g., Ratcliff, Thapar, & 
McKoon, 2010). With the present meta-analysis, we aim 
to identify reasons for this heterogeneity. To this aim, we 
assembled studies that report drift rate differences between a 
young (college age) and an old age group (> 55 years). Then, 
we examined the influence of task difficulty and task type 
(perceptual, lexical decision, and memory) on age effects in 
diffusion model parameters. Thus, we could uncover pos-
sible important moderators that might explain (part of) the 
inconsistent findings in the literature.

Boundary separation and non‑decision time

Results provided two most clear-cut findings: First, older 
adults are slower than young adults in non-decisional 
processes (such as encoding of information and motoric 
response execution). The corresponding effect size was 
large (g = 1.673). Second, older adults generally use 
more conservative response criteria (i.e., larger boundary 
separations) than young adults. Even if the effect size is 
smaller than for non-decision time, it is still substantial 
(g = 0.731). Thus, older individuals are more cautious in 
their decisions. These effects did not depend on either task 

Fig. 2  Mean age effects in drift rate for each of the task types ana-
lyzed. 95% confidence intervals indicated by the width of the poly-
gons

Table 3  Drift rate: comparisons between models with and without 
task difficulty as moderator for each task type subset

Statistic Perceptual tasks Lexical 
decision 
tasks

Memory tasks

AICcwith task difficulty 69.710 63.887 244.189
AICcwithout task difficulty 75.465 65.395 242.100
p .004 .032 .817
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type or task difficulty. Note that both boundary separa-
tion and non-decision time influence RT (e.g., Ratcliff & 
McKoon, 2008). Thus, the common finding of higher RTs 
of older adults seems to be highly attributable to these 
two parameters.

Drift rate

Whereas age differences in boundary separation and 
non-decision time generalized across different task types 
and difficulties, we found moderator effects for speed of 
information accumulation (drift rate). In perceptual tasks 
and memory tasks, older adults had lower drift rates than 
younger adults. However, the older groups were superior 
in speed of information accumulation compared to their 
younger counterparts in lexical decision tasks. Furthermore, 
task difficulty also influenced age effects on drift: In terms 
of perceptual and lexical decision tasks, older participants 
profited from more difficult tasks. In the memory tasks, task 
difficulty did not moderate the effect of age on drift.

Thus, our study shows that the pattern of results is clearly 
more complex for drift rate than for boundary separation 
and non-decision time and that it seems to be important to 
consider the specific cognitive processes required by dif-
ferent experimental paradigms. In line with this finding are 
the results from a recent diffusion model study that is based 
on a set of 18 different RT tasks (Lerche et al., 2020). The 
study revealed domain-specific drift factors (numeric, ver-
bal, figural) that were further related to the respective com-
ponents of an intelligence test. Thus, speed of information 
accumulation seems to be dependent on the task content. 
Furthermore, also neurophysiological studies found that 
aging effects depend on the task (Dully et al., 2018).

Our meta-analysis suggests that older adults outperform 
young adults in lexical decision tasks, whereas they per-
form worse in memory tasks. This is in line with the find-
ings from studies that date back to the 1920s and 30s (e.g., 
Conrad, Jones, & Hsiao, 1933; Foster & Taylor, 1920; Wil-
loughby, 1929). The results of these studies suggest that age 
differences are more pronounced in measures of memory 
than vocabulary. Also, recent studies generally confirm this 
observation. For example, Salthouse (2004), aggregating 
across several studies from 1998 till 2003, reports a sub-
stantial, linear age decline in performance in a memory 
test. On the other hand, performance improved with age 
in a vocabulary test, at least until about the mid-50s. After 
that, it remained stable or somewhat declined (confer also 
Spaniol et al., 2006). Our meta-analysis showed that such 
task-specificities are captured in the drift rate of the diffusion 
model. Furthermore, our analysis revealed that not only the 
type of task, but also task difficulty needs to be considered. 
Older adults profited from the more difficult tasks.

Limitations and future research

Even if the overall number of effect sizes for drift rate used 
for the meta-analysis was substantial (N = 135), analyses of 
the moderator task type were based on smaller case num-
bers. Here, the distribution was not balanced with clearly 
fewer lexical decision effect sizes (n = 16) than effect sizes 
from perceptual (n = 30) or memory tasks (n = 89). In 
future research, one might try to replicate our findings in 
large-scale studies that are explicitly designed to measure 
the influence of task type (and difficulty) on age differ-
ences. Further note that despite consideration of two mod-
erator variables, there was still substantial unexplained 
variance in our meta-analysis. Accordingly, in future stud-
ies, one might try to identify further possible moderators.

The focus of our meta-analysis was on drift rate because 
findings in the literature seemed to be more inconsistent 
for this parameter. Therefore, our search strategy was 
based on finding all studies that report age differences in 
drift rate. With this strategy we do not identify studies 
that report age differences only in boundary separation or 
non-decision time, but not in drift rate. Accordingly, the 
superiority of the model without moderators might also 
be partly attributable to the small cell numbers (between 
6 and 23 for the different task types). Thus, if one would 
like to examine moderator influences for non-decision time 
and boundary separation in more detail, separate meta-
analyses should be conducted.

Finally, it would be highly interesting to examine age 
effects more systematically also for other sequential sam-
pling models, e.g., the popular linear ballistic accumula-
tor model (LBA; Brown & Heathcote, 2008). So far, the 
literature on age effects in LBA model parameters is more 
limited than the respective diffusion model literature. 
The previous LBA findings seem to be generally in line 
with the results from our meta-analysis: In comparison 
with younger adults, older adults have been found to have 
higher threshold separations (Forstmann et al., 2011; Gar-
ton, Reynolds, Hinder, & Heathcote, 2019), and longer 
non-decision times (Ben-David, Eidels, & Donkin, 2014; 
Garton et al., 2019), whereas the results for drift rate are 
less clear-cut. Further, previous research suggests that the 
diffusion model parameters and the LBA model parameters 
have very similar meanings (Donkin, Brown, Heathcote, 
& Wagenmakers, 2011). However, to note, in a recent 
multi-lab project one systematic difference between the 
two models emerged (Dutilh et al., 2019). More specifi-
cally, for instructions that focused either on accuracy or 
speed the teams that used the diffusion model often found 
an effect in non-decision time (in addition to an effect 
in threshold separation), whereas the LBA teams often 
detected an effect in drift rate. The reasons for this pattern 
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of results will need to be investigated further in future 
research (for a recent discussion of this topic, see Evans, 
2020; Lerche & Voss, 2018). Based on these varying find-
ings, we hypothesize that somehow different age effects 
might emerge if older and younger adults are compared 
based on different sequential sampling models. For exam-
ple, effect sizes for age effects in non-decision time might 
be larger for the diffusion model than for the LBA.
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