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Abstract

Facial aging adversely impacts performance of face recognition and face verification and authentication using facial

features. This stochastic personalized inevitable process poses dynamic theoretical and practical challenge to the

computer vision and pattern recognition community. Age estimation is labeling a face image with exact real age or

age group. How do humans recognize faces across ages? Do they learn the pattern or use age-invariant features?

What are these age-invariant features that uniquely identify one across ages? These questions and others have

attracted significant interest in the computer vision and pattern recognition research community. In this paper, we

present a thorough analysis of recent research in aging and age estimation. We discuss popular algorithms used in

age estimation, existing models, and how they compare with each other; we compare performance of various systems

and how they are evaluated, age estimation challenges, and insights for future research.
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1 Introduction
You can never see the same face twice. This statement

is true because facial appearance varies more dynami-

cally as it is affected by several factors including pose,

facial expression, head profile, illumination, aging, occlu-

sion, mustache, beards, makeup (cosmetics), and hair

style. Major factors that influence facial aging include

gravity, exposure to ultraviolet (UV) rays from the sun,

maturity of soft tissues, bone re-structuring, and facial

muscular activities [1]. These factors cause variations in

face appearance. For instance, a face seen in blue light

illumination is totally different from one seen under red

light illumination. Another factor that constantly and per-

manently causes variations in facial appearance is age.

Aging is an inevitable stochastic process that affects facial

appearance. Aging involves both variations in soft tissues

and bony structure on the human face. A face seen at one

age is totally different from the face of same individual at

a different age. Therefore, these age-introduced variations

could be learned and used to estimate facial age.

The human face provides prior perceptible informa-

tion about one’s age, gender, identity, ethnicity, and mood.

Alley [2] asserts that attributes derived from human facial
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appearance like mood and perceived age significantly

impact interpersonal behavior as is considered as essential

contextual cue in social networks [3, 4]. Information ren-

dered by the human face has attracted significant atten-

tion in the face image processing research community.

Image-based age and age-group estimation particularly

has attracted enormous research interest due to its vast

application areas like age-invariant face recognition and

face verification across age, among other commercial and

law enforcement areas [5–9]. Age estimation has been

extensively studied with the aim of finding out aging pat-

terns and variations and how to best characterize an aging

face for accurate age estimation.

Age estimation research has gained significant atten-

tion in recent years with many journal and conference

papers being published annually as well as Masters and

PhD theses defended [10]. Age estimation is a technique

of automatically labeling the human face with an exact age

or age group. This age can be either actual age, appear-

ance age, perceived age, or estimated age [11]. Actual

age is the number of years one has accumulated since

birth to date, denoted as a real number. Appearance and

perceived age are estimated based on visual age infor-

mation portrayed on the face while estimated age is a

subject’s age estimated by a machine from the facial visual

appearance. Appearance age is assumed to be consistent

with actual age although there are variations due to the

stochastic nature of aging among individuals. Estimated
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age and perceived age are defined on visual artifacts of

appearance age. There has been relatively few publica-

tions on age and age-group estimation [11]. This could

be attributed to age estimation not being a classical clas-

sification problem. Age estimation can be approached as

a multi-class classification problem or a regression prob-

lem or as an ensemble of both classification and regression

in a hierarchical manner. Another reason that could be

affecting research in age estimation is the difficulty in

collecting a large database with chronological images for

a subject. Prolific and diverse information conveyed by

faces also make special attributes of aging variations not

accurately captured [11]. Uncontrollable and personalized

age progression information displayed on faces further

complicates age estimation problem [12–14].

2 Facial aging
Aging is a stochastic, uncontrollable, inevitable, and irre-

versible process that causes variations in facial shape and

texture. Although aging is stochastic with different peo-

ple having different aging patterns, there are some general

variations and similarities that can be modeled [15, 16].

There are two stages in human life that are distinct with

regard to facial growth: formative or childhood stage and

adulthood or aging stage [17].

Aging introduces significant change in facial shape in

formative years and relatively large texture variations with

still minor change in shape in older age groups [11, 18].

Shape variations in younger age groups are caused by

craniofacial growth. Craniofacial studies have shown that

human faces change from circular to oval as one ages

[19]. These changes lead to variations in the position

of fiducial landmarks [20]. During craniofacial develop-

ment, the forehead slopes back releasing space on the

cranium. The eyes, ears, mouth, and nose expand to cover

interstitial space created. The chin becomes protrusive as

cheeks extend. Facial skin remains moderately unchanged

than shape. More literature on craniofacial development

is found in [16].

As one ages, facial blemishes like wrinkles, freckles,

and age spots appear. Underneath the skin, melanin-

producing cells are damaged due to exposure to the

suns’ ultraviolet (UV) rays. Freckles and age spots appear

due to overproduction of melanin. Consequently, light-

reflecting collagen not only decreases but also becomes

non-uniformly distributed making facial skin tone non-

uniform [1]. Parts adversely affected by sunlight are the

upper cheek, nose, nose bridge, and forehead.

The most visible variations in adulthood to old age

are skin variations exhibited in texture change. There is

still minimal facial shape variation in these age groups.

Biologically, as the skin grows old, collagen underneath

the skin is lost [11]. Loss of collagen and effect of

gravity make the skin become darker, thinner, leathery,

and less elastic. Facial spots and wrinkles appear grad-

ually. The framework of bones beneath the skin may

also start deteriorating leading to accelerated devel-

opment of wrinkles and variations in skin texture.

More details about face aging in adulthood is found

in [16]. These variations in shape and texture across

ages could be modeled and used to automatically esti-

mate someone’s age. We refer readers to [16] for more

details on facial aging. Facial aging has three unique

attributes [13]:

1. Aging is inevitable and uncontrollable. No one can

avoid aging, advance, or delay it. The aging process is

slow but irreversible.

2. Aging patterns are personalized. People age
differently. Individuals’ aging pattern is dependent on

her/his genetic makeup as well as various extrinsic

factors such as health, environmental conditions, and

lifestyle.

3. Achieved aging patterns are temporal. Facial
variations caused by aging are not permanent.

Furthermore, facial variation at a particular point in

time affects future appearance and does not affect

previous appearance of these faces.

These facial aging attributes, among other factors, make

automatic age estimation a difficult and challenging task.

Since individuals cannot voluntarily control aging, auto-

matic age estimation data collection becomes a hard task

to do. This problem was slightly alleviated by dissemi-

nation of FG-NET Aging Dataset [21] in 2002. Although

this dataset has images of subjects at different ages, there

are several missing images hence making the aging pat-

terns incomplete. Fortunately, we do not need a complete

aging face dataset since people, who computers try to

mimic, also learn how to process face image patterns from

incomplete patterns. Age estimation technique should be

capable of considering various aging patterns since each

individual has his/her own aging pattern.

Information rendered by the human face has attracted

significant attention in the face image processing research

community. Image-based age and age-group estimation

has vast application areas like age-invariant face recog-

nition, face verification across ages, commercial and law

enforcement areas [5–9], security control and surveillance

[11, 22], age-based image retrieval [23], biometrics [11,

24, 25] human computer interaction [26, 27], and elec-

tronic customer relationship management (ECRM) [11].

The main aim of studying age estimation is to find out

aging patterns and variations in facial appearance and how

to best characterize an aging face for accurate age esti-

mation. Although this problem has attracted significant

research, still automatic age estimation accuracies are far

below human accuracy.
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3 Age estimation application areas
Characterizing variations in facial appearance across age

has many significant real-world applications. Computer-

based age estimation is useful in situations where one’s age

is to be determined. There are several application areas for

age estimation including the following:

3.0.1 Age simulation

Characterization of facial appearance at different ages

could be effectively used in simulating or modeling one’s

age at a particular point in time. Estimated ages at

different times could help in learning the aging pat-

tern of an individual, which could assist in simulat-

ing facial appearance of the individual at some unseen

age. More details on facial aging simulation could be

found in [28, 29]. By observing aging patterns at dif-

ferent ages, unseen appearance could be simulated and

used to find missing persons. By observing aging pat-

terns at different ages, unseen appearance could be

simulated.

3.0.2 Electronic customer relationshipmanagement (ECRM)

ECRM [11] is the use of Internet-based technologies such

as websites, emails, forums, and chat rooms, for effec-

tive managing of distinguished interactions with clients

and individually communicating to them. Customers in

different ages may have diverse preferences and expec-

tations of a product [30]. Therefore, companies may use

automatic age estimation to monitor market trends and

customize their products and services to meet needs and

preferences of customers in different age groups. The

problem here is how to acquire and analyze substantive

personal data from all client groups without infringing

on their privacy rights. With automatic age estimation,

a camera can snap pictures of clients and automatically

estimate their age groups in addition to collection of

demographic data.

3.0.3 Security and surveillance

Age estimation can be used in surveillance and monitor-

ing of alcohol and cigarette vending machines and bars

for preventing underage from accessing alcoholic drinks

and cigarettes and restricting children access to adult web-

sites and movies [23, 31]. Age estimation can also be

significant in controlling ATM money transfer fraud by

monitoring a particular age group that is apt to the vice

[11]. Age estimation can also be used to improve accu-

racy and robustness of face recognition hence improving

homeland security. Age estimation can also be used in

health-care systems like robotic nurse and doctors expert

system for customized medical services. For instance, a

customized avatar can be automatically selected from a

database for interacting with patients from various age

groups depending on preferences.

3.0.4 Biometrics

Age estimation via faces is a soft biometric [32] that can be

used to compliment biometric techniques like face recog-

nition, fingerprints, or iris in order to improve recog-

nition, verification, or authentication accuracies. Age

estimation can be applied in age-invariant face recogni-

tion [10], iris recognition, hand geometry recognition, and

fingerprint recognition in order to improve accuracy of

hard (primary) biometric system [11].

3.0.5 Employment

Some government employments like the military and

police consider one’s age as a requirement. Age esti-

mation systems could be used to determine age of the

recruits during recruitment process. It is also a policy of

several governments that employees should retire after

reaching a particular age. Age estimation systems could

also play a significant role in finding if one has reached

retirement age.

3.0.6 Content access

With the proliferation of diverse content in televisions

(TV) and the Internet, age estimation can be used to con-

trol access to unwanted content to children. A camera

could be mounted on a TV to monitor people looking at

it such that it switches off the TV if at a particular time

unwanted content is streamed and people watching are

children.

3.0.7 Missing persons

Age estimation role in age simulation go a step further

in aiding identification of missing persons. Age simula-

tion can be used to identify old people from their previous

images for purposes of identification.

4 Factors affecting facial aging
Facial aging is affected by several factors ranging from

lifestyle, natural, occupation, psychological, and environ-

mental. Factors affecting facial aging can be categorized

as both intrinsic and extrinsic. Extrinsic factors are those

that are external to the human body like environmen-

tal and occupation factors while intrinsic are internal

factors like bone structure and genetic influence which

occur naturally over time [1, 33]. In childhood, facial

changes are mainly caused by craniofacial development

which lead to changes in facial shape [16] due to growth,

modeling, and deposition of bony tissues in the face.

This leads to changes in height and shape of the face

[34]. The forehead slopes back releasing space on the

cranium. Drifting and expansion of facial landmarks to

occupy this space causes variations in facial shape in child-

hood. In adulthood, facial aging is mainly manifested in

texture variations which are caused by a wide variety

of factors.
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Taister et al. [34] found that general exposure to wind

and arid air influences facial aging. Arid environment

and wind dehydrate the skin leading to wrinkle forma-

tion. Air pollution has also been found to affect aging by

accelerating wrinkle development [35–37]. Research on

air pollution and aging has shown that city dwellers who

are exposed to air pollution from industries develop deep

wrinkles than individuals who are not exposed to pollu-

tion. Smoking influence on aging has also been cited in

[34, 38–40] although [41] asserts that smoking has neg-

ligible effect to facial wrinkling compared to effect of

UV rays. However, smoking interrupts skin microvascu-

lature which affects elastin and collagen production and

functioning leading to wrinkles around the mouth, but

photoaging effects lead tomore facial wrinkling compared

to smoking [34, 41]. It is therefore evident that facial skin

aging does not provide objective analysis of cumulative

exposure to UV rays. Taister et al. [34] also assert that

exposure to drug and psychological stress affects skin tex-

ture and pigmentation making skin complexion spotted

and blemished.

Exposure to ultraviolet (UV) rays influences produc-

tion of collagen making the skin darker. UV rays dry and

destroy cells and underlying skin structure, giving the skin

a furrowed and thickened appearance hastening devel-

opment of wrinkles especially around the eyes due to

squinting effects [42]. Long exposure to UV rays leads

to variations in photoaging like skin wrinkling, elastosis,

actinic keratosis, and irregular pigmentation [43]. With

long exposure to UV rays, skin texture and color change

becoming blotchy, yellowish, leathery, loose, inelastic, and

hyper-pigmented. Blood veins close to the skin surface

become protrusive forming “spider vein” network in addi-

tion to overall speckled skin appearance [44]. Naturally,

with lower production of collagen and elastin, the skin

becomes leathery and less elastic. Fat cells begin to dis-

appear leading to skin sagging. Fat deposits in some areas

like the eye lobe region also affect skin texture. Force

of gravity makes the skin leathery and less elastic hence

accelerating skin wrinkling.

Internally, changes in bone structure and subsequent

variations in musculature cause skin wrinkling [16]. Loss

of skin elasticity makes the skin leathery leading to forma-

tion of wrinkles [45]. Aging was also found to be different

between males and females with female faces tending to

age faster compared to male faces [16].

Aging in males and females share many common char-

acteristics, but there are some differences. Although it

is generally acknowledged that females age faster com-

pared to men, it is not yet clear whether these gender

differences are caused by rate of aging or sexual dimor-

phism [16]. Investigation into differences in aging between

males and females is necessary [46]. Differences in male

facial aging includemanifestation of facial hair like beards,

increased thickness, facial vascularity, sebaceous content,

and potential differences in fat and bone absorption rates

[47]. Development of deeper wrinkles around the perio-

ral region is high in women compared to men [47] since

women’s skin has few appendages compared to men [48].

Some women look younger than their actual age and have

large lips and are genetically protected from wrinkle and

gray hair development [49].

Other factors affecting perceived facial aging include

diet, genetic makeup, ethnicity (race), skin infections, and

cosmetics. Cosmetics are generally used to hide perceived

age of an individual by hiding wrinkles and age spots

and brightening wrinkle shadows around the eyes, mouth,

and nose regions [50]. Chen et al. [50] found that facial

makeup significantly impacts age estimation. Guo and

Wang [51] and Nguyen et al. [52] investigated the effect of

facial expression in age estimation. By quantitative evalu-

ations on Lifespan [53] and FACES [54] datasets, Guo and

Wang [51] found that facial expression influences age esti-

mation. Same findings were reported byNguyen et al. [52].

Voelkle and Ebner [55] investigated the effect of age, gen-

der, and facial expression on perceived age. They found

that facial expression influences age estimation with faces

with happy facial expressions most underestimated. Some

facial expressions like smiling, frowning, surprise, and

laughingmay introduce wrinkle-like lines on some regions

of the face like the forehead, cheek bone area, mouth

region, and nose-bridge regions. These wrinkle-like lines

may be registered as wrinkles during age estimation hence

having an impact on age estimation performance.

5 Image representation for agemodeling
In this section, we present different approaches used

for image representation for age estimation. Age estima-

tion can be modelled using anthropometric data, active

appearance model (AAM) parameters, aging pattern sub-

space (AGES), manifold learning, appearance features, or

a hybrid of two or more modeling technique. We present

an overview of these modeling techniques in the subse-

quent sections.

5.1 Anthropometric models

Anthropometric modeling of facial aging focuses on dis-

tance measurements between facial points. Face anthro-

pometry is the study of measuring sizes and proportions

on human faces [56]. Farkas [56] defined face anthro-

pometry based onmeasurements taken from 57 landmark

points on human faces. Figure 1 shows some of the points

used to describe a face. Landmark points are identified

by abbreviation of their respective anatomical names. For

instance, the eye inner corner is en for endocanthionwhile

front of the ear is t for tragion.

Farkas defined five measurements between landmarks:

shortest distance, axial distance, tangential distance, angle
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Fig. 1 Anthropometric points on the face [56]

of inclination, and angle between locations. Figure 2 shows

sample measurements of these distances.

A total of 132 facial measurements were defined by

Farkas [56], whereby some corresponding measurements

on the left and right of the face were paired. The mea-

surements can be taken by hand by experienced anthro-

pometrists or 3D scanners [56–58].

Facial measurements could be taken at different ages

for instance from childhood to old age. Ratios of dis-

tances between facial landmarks like the eyes, nose,

mouth, ear, chin, and forehead are measured across age.

Facial measurements are used to determine the aging

pattern of an individual at a particular age and hence

used to discriminate between ages and age groups. This

approach embraces studies in craniofacial development

theory [2].

Craniofacial development theory uses cardioid strain

transformation mathematical model to describe a per-

son’s facial growth from infancy to adult age. This

model defines a circle to track facial growth by tracking

variations in radius of the circle as

R′ = R (1 + k (1 − cos θ)) (1)

where R is the initial radius of the circle, θ is the initial

angle formed with the vertical axis, k is a parameter that

increases with time, and R′ is the successive growth of the

circle over time. Figure 3 shows simulated face profiles

using cardioidal strain transformations.

The mathematical formulation in Eq. 1 is not commonly

used for age estimation because it does not encode head

profile, especially in adults [59], and head profiles are

hard to estimate from 2D facial images [11]. Furthermore,

anthropometric models cannot be used for age modeling

in adult and old age face images since there are no signifi-

cant changes in facial shape at these stages. This approach

is also only appropriate for frontal face images since dis-

tance between landmarks are sensitive to head poses. This

modeling technique has not been experimented on a large

publicly available database, with few studies reported in

the literature working on small private datasets. Another

Fig. 2 Sample of anthropometric measurements
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Fig. 3 Simulation of facial growth using cardioidal strain

transformations. The original is shown in [213]. Sequence proceeds

from infancy (innermost profile) to adulthood (outermost profile)

limitation of this approach is that it only considers dis-

tance between facial landmarks with no consideration for

facial appearance. Measurements and landmark points

defined by Farkas in [56], which often guide anthropo-

metric modeling, are from people in one ethnic group

(European) and may not be representative of all other

races.

5.2 Active shape models

Active shape model (ASM) [60] is a statistical model that

characterizes shape of an object. ASM builds a model by

learning patterns of variability from a training set of cor-

rectly annotated images. ASMs are able to capture natural

variability of images of the same class unlike active con-

tour models (ACMs) [61]. ASMs are specific to images

of the class of objects they represent. Face image shape

is denoted by a collection of landmark points. Good

choices for landmark points are points at clear corners

of the face and facial landmark boundaries. These points

can be determined by use of appropriate 2D landmark-

ing algorithm like the one proposed in [62]. The sets of

points are automatically aligned to reduce the variance in

distance between equivalent points. The number of land-

mark points must be adequate enough to show overall

shape of the face images. Each face is then represented

by a predefined number of landmark points depending

on complexity of the facial shape and the desired level

of descriptive information. A point distribution model

(PDM) is derived by examining spatial statistics of labeled

points. PDM gives mean locations of points and a set of

parameters that control main variability modes found in

the training set.

Given such a model and test image, image interpreta-

tion involves choosing values for each of the parameters

such that the best fit of the model to the image is found.

ASM allows initial rough guess of best shape, orienta-

tion, scale, and position which is refined by comparing

hypothesized model instance to image data and using dif-

ference between model and image to deform to shape.

ASM is more similar to AAM but differs in the sense that

instances in ASM can only deform according to variations

found in the training set. ASM is not commonly used in

age estimation; hence, more investigations adopting this

modeling strategy are necessary.

Active shape model has the following limitations [63]:

1. Results into poor matching of boundaries in an

image due to parametric description of shape. It is

not robust when new images are introduced. These

lead to problems during subsequent image analysis

2. Active shape model needs many landmark points and

training samples to represent shape and its

variations. Makes ASM costly and time consuming

during training

3. Active shape model segmentation results are

sensitive to local search region around landmarks

5.3 Active appearance model

Active appearance models (AAMs) [64] are statistical

facial image coding models. Using principal component

analysis (PCA), AAM learns shape model and intensity

model from a set of training images. AAMs have been

used extensively in modeling facial shape for face recogni-

tion, face verification, age estimation, and gender estima-

tion among other tasks. AAM considers both facial shape

and texture unlike anthropometric models that consider

shape parameters only. This makes AAMs appropriate for

age estimation modeling at all stages from infancy to old

age. Labeling each test image with a definite age label

from continuous age range makes AAM approaches give

precise age estimations [11].

Annotated sets of training images marked with points

defining facial main features are needed to build AAM.

Figure 4 shows a sample of annotated face and points used

for annotation.

These points can be determined by use of appropri-

ate 2D landmarking algorithm like the one proposed in

[62]. These sets of points are represented as a vector and

aligned before a statistical shape model built. Each train-

ing image is then warped so that the annotated points

match points of mean shape and obtain a shape-free
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Fig. 4 a, b Facial shape and appearance annotation

image patch. The shape-free raster is pushed into a tex-

ture vector, g, which is normalized by applying a linear

transformation, g ← (g−µg1)
σg

, where 1 is a vector of ones

and µg and σ 2
g are the mean and variance of elements of

g, respectively. After normalization, gT1 = 0 and |g| = 1.

Principal component analysis (PCA) is then used to build

a texture model. Finally, connections between shape and

texture are learned to produce a combined appearance

model as detailed in [65].

The generated appearance model has parameters, c,

controlling the shape and texture according to:

x = x̄ + Qsc

g = ḡ + Qgc
(2)

where x̄ is the mean shape, ḡ is the mean texture in a

mean-shaped patch, and Qs and Qg are matrices describ-

ing modes of variation derived from training set. AAM

are slower compared to active shape models (ASMs) [60].

Details of AAM implementation could be found in [64].

Lanitis et al. [66] extended AAM by proposing and

aging function age = f (b). In this function, age is the

real subject’s age, b is AAM-learned vector of 50 raw

model parameters, and f is aging function. The function f

describes the association between an individual’s age and

vector of parameters.

AAM face encoding considers both shape and tex-

ture unlike anthropometric techniques that only represent

shape. This makes AAM approaches appropriate for age

estimation since both texture and shape features necessi-

tate precise age estimation. However, evidence is needed

to show that aging patterns can bemodelled as a quadratic

function and highlight effect of outliers in age estima-

tion. Active appearance model is computational intensive.

Training phase requires a substantive number of images

for the model to learn robust shape and appearance fea-

tures. Active appearance model uses gray-level intensities

of the image to train an intensity model. Gray-level inten-

sities may be affected by noise hence leading to a weak

intensity model. Performance of AAM depends on the

quality of images used. Images with significantly different

background and scale inhibit model fitting, resulting in

poor performance of AAM-based systems.

5.4 Aging pattern subspace

Geng et al. [13, 26] proposed aging pattern subspace

(AGES) for automatic age estimation using appearance

of face images. A series of individual images arranged in

temporal order make up aging pattern. Aging pattern is

defined in [13] as “. . . a sequence of personal face images

sorted in time order.” All images in a pattern must come

from the same individual and must be ordered by time.

This aging pattern is called a complete pattern if images at

all ages for an individual are available or else it is referred

to as an incomplete pattern. AGES compensate missing

ages by learning a subspace representation of one’s images

when modeling a series of a subject’s aging face. To esti-

mate age, test image is positioned at each possible location

in the aging pattern to find a point that can best recon-

struct it. Aging subspace that minimizes reconstruction

error determines age of the test image. Figure 5 shows

vectorization of aging pattern with missing images in the

aging pattern vector marked withm. Available face images

in the pattern (ages 2, 5, and 8) are placed at their respec-

tive positions and ages at which images are not available if

their positions are left blank.

After vectorization of the aging pattern, face images at

ages 2, 5, and 8 are represented by feature vectors b2, b5,

and b8, respectively. Representing aging pattern using

AGES ensures that label age (I) and id (I) are integrated
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Fig. 5 Aging pattern vectorization. Age is marked at the top-left corner of the corresponding feature [13]

into the data whereby each pattern implies an ID and each

age is fixed at a particular time-ordered position in the

aging pattern.

The first step of AGES is learning, where aging pattern

is learned then followed by age estimation. Subspace rep-

resentation is obtained in the learning stage using PCA.

Due to the possibility of missing age images, reconstruc-

tion error between available age and reconstructed face

image is minimized by expectation maximization (EM)

iterative learning technique. Average of the available face

images is used to initialize values for missing faces. There-

after, mean, covariance matrix, and eigenvectors of all face

images are computed. Faces are then reconstructed using

mean face and eigenvectors. This process is repeated until

the reconstruction error is significantly small. During age

estimation, the test image finds aging pattern subspace

and position in that pattern that can minimize its recon-

struction error. The position that gives minimal recon-

struction error is returned as the estimated age of the

probe image. Ghost-like twisted faces are reconstructed

when test image is positioned at a wrong location in the

aging pattern subspace [13, 26].

AGES was evaluated on FG-NET [21] and a MAE of

6.77 years was reported [13, 26]. This performance was

superior to previously used approaches reported in liter-

ature. In AGES, face images are first encoded with AAM.

AGES undertakes existence ofmultiple images of the same

person at various ages or aging pattern of the face is

similar in a given training dataset. This assumption may

not be satisfied in aging datasets like Yamaha gender and

age (YGA) [12]. Collecting face dataset with individuals’

face images at several ages with some image quality may

not be possible. AAM cannot encode wrinkles on the

face since AAM only encodes image gray values without

spatial neighborhood information for texture pattern cal-

culation. Intensities of individual pixels cannot describe

local texture. This affects applicability of AGES for age

and age-group estimation since single pixel values can-

not represent local texture. Techniques like Gabor filter

[67] may be appropriate to encode wrinkle features on

elderly faces.

5.5 Agemanifold

In age manifold, a common aging pattern is learned from

images of many individuals and different ages. Several

face images are adopted to represent an age. Each sub-

ject may be represented by one image or several images

at different ages. These images make a set referred to as

a manifold which make up points in a high-dimensional

vector space. Age manifold learning face representation

offers flexible means of face representation as compared

to AGES [13]. Agemanifold [68] can be used to learn aging

pattern by learning low-dimensional aging pattern from

several faces at every age. Individuals may have as low as

one image at each age in the dataset which makes it sim-

pler to collect enormous facial aging dataset. Scherbaum

et al. [69] proposed statistical age estimation using mani-

fold learning on 3Dmorphable model. Isosurfaces of non-

linear support vector regression (SVR) function formed

the manifold, and aging pattern was found by identifying

a trajectory orthogonal to the isosurfaces. Discriminative

subspace learning based on manifold criterion for low-
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dimensional representation of aging manifold was pro-

posed by Guo et al. in [31]. Coded face representation and

age is learned by applying regression on aging manifold

patterns. This approach consisted of two support vec-

tor regression (SVR) with one used for rough age-group

estimation followed by refined age estimation within the

initially obtained age group.

Given age-ordered image space X = {xi : xi ∈ IRD}ni=1
with image dimension D and a vector L = {li : li ∈
IND}ni=1 of labels associated with the images in the image

space, the objective is to learn a low-dimensional manifold

in the embedded subspace, data distribution, and its rep-

resentation Y = {xi : xi ∈ IRD}ni=1 with d ≤ D, which is

a direct mapping to X. Therefore, image space to manifold

space projection can be modelled as Y = P (X, L), where

P(·) denotes the projection function which can be linear

or nonlinear. Figure 6 shows a simple nonlinear projection

function that models an image space into a 2D age man-

ifold. Respective ages are shown on the top-left corner of

each image.

The objective of manifold embedding is to find n × d

matrix P that satisfies Y = PTXX or directly find

Y where Y = {y1, y2 . . . , yn}, X = {x1, x2 . . . , xn},
P = {p1, p2 . . . , pn}, and d ≤ n . PCA, locally

linear embedding (LLE), and orthogonal locality pre-

serving projections (OLPP) are examples of techniques

used for dimensionality reduction and embedding man-

ifold. PCA finds the embedding that maximizes the

projected variance P = argmax|p|=1 P
Tp where

S =
∑n

i=1 (xi − x̄) (xi − x̄)T is the scatter matrix and x̄

is the mean of vector {xi}ni=1. LLE technique seeks a non-

linear embedding in a neighborhood-preserving way by

using local linear image class reconstruction symmetries

while seeking local reconstruction optimal weights. Based

on linear preserving projections (LPP), OLPP technique

produces orthogonal basis functions [70, 71] to find

additional discerning information for embedding. LPP

looks for the embedding that will preserve essential

manifold structure by measuring distance information

in local neighborhood. Affinity weights are defined as

sij = exp
(

|xi−xj|2
t

)

where xi and xj are k nearest neigh-

bors of each other; otherwise, sij = 0 and sij is a

symmetric matrix. LPP similarly defines diagonal matrix

D
(

i, j
)

and a Laplacianmatrix L = D − S. LPP represents

age manifold well and performs better in age estimation

compared to traditional PCA.

There is a connection between age manifold and sub-

space analysis for aging patterns. This technique finds

embedded low-dimensional when each age is repre-

sented by many faces in the database. By using LPP for

manifold embedding, age labels can be incorporated to

the embedding process in a supervised manner which

improves results compared to PCA embedding. Age man-

ifold, unlike AGES [13], does not learn subject-specific

aging pattern; rather, it uses all available ages from dif-

ferent individuals. However, age manifold requires a large

dataset in order to satisfactorily learn the embedded

manifold.

Huang et al. [72] proposed a multi-manifold metric

learning (MMML) for face recognition based on image

sets. In MMML, several person-specific distance met-

rics in different manifolds are learned by modeling each

image set as a manifold minimizing intra-class variations

and maximizing inter-class manifold variations. Figure 7

shows the multi-manifold metric learning.

MMML could be applied to age estimation by group-

ing images at the same age into one set and learn distance

Fig. 6 Simple nonlinear age manifold
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Fig. 7Multi-manifold metric learning, originally shown in [72]

metrics between these sets. Each class (as shown in Fig. 7)

could consist of images at a particular age. The limitation

of age manifold models is that they are computationally

intensive.

5.6 Appearance models

Appearance models mainly model facial appearance using

texture, shape, and wrinkle features for age estimation,

face recognition, face verification, and gender estima-

tion among other tasks. Image is represented by vec-

toring both shape and texture [73]. Appearance models

are more like AAM [64] that builds a statistical

model using the shape and texture of the face. Both

global and local texture, shape and wrinkle features

are extracted and modelled for age estimation. Tex-

ture and shape have been used for age and gender

estimation [74, 75]. Age estimation using appearance

features can be improved by performing gender estima-

tion prior since males and females exhibit varied aging

patterns.

Given a set of facial images X = {xi : xi ∈ IR}ni=1 and

a vector of age labels X = {li : li ∈ IN}ni=1, facial features

are extracted from vector {xi}ni=1 of images at a particular

age. Every feature Fi has a one-to-one mapping with one

of the age label li. After features are extracted and associ-

ated with age label, they are used for age estimation either

using a regression model or classification. Effectiveness of

LBP [76] in texture characterization has made it popular

in extraction of appearance features for age estimation.

LBP has been used in [77] and achieved 80% accuracy in

age estimation with nearest neighbor classifier and 80–

90% accuracy with AdaBoost classifier [78]. Gao and Ai

[79] used Gabor filter [67] appearance feature extraction

technique for age estimation and reported better results

compared to LBP technique. BIF [80, 81] is also used in

appearance-based models as used in [82]. Using age man-

ifold, BIF and SVM classifier, MAE of 2.61 and 2.58 years

for females and males, respectively, can be achieved on

YGA database [11]. This shows BIFs’ superior perfor-

mance in age estimation. Spatially flexible patch (SFP)

proposed in [83, 84] is another feature descriptor that can

be used for characterizing appearance for age estimation.

Other techniques that can be used to build appearance

models for age estimation are linear discriminant analysis

(LDA) and principal component analysis (PCA). Detailed

description of these techniques is presented in Section 6.

5.7 Hybrid models

What is the best modeling approach for age estima-

tion? It is hard to certainly answer this question since

each of the modeling approaches discussed have their

inherent strengths and limitations. To get the answer to

the question, one may try different modeling approaches

on the representative images and compare their per-

formance. By comparing different modeling approaches,

strengths and limitations of each of the models can be
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found. Modeling approaches that are complementary of

each other can be combined to form a hybrid model-

ing approach. Hybrid age estimation modeling combines

several modeling techniques to take advantage of the

strengths of each technique used. By combining differ-

ent modeling techniques, age estimation accuracies are

expected to not only improve but also be robust. These

models could be combined in a hierarchical manner or

parallel and results from different models combined for

final age estimation.

6 Aging feature extraction techniques

6.1 Gabor filters

Originally introduced by Denis Gabor in 1946 [67], Gabor

filters have been extensively used for wrinkle, edge, and

texture feature extraction due to its capability of deter-

mining orientation andmagnitude of wrinkles [70]. Gabor

filter has been regarded as the best texture descriptor

in object recognition, segmentation, tracking of motion,

and image registration [71]. Gabor features have been

used in age estimation [27] and demonstrated to be an

effective texture descriptor compared to LBP. Since wrin-

kles appear as edge-like components with high frequency,

Gabor edge analysis technique has been commonly used

for wrinkle feature extraction. Sobel filter [85, 86], Hough

transform [74], and active contours [87] are among the

most commonly used texture edge descriptors. Though

edges in a face image also consist of noise such as beards,

mustache, hairs, and shadows, to reduce the effect of this

noise, [70] proposes use of predominant orientation of

wrinkles to be considered in wrinkle feature extraction.

2D spatial domain Gabor is defined as:

g (x, y) =
(

1

2πσxσy

)

exp

[

−
1

2

(

x2

σ 2
x

+
y2

σ 2
y

)

+ 2π jWx

]

(3)

where σx and σy are the standard deviations of the dis-

tribution along x and y axes, respectively, and W is the

sinusoidal radial frequency.

The general equation for creating Gabor filter bank

could be expressed as:

gb (x, y) = a−mg (x̄, ȳ) (4)

where x̄ = x cos θ + y sin θ and ȳ = − x sin θ + y cos θ

where θk = π
(k−1)
n , k = 1, 2, 3 . . . n where n is

the number of orientations used and a−m is filter scale

for m = 0, 1, 2 . . . S for S scales. Redundancy in

the frequency domain is prevented by designing Gabor

wavelets as:

σu =

(

(

Uh
Ul

)
1

(s−1) − 1

)

Uh

(

(

Uh
Ul

)
1

(s−1) + 1

) √
2 ln 2

(5)

σv= tan
( π

2k

)

[

Uh−2 ln

(

σ 2
u

Uh

)]

[

2 ln 2−
(2 ln 2)2 σ 2

u

U2
h

]0.5

where Ul and Uh denote lower and higher average fre-

quencies, respectively, andW = Uh. We refer readers to

[71] and [88] for more details on Gabor wavelets.

6.2 Linear discriminant analysis

Linear discriminant analysis (LDA) [89, 90] is a feature

extraction technique that searches for features that best

discriminate between classes. Given a set of indepen-

dent features, LDA creates a linear combination of these

features such that the largest mean differences between

classes are achieved. LDA defines two measures: within

class scatter matrix, given by

Sw =
c

∑

j=1

Nj
∑

i=1

(

x
j
i − µ

) (

x
j
i − µj

)T
(6)

where x
j
i is ith sample of class j, µj is the mean of class j, c

is number of classes, and Nj is the number of samples in

class j, and between-class scatter matrix, given by

Sb =
c

∑

j=1

(

µj − µ
) (

µj − µ
)T

(7)

where µ is the mean of all classes. The LDA main objec-

tive is to maximize between-class scatter matrix while

minimizing within-class scatter matrix.

One way of doing this is maximizing the ratio det|Sb|
det|Sw| .

Given that Sw is nonsingular, it has been proven [89] that

this ratio is maximized when column vectors of projection

matrix are the eigenvectors of S−1
w Sb. Sw maximum rank is

N−cwithN samples and c classes. This therefore requires

N = t + c samples to guarantee that Sw does not become

singular, where t is the dimensionality of input data. The

number of samples N is almost always smaller than t,

making the scatter matrix Sw singular. To solve this prob-

lem, Belhumeour [91] and Swets and Weng [92] propose

projecting input data to PCA subspace, to reduce dimen-

sionality to N − c, or less, before applying LDA. PCA and

LDA are widely used appearance feature extraction meth-

ods in pattern recognition [93]. Consequently, we adopt

LDA for extraction of global face appearance features for

age-group estimation.

6.3 Local binary patterns

Texture features have been extensively used in age esti-

mation techniques [10]. Local binary pattern (LBP) is a
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texture description technique that can detect microstruc-

ture patterns like spots, edges, lines, and flat areas on

the skin [76]. LBP is used to describe texture for face

recognition, gender classification, age estimation, face

detection, and face and facial component tracking. Gunay

and Nabiyev [94] used LBP to characterize texture fea-

tures for age estimation. They reported accuracy of 80%

on FERET [77] dataset using nearest neighbor classifier

and 80–90% accuracy on FERET and PIE datasets using

AdaBoost classifier [78]. Figure 8 shows a sample of 3 × 3

LBP operation.

Concatenating all 8 bits gives a binary number. The

resulting binary number is converted to a decimal and

assigned to center pixel as its LBP code.

Ojala et al. [95] found that when using eight neigh-

bors and radius 1, 90% of all patterns are made up

of uniform patterns. The original LBP operator had

limitation in capturing dominant features with large-

scale structures. The operator was latter extended to

capture texture features with neighborhood of differ-

ent radii [95]. A set of sampling pixels distributed

evenly along the circle circumference centered at the

pixel to be labeled defines the neighborhood. Bilin-

ear interpolation of points that do not fall within the

pixels is done to allow any radii and any number of

sampling pixels.

Uniform patternsmay representmicrostructures as line,

spot, edge, or flat area. Figure 9 shows microstructure

pattern representation.

Ojala et al. [76] further categorized LBP codes as uni-

form and non-uniform patterns. LBP pattern with utmost

two bitwise transition from 0 to 1 or 1 to 0 is categorized

as a uniform pattern. For instance, 00000000, 00010000,

and 11011111 patterns are uniform while 01010000,

11100101, and 10101001 are non-uniform patterns. For

n-bit pattern representation, there is n(n − 1) + 2

uniform patterns. Figure 9 shows LBP codes for sample

uniform patterns in LBP(8, 1) neighborhood. In order to

extract rotational invariant features using LBP, the gen-

erated LBP code is circularly rotated until its minimum

value is obtained [96].

Extended LBP operator could capture more texture

features on an image but still it could not preserve spa-

tial information about these features. Ahonen et al. [97]

proposed a technique of dividing a face image into n

cells. Histograms are generated for each cell then con-

catenated to a single spatial histogram. Spatial histogram

preserves both spatial and texture descriptions of an

image. Image texture features are finally represented by

histogram of LBP codes. LBP histogram contains detailed

texture descriptor for all structures on the face image

like spots, lines, edges, and flat areas. More details on

the use of LBP on facial image analysis could be found

in [76, 96–98].

6.4 Local directional pattern

Local binary patterns (LBP) [99] were found to be unsta-

ble to image noise and variations in illumination. Jabid et

al. [100] proposed local directional pattern (LDP) which

is robust to image noise and non-monotonic variations in

illumination. Figure 10 shows robustness of LDP operator

to noise compared to LBP.

LDP computes 8-bit binary code for each pixel in the

image by comparing the edge response of each pixel

in different orientations instead of comparing raw pixel

intensities as LBP. Kirsch edge detector [101], Prewitt edge

detector [102], and Sobel edge detector [103] are some of

the edge detectors that can be used [104]. Among them,

the Kirsch edge detector has been known to detect dif-

ferent directional edge responses more accurately than

others because the Kirsch edge detector considers all eight

neighbors [105]. Figure 11 shows Kirsch edge detector

response masks (kernels) for eight orientations.

Given a center pixel in an image P
(

i, j
)

, 8-directional

responses are computed by convolving the neighboring

pixels, 3 × 3 image region, with each of the Kirsch

masks. For each center pixel, there will be eight directional

response values. The presence of an edge or a corner will

show high (absolute) response values in that particular

direction. The interest of LDP is to determine k signifi-

cant directional responses and set their corresponding bit

value to 1 and set the rest of 8 − k bits to 0. These binary

Fig. 8 a–c LBP operation with P = 8, R = 1
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Fig. 9 a–eMicrostructure pattern LBP code with P = 8, R = 1

bits are converted to decimal and assigned to the center

pixel. This process is repeated for all pixels in an image to

obtain LDP representation of the image. Figure 12 shows

the process of encoding an image using LDP operator.

Given an image region as shown in Fig. 12a, LDP

response in the east direction is obtained by convolving

the 3 × 3 image region shown in Fig. 10 with the East M0

mask shown in Fig. 11 top-left corner as:

M0 = (85 × −3) + (32 × −3) + (26 × 5) + (10 × 5) +
(45 × 5) + (38 × −3) + (60 × −3) + (53 × −3)

= − 399

(8)

The absolute values of the directional responses are

arranged in descending order. For k = 3 significant

responses, the binary response bit for each of the eight

neighboring pixels shown in Fig. 12b is calculated as:

LDPk =
i=7
∑

i=0

bi
(

(mi − mk) × 2i
)

bi(a) =

{

1, if a ≥ 0

0, if a < 0

(9)

where mk is the kth significant directional response,

example in Fig. 12 mk = | − 399|, and mi is response of

Kirsch maskMi.

Fig. 10 a, b Robustness of LDP compared to LBP
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(a)

(e)

(b)

(f)

(c)

(g)

(d)

(h)
Fig. 11 a–f Kirsch edge response masks in eight directions

For k = 3, LDP operator generates C8
3 = 8!

3!×(8−3)! = 56

distinct values in the LDP encoded image. The resultant

histogram will have values between 0 and 56. A histogram

H(i)withC8
k bins can be used to represent the input image

of sizeM × N as:

H(i) =
M

∑

m=0

N
∑

n=0

f (LDPk (m, n) , i)

f (p, i) =

{

1 if p = i

0 if p �= i

(10)

where f (p, i) is a logical function that compares if the LDP

code at location p (m, n) of the LDP-encode image is equal

to the current LDP pattern i for all i in the range 0 ≤ i ≤
C8
k . The resultant histogram has dimensions 1 × C8

k and

is used to represent the image. The resultant feature has

spots, corners, edges, and texture information about the

image [106].

6.5 Local ternary patterns

LBP is sensitive to noise and illumination especially in

nearly uniform image blocks. Local ternary patterns (LTP)

[107] seek to improve robustness of image features in a

fairly uniform region. LTP extends LBP to a three-value

code by comparing pixel values of the neighboring pix-

els with a preset threshold value τ . Values that lie within

± τ are set to 0, values above τ are set to + 1 while val-

ues below τ are set to − 1. The thresholding function is

defined as

f (xi, xc, τ) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1 if xi ≥ xc + τ

0 if |xc − xi| < τ

−1 if xi ≤ xc − τ

(11)

where τ is a preset threshold, xc is the value of the cen-

tral pixel, and xi for i = 0, 1, 2 . . . 7 are the neighboring

pixels of xc. Although this extension makes LTP robust to

Fig. 12 Process of encoding an image with LDP operator k = 3 a Result of convolving image region with masks in Figure 11. b Setting bit values of k

significant values to 1 and the rest to 0. c Resultant binary string and its decimal representation
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noise and encode more patterns, it is not easy to practi-

cally select an optimum τ for all images in a dataset or for

all datasets, and the resultant code is not invariant to pixel

value transformations. LTP can encode 38 patterns. The

LTP codes are split into its positive and negative parts and

two histograms are generated, one for the negative part

and the other for the positive part. These histograms are

concatenated and used as feature descriptor for pattern

recognition. Figure 13 shows LTP codes for a 3×3 sample

image region.

6.6 Gray-level co-occurrence matrix

Statistical moments of histogram intensities of an image

are commonly used to describe texture of an image [108].

Use of histograms to describe texture results to tex-

ture descriptors that convey information about gray-level

intensity distribution with no spatial relative information

of pixel with each other. Haralick et al. [109] introduced

gray-level co-occurrence matrix (GLCM) back in 1973.

GLCM describes image texture by comparing each pixel

with its neighboring pixel at a specified distance and ori-

entation. This technique extracts second-order statistical

texture features from grayscale images. GLCM is a square

matrix whose rows and columns are equal to the num-

ber of quantized gray levels, Ng . The entry p
(

i, j
)

is the

second-order statistical probability for changes between

gray level values i and j at a particular distance d and

orientation θ .

Fig. 13 a–d LTP code with τ = ± 5 and corresponding positive

and negative LBP codes

Supposed we have an N × N image I
(

i, j
)

, with Nx

columns and Ny rows. Ng is quantization of gray level

appearing at each pixel in the image. Let the rows of

the image be Ny =
(

1, 2, . . .Ny

)

, the columns be

Nx = (1, 2, . . .Nx), and set ofNg quantized gray levels be

Gx =
(

1, 2, 3 . . .Ng−1

)

. The image can be represented as

a function that assigns some gray level in G to each pixel

or pair of coordinates in Ly × Lx;G ← Ly × Lx. Texture

information is specified by GLCM matrix of relative fre-

quencies C
(

i, j
)

. The value at GLCM
(

i, j
)

represents the

number of occurrences of gray-level value i at reference

pixel and gray-level value j at a neighbor pixel, a certain

distance d, and orientation θo. The probability measure

can be defined as:

Pd,θ = p
(

i, j
)

(12)

where p
(

i, j
)

is defined as:

p
(

i, j
)

=
GLCM

(

i, j
)

∑N
i=0

∑N
j=0GLCM

(

i, j
)

(13)

The sum in the denominator represents total number of

gray-level pairs
(

i, j
)

within the image and is bounded by

Ng × Ng . Dividing every pixel in the GLCM matrix with

the denominator results into a normalized GLCMmatrix.

Figure 14 shows an example of calculating GLCM from

an image region at distance 1 and angle θ = 0◦, and
Fig. 15 shows an example of calculating GLCM from an

image region at distance 1 and angle θ = 45o.

The orientation of the neighbor pixel from reference

pixel can be θ = (0o, 45o, 90o, 135o), and distance can vary

from d = (1, 2, 3 . . . n) where n is any reasonable distance

bounded byMx andMy.

Haralick et al. [109] defined 14 statistical features that

can be used to describe texture. Table 1 shows some of the

Haralick features used for texture description [110] where:

µx =
∑

i

∑

j

ip
(

i, j
)

µy =
∑

i

∑

j

jp
(

i, j
)

σx =
√

∑

i

∑

j

(i − µx)
2 p

(

i, j
)

and

σy =
√

∑

i

∑

j

(

j − µx

)2
p

(

i, j
)

(14)

Harlick features have been successfully used in brain

tumor classification [111], texture description [112], and

remote sensing [113] among other fields. GLCM has not

been investigated in aging feature extraction. Haralick fea-

tures like homogeneity, variance, and correlation could

be extracted from age-separated faces and used for age

estimation.
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Fig. 14 a, b GLCM calculation with d = 1, θ = 0o . The figure shows how GLCM at angle 0 is calculated. The figure is supplied as glcm0.jpg

6.7 Spatially flexible patch

The spatially flexible patch (SFP) proposed in [83] and [84]

is another feature descriptor that can be used for feature

extraction for age estimation. SFP is effective for captur-

ing local variations in facial appearance as one ages. SFP

encodes local appearance and its spatial information. SFP

solves the problem of local variations in appearance dur-

ing aging since SFPs similar in appearance and slightly

different in position can provide similar confidence for age

estimation. By considering local patches and their spatial

information, SFP can effectively characterize facial images

with slight disorientation, occlusion, and head pose dis-

parities. Another advantage of SFP is that it alleviates the

problem of insufficient samples by enriching the discrim-

inating characteristics of the feature vector.

6.8 Grassmannmanifold

Grassmann manifold is the space G (k, n) of all k-planes

through the origin in IRn, k ≤ n that generalizes real pro-

jective spaces [114]. It consists of a set of all k-dimensional

subspaces of IRn. To each k-plane v in IRn, a matrix n × k

can be associated with orthogonal matrix Y, such that

columns of matrix Y form an orthonormal basis vector

that spans the same subspace. Therefore, each k-plane v

in G (k, n) is connected with a correspondence class of

n × k matrices YR in IRn×k , for IR ∈ SO(k), where Y is

an orthonormal basis for the k-plane. G (k, n) is not a vec-

tor space, but points on G (k, n) can be projected onto the

tangent space at mean-point, and standard vector-space

methods can be used on tangent space. Geodesic distance

between points on the manifold are used for classification

or regression problems. Wu [115] used Grassmann mani-

fold tangent-space regression approach for age estimation.

Grassmann manifold can be used in age estimation by

representing each face by a deformation that warps an

average face to a given face. This requires defining what

an average face is and how to quantify the deformation

between the average face and the given face. Average face

can be represented by computing a mean point from all

the (landmark) points on G (k, n). This can be done by

calculating Karcher mean [116]. Age estimation can be

performed using the Grassmann nearest neighbor (GNN)

classification approach. In GNN, Karcher mean is com-

puted for every age. During testing, compare the Karcher

Fig. 15 a, b GLCM calculation with d = 1, θ = 45o . This figure shows how GLCM is calculated. The figure is supplied as glcm45.jpg file
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Table 1 Summary of Haralick features

Feature name Feature description Feature formula

Angular second moment (ASM) Shows how uniform a texture is by measur-
ing local homogeneity

ASM =
∑

i

∑

j p (i, j)2

Energy (E) Measures homogeneity E =
√

∑

i

∑

j p (i, j)2

Contrast (C) Shows variation in texture C =
∑

i

∑

j |i − j|2p (i, j)

Dissimilarity (D) Variation in texture D =
∑

i

∑

j |i − j|p (i, j)

Homogeneity (H) Uniformity of non-zero entries H =
∑

i

∑

j
1

1+(1−j)2
p (i, j)

Entropy (En) Spatial disorder of texture En =
∑

i

∑

j p (i, j) log (p (i, j))

Correlation (Cr) Linear relationship of texture Cr =
∑

i

∑

j p (i, j)
(i−µx)(j−µy)

σxσy

Autocorrelation (ACr) Measure repeating patterns ACr =
∑

i

∑

j (i · j) p (i, j)

Variance (V) Measure of texture heterogeneity V =
∑

i

∑

j (i − µx)
2 · p (i, j) +

∑

i

∑

j

(

i − µy

)2 · p (i, j)

Cluster shade (Cs) Measure perceptual uniformity Cs =
∑

i

∑

j

(

i + j − µx − µy

)3
p (i, j)

Cluster prominence (Cp) Measure image symmetry Cp =
∑

i

∑

j

(

i + j − µx − µy

)4
p (i, j)

Maximum probability (Mp) Maximum co-occurrence Mp = max p (i, j)

mean of the probe image with the mean of every age using

one defined distance on Grassmann manifold. The closest

mean to the probe gives the target age.

6.9 Biologically inspired features

Biologically inspired features (BIFs) were first proposed in

1999 by Riesenhuber and Poggio (R and P model) [80].

These BIF features are derivative of primates feed-forward

model of visual object recognition pipeline, referred to as

HMAXmodel [117]. Primates are known to be able to rec-

ognize visual patterns with high accuracy. Recent studies

in computer vision and brain cognition show that biolog-

ically inspired models (BIM) improve face identification

performance [118], object recognition [119], and scene

classification [120]. Visual cortex application in age esti-

mation tasks saw some improvement in age estimation

accuracies.

The visual model of primates contains alternating lay-

ers of simple (S) and complex (C) cell units. Complexity

of these cells increase as layers advance from primary

visual cortex (V1) to inferior temporal cortex (IT). In

primary visual cortex, S units use a bell-shaped tuning

function to combine input intensities to increase scale

and orientation selectivity. UsingMAX, STD, AVG, or any

other pooling operation, C units pool inputs from S units,

thereby introducing gradual invariance to scale, rotation,

and translation.

Gabor functions [121, 122] are used to model simple

cells (S) in the visual cortex of mammalian brains. Fre-

quencies and orientation illustration in Gabor filters are

alike to frequencies and orientations in human visual sys-

tem. It is therefore thought that Gabor filter image analysis

is similar to perception in visual system of humans. BIFs

have demonstrated success in age estimation tasks [82,

123, 124]. BIF feature extraction encompass two layers of

computational units with simple cell units (S1) in layer

one followed by complex cell units (C1) in the subsequent

layer.

S1 units—simple cells: They represent the recep-

tive field in primary visual cortex (V1) [121] which

has basic attributes of multi-orientation, multi-frequency,

and multi-scale selection [125]. S1 units are commonly

described by a bank of Gabor filters [81]. Gabor filters are

appropriate for modeling of cortical simple-cell receptive

fields. 2D spatial domain Gabor is defined as:

G(x, y) = exp

(

−
X2 + γ 2Y 2

2σ 2

)

× cos

(

2π

λ
X

)

(15)

where X = x cos θ + y sin θ and Y = − x sin θ + y cos θ

are angle of rotations of Gabor filters, θ varies from 0 to

π , γ and σ are aspect ratio and standard deviation of the

Gaussian envelop, respectively, and λ is the wavelength

and determines spatial frequency 1/λ.

Useful discriminating features are extracted using

Gabor filters with different orientation and frequencies

[126]. Consequently, previous studies [126, 127] suggest

that spatial frequency processing is done in primary visual

cortex. Spatial frequency analysis extracts discriminative

features that are more robust to distortions [128]. Daug-

man [129] found that visual system in primates extracts

information both in 2D spatial and frequency domains,

and Shapley [38] proved that spatial frequency analysis

help the brain understand an image.

C1 units—cortical complex cells: These units receive

responses from S1 units and perform linear feature inte-

gration. C1 units represent complex cells that are shift

invariant. Lampl et al. [130] proposed that spatial inte-

gration of complex cell in visual cortex can be described

by a series of pooling operations. Riesenhuber and Poggio

[80] demonstrated merits of using MAX pooling operator
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compared to SUM while Guo et al. [82] showed that stan-

dard deviation (STD) pooling operator outperformsMAX

operator. Cai et al. [125] improved on STD by using a cell

grid of 4 × 4 in normalization. TheMAX operator returns

maximum values at each index i of the two consecutive

scale features. Given a feature at scale Sx and scale Sx+1,

the maximum value Fi at index i is given by:

Fi =

⎧

⎨

⎩

Six, if Six ≥ Six+1

Six+1, if Six+1 < Sx

(16)

where Six and Six+1 are the filtered values at the position i

of features from scale x and x + 1 respectively.

Guo et al. [82] defined the STD operator to incorporate

mean of values in a particular neighborhood. The STD

operator was defined as:

STD =

√

√

√

√

1

ns × ns

ns×ns
∑

i=1

(

Fi − F̄
)

(17)

where maximum value at index i between two consecutive

S1 scales is represented by Fi and F̄ is the mean of filtered

values within ns×ns neighborhood. Given twoN × N fea-

tures at scales Sx and Sx+1, STD operator with ns ×ns grid

returns ⌊N/ns⌋ × ⌊N/ns⌋ features. STD operator captures

local texture and wrinkle variations which are significant

for subtle age estimation.

Serre et al. [81, 131] extended the HMAX model [80] to

include two layers, S2 and C2 for object recognition. In S2,

template matching is done to match patches from C1 layer

with some pre-learned patches extracted from images.

The S2 layer gets more selective intermediate features

capable of discriminating between object classes. The S2
units are convolved over an entire image, and maximum

response values of S2 are assigned to C2 units. Mutch and

Lowe [132] extended the model in [81] by reducing the

number of output units in S1 and C1 and picking fea-

tures that are highly weighted by support vector machines

(SVMs) [133].

7 Age estimation algorithms
Once aging features are extracted and represented, the

subsequent phase is age estimation. Age estimation is a

special patter recognition task where age labels can be

viewed as a class or a set of sequential value. When age

labels are viewed as classes, age estimation is approached

as a classification problem, whereas when age labels

are viewed as sequential chronological series, regression

approach is used for age estimation. Hybrid approach can

also be employed for age estimation where both clas-

sification and regression techniques integrated, mostly

hierarchically, to find the relationship between extracted

feature vectors and age labels. We present an analysis of

existing approaches and suggest an effective approach in

our opinion.

7.1 Classification

Lanitis et al. [23] explored the performance of nearest

neighbor, artificial neural network (ANN), and quadratic

function in age estimation tasks. Although the quadratic

function used to relate face representations to face labels

is a regression function, the authors referred to it as

a quadratic function classifier [23]. The quadratic func-

tion reported MAE of 5.04, which was superior to MAEs

reported by nearest neighbor. ANN and self-organizing

maps (SOMs) reported better performance compared to

quadratic function. The authors proposed clustering and

hierarchical age estimation for improving performance.

The error rates in the extended techniques reduced

although evaluations were done on small datasets. Com-

parison between humans and computers in age estimation

was also done and found that computers can estimate age

almost as reliable as humans.

Ueki et al. [134] built 11 Gaussian models in low-

dimensional 2DLDA and LDA feature space using expec-

tation maximization (EM). Age-group estimation was

determined by fitting probe image to each cluster and

comparing the probabilities. They reported a higher accu-

racy, 82% male and 74% female, with wide age groups

of 15 years as compared to 50% male and 43% female

in age groups of a 5-year range. This demonstrates that

this approach can only post better accuracies where age

groups have wide ranges and hence not applicable in a

narrow-range age-group estimation.

Fusing texture and local appearance, Huerta et al. [135]

used a deep learning classification for age estimation.

Using LBP [95], speeded-up robust features (SURF) [136],

and histogram of oriented gradients (HOG) [137], he eval-

uated the performance of deep learning on two large

datasets and achieved MAE of 3.31. Hu et al. [138] used

Kullback-Leibler/raw intensities for face representation

before using convolutional neural network (CNN) for age

estimation. Their approach achieved MAE of 2.8 on FG-

NET and 2.78 onMORPH II. This demonstrates that deep

learning (deep neural networks or CNN) achieves better

MAE compared to traditional classification methods.

7.2 Regression

Using 50 raw model parameters, Lanitis et al. [66] inves-

tigated linear, quadratic, and cubic formulation of aging

function. Genetic algorithm is used to learn optimal

model parameters from training face images of different

ages. Quadratic and cubic aging function achieved bet-

ter MAE 0.86 and 0.75, respectively, compared to 1.39

of linear function. This suggests that quadratic function

offers the best alternative since its MAE was not signifi-

cantly different from that of cubic function and it is not
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computationally intensive as cubic function. Guo et al.

[31, 139] used linear support vector regression (SVR) on

age manifold for age estimation. They reported MAE of

7.47 and 7.00 years for males and females, respectively,

on YGA dataset and MAE of 5.16 on FG-NET dataset.

Yan et al. [140] formulated a regression problem for age

estimation using semidefinite programming (SDP). The

regressor was learned from uncertain nonnegative labels.

They reported MAE of 10.36 and 9.79 years for males and

females, respectively, on YGA. They further demonstrated

that age estimation by SDP formulation achieves better

results compared to ANN. The limitation of SDP is that it

is computationally expensive especially when the training

set is large.

Nguyen et al. [141] used a regression model for age esti-

mation. The face image was represented by a multi-level

local binary pattern (MLBP). Their approach achieved a

MAE of 6.6. Guo and Mu [124] achieved a MAE of 4.0

by using BIF to model a regression model for age estima-

tion. Using manifold of raw pixel intensities to represent

face image, Lu and Tan [142] evaluated their regression

model on MORPH II dataset and obtained a MAE of 5.2

for White ethnic group and 4.2 for Black ethnic group.

Onifade et al. [143] applied a boosted regressor on age-

rank local binary patterns (arLBP). They reported a MAE

of 2.34 on FG-NET using LOPO validation protocol. Their

approach demonstrated that age ranking with correlation

of aging patterns across age groups improves performance

of age estimation. Using raw pixel features, Akinyemi

and Onifade [144] investigated ethnic-specific age group

ranking for age estimation. This approach learns ethnic

parameters in addition to the parameters learned in [143].

They evaluated this technique on FG-NET and FAGE

datasets and reported a MAE of 3.19 years. Their find-

ings show that incorporating ethnic parameters improves

performance of age estimation approaches. This could be

attributed to the fact that people in different ethnic groups

age differently.

7.3 Hybrid approach

As discussed in the preceding sections, age estimation

task can be approached as either a classification or a

regression problem. To choose between the two, one may

perform an experiment by selecting representative classi-

fiers and regressors to compare their performance on the

same dataset using the same features. Guo et al. [31, 139]

compared SVM classifier to SVR regressor. This experi-

ment showed that SVM performs better compared to SVR

on YGA dataset with SVM achieving a MAE of 5.55 for

females and 7.00 for males while SVR achieving 5.52 for

females and 7.47 for males. It was also reported that SVM

performed poorly on FG-NET compared to SVR (MAE

7.16 against 5.16 years). This experiment shows that clas-

sification approach to age estimation may perform better

or worse than regression approach depending on other

aspects like quality of images in the dataset used, fea-

ture selection and feature extraction techniques used, and

distribution of images across ages among other factors.

Combining classification and regression may result

into robust and more accurate age estimation systems.

Guo et al. [31, 139] therefore proposed age estimation

using locally adjusted robust regression (LARR). LARR

first performs regression using all existing aging images.

Regression results are then used to limit a classifier with

small search range. They demonstrated that better age

estimation performance can be achieved by combin-

ing classification and regression schemes. By combining

regression and classification, the MAE improved to 5.30

and 5.25 years for females and males, respectively, on

YGA dataset and 5.07 on FG-NET dataset. The limita-

tion of LARR method [139] is that it cannot automatically

determine local search range for a classifier. The range

is determined by heuristically trying different ranges and

requires the user to experimentally choose the best solu-

tion. To automatically determine limited search range,

Guo et al. [145] proposed a likelihood-based approach for

combining classification and regression outcomes. Using

a uniform distribution, regression results are transformed

into likelihoods, then likelihoods from classification out-

come are cut off by the uniform distribution. This further

improved accuracies by achieving MAE 5.12 and 5.11

for males and females, respectively, on YGA and 4.97 on

FG-NET.

Gunay et al. [146] represented aging face by fusing

AAM, LBP, and Gabor features. They used an ensemble

of three SVMs arranged in a hierarchical manner to build

an age estimation model. The first step of their model was

to perform age-group estimation by SVM classification.

A linear regression was then performed to estimate age

within the age group. Their approach achieved a MAE of

4.13 on FG-NET. These results show that feature and deci-

sion fusion used in a hybrid hierarchical age estimation

can improve estimation errors compared to classification

approaches.

Han et al. [147] performed hierarchical demographic

estimation and compared machine and human perfor-

mance. They extracted BIF features and demographic

informative features using a boosting algorithm. They

then perform a hierarchical age estimation using between-

group classification followed by within group regression.

Evaluating this technique on MORPH II and FG-NET,

they achieved MAE of 3.6 and 3.8 on MORPH II and

FG-NET datasets, respectively. Choi et al. 2011 [70] used

AAM, Gabor, and LBP to represent face image. Their

hybrid age estimation model achieved a MAE of 4.7 on

FG-NET, 4.3 on PAL, and 4.7 on BERC datasets.

Hybrid approach to age estimation demonstrates bet-

ter performance compared to regression and classification
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when used alone. To combine classification and regres-

sion, one may test extracted features on both techniques

separately before combining them. Arrange regression

and classification in an arbitrary hierarchical order and

compare performance when regression is done before

classification and when done after classification.

8 Facial aging databases
Precise age and age-group estimation requires a database

with good quality facial images at different ages. It is hard

to collect a large aging database with a series of chrono-

metric images from an individual. Age and age-group

estimation often uses databases early collected and pub-

lished. Brief descriptions of these databases are found in

[11]. Table 2 gives the summary of some of the aging

databases available.

FG-NET, MORPH, and web-collected Gallagher’s

databases are publicly available. Other databases can

be found by contacting the owners. MORP, Ni’s, YGA,

LHI, and Gallagher’s web-collected databases are large

databases and well suited for regression-based age esti-

mation using statistical algorithms like AAM and age

manifold. FG-NET is a suitable database for evaluations

with several age estimation methods like AGES. AI & R,

LHI, and Iranian datasets comprise comparatively high

resolution 2D face images. Other datasets stated here

were not extensively used but may be appropriate for

some application areas.

8.1 FG-NET aging database

FG-NET [21] contains 1002 both color and grayscale

images of 82 individuals from age 0 to 69 years. Each indi-

vidual has averagely 12 images. Images are collected from

multi-race subjects and have great inconsistencies in head

pose, facial expression, and illumination. Some images

have adverse condition because they were scanned. There

are 68 landmark points provided which can be used to

model facial shape. Age features can be modelled as AAM

or as appearance model using texture and wrinkle fea-

tures.

8.2 MORPH database

MORPH [148] is a publicly available aging database cre-

ated by the Face Aging Group at the University of North

Carolina. This dataset is split into two sets. Album 1

has 1724 images collected between 1962 and 1998 from

515 individuals. Images in this dataset range from 27

to 68 years. There are 1430 images for males and 294

images for females with age gap ranging from 46 days

to 29 years. Set 2 contains 55,134 images of 13,000

individuals collected over 4 years. Both albums con-

tain metadata for race, gender, date of birth, and date

of acquisition. The eye coordinates of the dataset can

be requested. A commercial version of album 2 con-

tains a larger set of images collected over a longer time

span and includes information like the height and weight

of individual.

8.3 Yamaha gender and age (YGA) database

YGA [12, 68] database has 8000 high-resolution colored

images of 1600 individuals consisting of 800 males and

800 females of Asian race, aged between 0 and 93 years.

Each subject has approximately five nearly frontal face

images at the same age and a label of his or her approx-

imated age. The images have high variations in expres-

sion, illumination, and facial expression. Haar cascade face

Table 2 Summary of facial aging databases

Database No. of subjects Database size Age range (years)

FG-NET [21] 82 1002 0–69

MORPH [148] 13,618 55,134 27–68

Yamaha gender and age (YGA) [12, 68] 1600 8000 0–93

Waseda human-computer interaction technology [134] 26,222 5500 3–85

AI & R Asian [150] 17 34 22–61

Burt’s Caucasian Face database [151] – 147 20–62

Lotus Hill Research Institute (LHI) database [152] – 50,000 9–89

Human and object interaction processing (HOIP) [11] 300 306,600 15–64

Iranian face database [153] 616 3600 2–85

Gallagher’s Web-Collected database [4] – 28,231 0–66

Ni’s Web-Collected database [154, 155] – 219,892 1–80

Kyaw’s Web-Collected Database [156] – 963 3–73

BERC database [214] 95 5910 3–83

3D morphable database [69, 157] 438 – –
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detector [149] is used to crop and resize images to 60× 60

grayscale patches.

8.4 WIT-DB database

Waseda human-computer interaction technology [134]

dataset consists of 12,008 face images of 2500 females and

about 14,214 images of 3000males from the Japanese race,

with age ranging between 3 and 85 years. The ages are

arranged in 11 non-overlapping age groups. The dataset

has wide variations in illumination on unoccluded frontal

view faces with neutral facial expression. Face images are

cropped and resized to 32 × 32 grayscale patches.

8.5 AI & R Asian face database

AI & R Asian [150] dataset contains images of different

expressions, ages, poses, and illuminations. There are 34

frontal-view images collected from 17 individuals with

ages ranging from 22 to 61 years. There are averagely two

images per individual making this database not suitable

for age or age-group estimation.

8.6 Burt’s Caucasian face database

This was collected and used in [151] by Burt and Perrett to

investigate visual cues to age by blending color and shape

of facial components. The database contains 147 images

of European males aged between 20 and 62 years. Faces

had neutral expression with beards shaved with no glasses

andmakeups. There are 208 landmark points placedman-

ually in standardized positions. These points can be used

to encode facial shape.

8.7 LHI face database

Lotus Hill Research Institute (LHI) database contains

50,000 images of Asian adults at different ages. The images

have slight dissimilarities in pose and lighting. Part of

this database was used in [152] by Suo et al. to model a

hierarchical face model for age estimation. The part used

consists of 8000 color images of individuals aged between

9 and 89 years with one image per person. This database

could not be appropriate for subject-based age estimation

since it does not provide multiple face images of the same

individual at different ages.

8.8 HOIP face database

Human and object interaction processing (HOIP)

database consists of 306,600 images of 300 individuals

aged between 15 and 64 years. The database is divided

in 10 age groups. Each age group has got 30 subjects, 15

females and 15 males [11].

8.9 Iranian face database

Iranian face database [153] has 3600 color images from

616 individuals aged between 2 and 85 years of which 487

are males and 129 females. The images have variations in

pose and facial expression. At least one image with glasses

was also taken. Majority of the images are of subjects in

the age group of 1–40 years. This database can therefore

be appropriate in modelling aging and age estimation in

formative and middle-age years.

8.10 Gallagher’s web-collected database

This database was collected by Gallagher and Chen [4]

from Flickr.com image search engine. The database has

28,231 faces in 5080 images. It divided into seven age

groups as 0–2, 3–7, 8–12, 13–19, 20–36, 37–65, and 66+.

This dataset is suitable for age-group estimation although

the age groups are wider in older ages.

8.11 Ni’s web-collected database

This database was collected from the web by Ni et al.

[154, 155] using Google.com and Flickr.com image search

engines. The database has 219,892 faces in 77,021 images

with age range between 1 and 80 years. This is the largest

aging database ever reported. The wide age range in this

database makes it suitable for age estimation in child,

adult, and old age groups.

8.12 Kyaw’s web-collected database

This database was collected from the web by Kyaw et al.

[156] using API services provided by Microsoft Search

Engine Bing. The images in the collected database are

aligned with eye corner points captured manually and

cropped to 65 by 75 patches. The database contains 963

images divided in four age groups of 3–13, 23–33, 43–53,

and 63–73. The database is not appropriate for age-group

estimation since there are missing images between age

groups.

8.13 BERC database

BERC database [70] was collected by the Biometric Engi-

neering Research Center (BERC). The database contains

images of 390 subjects with age ranging from 3-83 years.

Images are of high resolution 3648 × 2736 pixels. There

are no variations in light and facial expression on all

the images, and subjects are uniformly distributed with

respect to age and gender. These make the database suit-

able for age estimation, although it is comparatively small.

8.14 3Dmorphable database

The database contains 3D scans of 100 male adults and

100 female adults’ faces and 238 teenage faces aged

between 8 and 16 years consisting of 113 females and 125

males [69, 157]. All faces were without makeup, acces-

sories, and facial hair. In 3D morphable face models,

individual faces are represented as face vector in 3D. By

caricaturing texture and shape feature vectors, the model

can transform one’s face. As one ages, each face will trans-

form along a curved trajectory in a high dimensional
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space. Faces are represented by shape and texture vectors

such that each linear combination of different faces is a

new realistic face.

8.15 Summary

FG-NET, MORPH, and web-collected Gallagher’s

databases are publicly available. Other databases can

be found by contacting the owners. MORP, Ni’s, YGA,

LHI, and Gallagher’s web-collected databases are large

databases and well suited for regression-based age esti-

mation using statistical algorithms like AAM and age

manifold. FG-NET is a suitable database for evaluations

with several age estimation methods like AGES. AI &

R, LHI, and Iranian datasets comprise comparatively

high-resolution 2D face images. Other datasets stated

here were not extensively used but may be appropriate for

some application areas.

9 Age estimation evaluation protocols
Evaluation protocol determines system test, criteria for

test data selection, and system performance measure. A

good validation strategy should be independent of train-

ing data and representative of the population from which

it has been drawn [158]. Age estimation technique needs

to be validated using previously unseen data to avoid over-

fitting age estimation technique and improve its general-

ization capability. Cross-validation is a popular strategy

for age estimation evaluation. In cross-validation, data is

split into two subsets; one segment is used to train or learn

age estimation model and the other segment is used to

validate or evaluate the model. In classic cross-validation,

training and validation datasets must cross-over in con-

secutive rounds such that every data point has equal

chance of being validated or evaluated against the other.

The basic form of validation is holdout.

Holdout strategy is the simplest and computational effi-

cient strategy [159] used for validating age estimation

techniques. The dataset is randomly split into two sets:

training subset and validation subset. Commonly, training

subset consists of two thirds of the original data, and the

remaining one-third samples constitute validation subset.

Age estimationmodel is then fitted using the training sub-

set and validated on the test subset. In this strategy, the

model is trained and validated only once. Although this

method is preferred and takes a shorter time to compute,

its evaluation depends on the data in respective subsets

and results into high variance hence making this strat-

egy give different evaluation results depending on how the

dataset is divided [160]. Another validation strategy com-

monly used is repeated random sub-sampling (RSS) [161,

162]. In RSS validation technique, the holdout strategy

is iterated a number of times and results averaged. The

dataset is randomly split into two subsets (train and val-

idation) with a fixed number of samples for each phase

of validation. For each data split, age estimation model

is retrained on train subset and validated using test sub-

set. The advantage of this strategy over k-fold validation

is that the size of training and validation is independent

to the number of validation iterations. However, this strat-

egy has a limitation such that some samples may never

be selected for validation while other samples may be

selected repetitively leading to overlapping of validation

subsets [163]. But with a significantly large number of iter-

ations done, RSS is likely to achieve better results as k-fold

validation [164].

Cross-validation [163] is a standard statistical technique

used for model generalization ability with wide applica-

tion in classification and regression problems [165]. It

involves dividing dataset into two subsets, one subset is

used to train an estimator while the other subset is used to

test an estimator [166]. Cross-validation is used to assess

how a model generalizes to initially unseen data [163,

167]. Cross-validation strategies can be categorized into

two: (i) exhaustive (compute all possible ways of data split-

ting) and (ii) non-exhaustive (does not compute all pos-

sible ways on data splitting). Exhaustive cross-validation

algorithms include leave-one-out (LOO) and leave-p-out

(LPO) while non-exhaustive include k-fold and repeated

random subsampling (RSS) [160, 168]. Cross-validation

[169] consists of averaging multiple holdout validation

results from different subsets of data.

k-fold cross-validation is the basic form of cross-

validation. Other forms of cross-validation are just but

special cases of k-fold cross-validation or involve repeated

rounds of k-fold validation. In k-fold cross-validation

[169], original data is randomly split into k equal subsets.

Then, k iterations of training and validation are performed

such that in every iteration, a different fold of data is

reserved for validation while the remaining k − 1 are used

to learn a model. The estimated error is the mean of all

validation errors. Standard deviation of these errors can

be used to approximate the confidence range of the esti-

mate. The main advantage of k-fold cross-validation is

that eventually all samples will be used for both learn-

ing and validating models. The common value of k used

in various techniques is 10 as a compromise between

efficiency and accuracy. A stratified cross-validation is

commonly used in order to improve accuracy of the

estimation [163].

Leave-one-out (LOO) [166, 169, 170] is a special type of

cross-validation that given a dataset with C classes, C − 1

validation experiments are performed. For each experi-

ment, data from C − 1 classes is used for training and

data from one class that was left out is used for validation.

Therefore, given a dataset of S subjects from age 0 → An,

LOO cross-validation will perform S−1 validation experi-

ments. In each experiment i, facial images of subject Si are

used for validation while images of the rest S − 1 subjects



Angulu et al. EURASIP Journal on Image and Video Processing  (2018) 2018:42 Page 23 of 35

are used for learning a model. In this approach, images

of each subject will be used for both training and vali-

dation. This way, the technique is validated in the same

way as its application scenario where the subject whose

age is to be estimated is previously unseen in the system.

Although LOO is almost unbiased, it may give unreli-

able estimates due to its high variance [171]. Leave-p-out

(LPO) [172] with p ∈ {1, 2, 3 . . . , n− 1} successively leaves
out every possible subset of p data samples to be used

for validation. In age estimation, given a set of images of

N subjects, LPO can be used by leaving out images of p

where p ≤ (N − 1) subjects to be used for validation and

use images ofN−p subjects for training. Elisseef and Pon-

til [173] showed that LPO cross-validation is less biased

compared to LOO. LPO will have
(n
k

)

iterations where n is

the number of images. These iterations are almost always

much higher compared to n − 1 iterations in LOO, lead-

ing to high computation time. LPO with p = 1 is same

as LOO. LOO and LPO are exhaustive cross-validation

strategies compared to other methods. Further informa-

tion on LPO can be found in [174]. Detailed information

on cross-validation can be found in [172] and [175].

Bootstrap is a strategy introduced by Efron and

Tibshirani [176, 177]. Bootstrap is commonly used when

working on a small dataset [159]. In this strategy, a

bootstrap set is created by uniformly sampling, with

replacement, n instances from the original data to make

a training set. The remaining samples not selected are

used as testing set. The value n of selected samples is

likely to change from fold to fold. Since data is sampled

with replacement, the probability of any data sample not

being selected is given by
(

1 − 1
n

)n ≈ e−1 ≈ 0.368.

Chances of a data sample being selected into a train set is

(1 − 0.368) = 0.632. Therefore, the expected number of

distinct samples appearing in the train set is 0.632 × n.

Since error estimate obtained by using test data will be

too pessimistic (since only 62.3% of instances are used for

training), error is calculated as error = 0.632 × e0 +
0.368 × ebs where e0 is rate of error obtained from boot-

strap sets not having the instance being predicted (test

set error) and ebs is the error obtained on bootstrap sets

themselves, both averaged over all data samples and boot-

strap samples. Estimate accuracy is directly proportional

to number of times the process is repeated. More details

on bootstrap validation technique can be found in [177].

Bootstrapping increases the variance that can occur in

each fold which makes this strategy more realistic of the

real application situation [177]. This validation strategy is

rarely used in age estimation.

In most cases, a dataset is split into three subsets: val-

idation subset, training subset, and testing subset [167].

In this approach, the validation subset is used to tune

the system to determine the termination point of the

training phase when overfitting starts occurring on the

training subset. The testing subset is used to validate

the trained model using data samples not initially in

validation and training subsets. Kiline and Uysal [164]

proposed a technique of splitting the dataset with sam-

ples from specific subjects rotationally left out of training

and validation sets. Budka and Gabrys [158] proposed a

density-preserving sampling (DPS) technique that elimi-

nates the need for repeating error estimation procedures

by dividing the dataset into subsets that are guaranteed to

be representative of the population the dataset is drawn

from. These new proposed approaches of model valida-

tion could be experimented in age estimation problem and

results compared with other common methods. Cross-

validation and bootstrap strategies are commonly used

when one has limited data such that holdout strategy

cannot be sufficient for data representativeness in both

training and test sets. With abundant data with stable dis-

tribution over time, single stratified random split is able to

provide required representativeness [158].

For purposes of comparing the performance metric of

two or more learning algorithms, Salzberg [178] proposed

the use of k-fold cross-validation followed by appropri-

ate hypothesis testing instead of comparing their average

accuracies. This strategy can be used to compare two age

estimation techniques.

In each iteration of validation, absolute error (AE) for

each estimated age is defined as:

AE = |ai − āi| (18)

where is ai is the ground truth age and āi is the esti-

mated age. After all validation iterations, mean absolute

error (MAE) is defined as the average of all absolute errors

between estimated and ground truth age as:

MAE =
1

N

N
∑

i=1

|ai − āi| (19)

where N is the total number of test images, ai is the

ground truth age of image i, and āi the estimated age of

image i. Although this performance evaluation is com-

monly used, it does not give age estimation performance

for specific age but rather gives general performance of

the technique for all ages. This approach could be slightly

modified such that it gives MAE for every age and general

MAE of the technique.

Given a set of testing images a
n1
1 , a

n2
2 . . . a

nk
k belonging to

k ages to be estimated with ni representing number of test

images known to belong to age ai, MAE for every age can

be defined as:

MAEk =
1

n

n
∑

i=1

|ak − āi| (20)

where āi is the estimated age for image i of age ak and

n is the number of test images belonging to age ak . This
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will give age-specific performance of age estimation tech-

nique. Overall, MAE can be found by summing all the

MAE for all ages tested and dividing by the sum of the

number of test images in each age as:

MAETOTAL =
k

∑

i=1

(MAEi × ni)

N
(21)

where N = n1 + n2 + · · · + nk .

Age estimation technique performance is evaluated

based on MAE. The smaller the MAE, the better the age

estimation performance. MAE only shows average per-

formance of the age estimation technique. MAE is the

appropriate measure of age estimation when the training

data has missing images [10]. The overall accuracy of the

estimator is given by cumulative score (CS) [12, 31] which

is defined as:

CS(x) =
Ne≤x

N
× 100% (22)

whereNe≤x is the number of images on which the age esti-

mation technique makes an absolute error no higher than

x years error tolerance and N is the total number of test

images.

In age-group estimation, the age-group label represents

a range of ages; hence, the cumulative scores are compared

at error level 0, i.e., the percentage of exactly correct age-

group estimation. Therefore, the CS equation becomes:

CS(x) =
nx

Nx
× 100% (23)

where nx is the number of test images correctly recog-

nized as belonging to age group x and Nx is the total

number of test images in age group x. Therefore, CS is

used as an indicator of accuracy of age-group estimator

[13]. CS is a useful measure of performance in age esti-

mation when the training dataset has samples at almost

every age [11]. MAE is a good evaluation technique when

the training set has a lot of missing ages. However, in

age estimation, both MAE and CS are used since differ-

ent techniques, datasets, and systems may be extremely

imbalanced or skewed for evaluation.

10 A review of age estimation studies

10.1 Age-group estimation

Global, local, and hybrid features have been previously

used in age and age-group estimation. Ramanathan et al.

[179] present a recent survey in automated age estimation

techniques.

Age group is a range of ages. Persons whose real age

are within the defined ranges are said to be in the same

age group. Significant amount of research has been done

to automatically extract visual artifacts from faces and

group persons in respective age groups. Kwon and Lobo

[87] estimated age group based on anthropometry and

density of wrinkles. They separated adults from babies

using distance ratios between frontal face landmarks on

a small dataset of 47 images. They also extracted wrinkle

features from specific regions using snakes. Young adults

were differentiated from senior adults using these wrinkle

indices. Baby group classification accuracy was lower than

68%, but overall performance of their experiments was

not reported. Furthermore, ratios used were mainly from

baby faces. Horng et al. [85] used geometric features and

Sobel filter for texture analysis to classify face images into

four groups. They used Sobel edge magnitude to extract

and analyze wrinkles and skin variance. They achieved an

accuracy of 81.6% on subjectively labeled age-groups.

Ramanathan and Chellappa [59] computed eight dis-

tance ratios for modelling age progression in young faces

like 0 to 18 years. Their objective was to predict one’s

appearance and face recognition across age progression.

Using 233 images of which 109 were from FG-NET

aging dataset, and the rest from their private dataset,

they reported improvement in face recognition from 8 to

15%. Dehshibi and Bastanfard [20] used distance ratios

between landmarks to classify human faces in various age

groups. Using a back propagation neural network with

distance ratios as inputs, they classified face images into

four age groups of 15, 16–30, 31–50, and above 50. Using

a private dataset, they reported 86% accuracy. Thukral et

al. [180] used geometric features and decision fusion for

age-group estimation. They achieved 70% overall perfor-

mance for 0–15, 15–30, and above 30 age groups. Farkas

et al. [181] used 10 anthropometric measurements of

the face to classify individuals in various ethnic groups.

They analyzed these measurements and identified ones

that contribute significantly to diversity in facial shape

in different ethnic groups. They also found that horizon-

tal measurements differed between ethnic groups than

vertical measurements.

Tiwari et al. [182] developed a morphological-based

face recognition technique using Euclidean distance

measurements between fiducial facial landmarks. Using

morphological features with back propagation neural

network, they reported superior recognition rate than

performance of principal component analysis (PCA) [90]

with back propagation neural network. This technique

recognized faces but it was independent of aging fac-

tor due to variations in these distances as one ages.

This signifies that distances between facial landmarks dif-

fer at different age, especially in young age-groups, and

therefore, it could be used in age estimation. Gunay and

Nabiyev [94] used spatial LBP [76] histograms to clas-

sify faces into six age groups. Using nearest neighbor

classifiers, they achieved accuracy of 80% on age groups

10 ± 5, 20 ± 5, 30 ± 5, 40 ± 5, 50 ± 5, and 60 ± 5.

In [146], Gunay and Nabiyev trained three support vector

machine (SVM) models for age-group estimation using
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AAM [64], LBP, and Gabor filter [67] features. They fuse

decisions from these classifiers to obtain final decision.

Although they reported 90% accuracy of subsequent age

estimation, overall performance of age-group estimation

was not reported.

Hajizadeh and Ebrahimnezhad [183] represented facial

features using histogram of oriented gradients (HOG)

[137]. Using probabilistic neural network (PNN) to clas-

sify HOG features extracted from several regions, they

achieved 87% accuracy in classifying face images into four

groups. Liu et al. [184] build a region of certainty (ROC)

to link uncertainty-driven shape features with particular

surface features. Two shape features are first designed to

determine face certainty and classify it. Thereafter, SVM

is trained on gradient orient pyramid (GOP) [185] features

for age-group classification. Testing this method on three

age groups, 95% accuracy was reported. They further used

GOP in [186] with analysis of variance (ANOVA) for fea-

ture selection to classify faces into age groups using linear

SVM [187] to model features from the eyes, nose, and

mouth regions. They achieved 91% on four age groups

on FG-NET dataset and 82% on MORPH dataset. It was

also found that the overall performance of age estimation

decreases as the number of age groups increase. This is

because the number of images in each age group reduces

drastically as the number of groups increase.

Lanitis et al. [66] adopted AAM to represent face image

as a vector of combined shape and texture parameters.

They defined aging as a linear, cubic, or quadratic func-

tion. For automatic age estimation, they further evaluated

quadratic function, nearest neighbor, and artificial neural

network (ANN) in [23]. They found that hierarchical age

estimation achieves better results with quadratic function

and ANN classifiers. Although AAM has been exten-

sively used, it does not extract texture information. This

problem is avoided by using hybrid feature extraction

techniques to combine both shape and texture features for

age and age-group estimation.

Sai et al. [188] used LBP, Gabor, and biologically inspired

features for face representation. They used extreme learn-

ing machines (ELM) [189] for age-group estimation. Their

approach achieved accuracy of about 70%. Using LBP and

a bank of Gabor filters, Wang et al. [190] classified images

into four age groups. They used SVM, error-correcting

output codes (ECOC) and AdaBoost for age-group esti-

mation. Table 3 shows the summary of age and age-group

estimation studies.

10.2 Age estimation

Age is a real number that signifies the number of years

elapsed since one’s birth to a point in life. Age estimation

is the process of estimation one’s actual age using visual

artifacts on the face. These visual artifacts are extracted

and used to estimate one’s age.

Lanitis et al. [66] adapted active appearance model

(AAM) for aging face by proposing aging function. They

defined age as a function age = f (b) to cater for age-

introduced variations. In this function, age is the real

estimated age of a subject, b consists of 50 AAM-learned-

parameters feature vector, and f is the aging function.

They performed experiments on 500 images of 60 indi-

viduals of which 45 subjects had images at different ages.

Focusing on small age variations, they demonstrated that

simulation of age improves performance of face recogni-

tion from 63 up to 71% and from 51 to 66% when training

and testing datasets are used interchangeably.

Adopting aging pattern subspace (AGES), Geng et al.

[13, 26] proposed automatic age estimation using appear-

ance of face images. Evaluating AGES on FG-NET aging

database, they used 200 AAM parameters to characterize

each image for age estimation. They reported 6.77 years

mean absolute error (MAE). Fu and Huang [12] used age-

separated face images to model a low-dimensional mani-

fold. Age was estimated by linear and quadratic regression

analysis of feature vectors derived from respective low-

dimensional manifold. The same approach of manifold

learning was used by Guo et al. in [31]. They extracted

face aging features using age learning manifold scheme

and performed learning and age prediction using locally

adjusted regressor. Their approach reported better perfor-

mance than support vector regression (SVR) and SVM.

Guo et al. [31] used locally adjusted robust regression

(LARR) to estimate age. Evaluating their approach on a

large dataset, they reported MAE of 5.30 and 5.07 years

on FG-NET. Guo et al [82] further proposed age esti-

mation using biologically inspired features (BIF) [80, 81].

BIF features with support vector machine (SVM) achieved

MAE of 4.77 years on FG-NET aging dataset and 3.91

and 3.47 years on females andmales, respectively, on YGA

dataset. Combining gender and age estimation, Guo et al.

[191] used BIF and age manifold feature extraction with

SVM classifier. They reported superior MAE of 2.61 for

females and 2.58 for males on YGA database. Yan et al.

[192] performed person-independent age image encod-

ing using synchronized submanifold embedding (SME).

SME considers both individuals’ identities and age labels

to improve generalization ability on age estimation. Eval-

uating this technique on FG-NET, they reported a MAE

of 5.21 years. Yan et al. [83, 84] used spatially flexible

patch (SFP) for feature description. SFP does not only

consider local patches only but also their spatial infor-

mation. With SFP, slight misalignment, pose variations,

and occlusion can be effectively handled. Furthermore,

this technique can improve discriminating characteristics

of the feature vector when limited samples are available.

Adopting Gaussian mixture model (GMM), they achieved

a MAE of 4.95 years on FG-NET aging dataset and 4.94

and 4.38 years on females and males, respectively, on
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YGA dataset. Combining BIF and age manifold features

and SVM for age estimation achieves MAE of 2.61 and

2.58 years for males and females, respectively, on YGA

dataset [11].

Suo et al. [152] designed graphical facial feature topol-

ogy based on hierarchical face model [193]. They used

particular filters to diverse features at various stages of

their hierarchical feature extraction design. Using multi-

layer perceptron (MLP), they reported MAE of 5.97 years

on FG-NET and 4.68 years on their private dataset.

Craniofacial aging model that combines psychophys-

ical and anthropometric evidences was proposed by

Ramanathan et al. [59]. The model was used to simulate

perceived age of a subject across age for improving accu-

racy of face recognition. Choi et al. [70] proposed age esti-

mation approach using hierarchical classifiers with local

and global facial features. Using Gabor filters for wrinkle

extraction and LBP for skin feature extraction, they classi-

fied face images into age groups with SVM. This approach

is error prone because it only depends on a single clas-

sifier. Wrong age group classification leads to wrong age

estimation. For accurate age estimation, age group classi-

fication must be robust, and this can be achieved by use

of an ensemble of classifiers. Chao et al. [194] determined

the relationship between age labels and facial features

by merging distance metric, learning, and dimensionality

reduction. They used label-sensitive and nearest neighbor

(KNN) and SVR for age estimation. Chang et al. [195] pro-

posed ordinal hyperplane ranker for age estimation. Using

AAM and SVM, their approach achieved 4.48 MAE on

FG-NET and MORPH II datasets. Guo et al. [123] build

a regression model using BIF and partial least squares

(PLS) for age estimation. Their approach achieved 4.43

MAE on MORPH II dataset and showed that learning

label distribution improves age estimation. Lu and Tan

[142] investigated age estimation using ordinary preserv-

ing manifold analysis approach. They found that gait can

be used as an effective cue for age estimation at a dis-

tance for purposes of enhancing understanding capabili-

ties of existing visual surveillance systems. They further

found that discriminating age information can be better

exploited in the low-dimensional manifold for achieving

better age estimation performance.

Using uniform ternary patterns (UTP) and AAM, Tan

et al. [107] and Luu et al. [196] proposed a spectral

regressor for age estimation. Evaluating their technique,

they achieved a MAE of 6.17. Further work by Luu et

al. [197] using contourlet transform achieved a MAE of

6.0 on FG-NET and PAL datasets which was better com-

pared to using UTP. Using Gabor wavelets and orthogonal

locality preserving projections (OLPP), Lin et al. [198]

developed an automatic age estimation system. They eval-

uated their technique on FG-NET dataset and SVM as

a classifier and achieved a MAE of 5.71 years. Wu et al.

[115] used 2D points to model facial shape for age esti-

mation. Choober et al. [199] proposed use of an ensemble

of classifiers for improving automatic age estimation. The

limitation of this work is that only neural network was

used to make the ensemble. An ensemble can be made

robust if different classifiers are used so as each acts as

a complimentary to the other. Guo and Mu [124] com-

pared canonical correlation analysis (CCA) and partial

least squares (PLS) performance in age, gender, and eth-

nicity estimation. Using BIF as a feature extractor, they

found that CCA performs better compared to PLS. Hadid

and Pietikainen [200] experimented manifold learning on

age and gender estimation. They reported 83.1% accuracy

age estimation on images extracted from video. Geng et al.

[201] learned label distribution and used them for age esti-

mation. Their technique was evaluated on both FG-NET

and MORPH datasets.

Guo et al. [82] first introduced BIF in image-based

age estimation domain. They reported that using Gabor

bank starting from smaller sizes like 5 × 5 can character-

ize aging. Later, Guo and Mu [123] used k-partial least

quares (KPLS) for simultaneous dimensionality reduction

of BIF features for age estimation using a regressor. They

also showed that partial least squares (PLS) performs bet-

ter in dimensionality reduction compared to traditional

dimensionality reduction techniques like principal com-

ponent analysis (PCA). They later [124] used canonical

correlation analysis (CCA) for modelling age estimation

as multiple-label regression problem. They reported that

CCA-based methods work better compared to KPLS-

based methods. Spizhevoi and Bovyrin [202] used RBF

SVM to learn BIF features for age estimation. Han et al.

[203] proposed a hierarchical age estimation and ana-

lyzed how aging affects distinct facial components. They

used SVM for both classification and regression to clas-

sify each face component. Their component localization

was not accurate, thereby affecting subsequent features

extracted from these components. They later [147] com-

pared human and machine performance on demographic

(age, gender, and ethnicity) estimation. Theymodelled age

estimation in particular as a hierarchical problem that

consists of between-class classification and within class

regression of boosted BIF and demographic informative

features extracted from a face image.

Deep learning schemes, especially convolutional neural

network (CNN), have been successfully used in face anal-

ysis tasks including face detection, face alignment [204],

face verification [205], and demographic estimation [206].

Wang et al. [207] extracted feature maps obtained in dif-

ferent layers as age features based on deep learning model.

Huerta et al. [135] provide a thorough evaluation on deep

learning for age estimation using fused features and com-

pare it with hand-crafted fusion features. CNN have been

used in different recent studies on age estimation and have
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demonstrated superior performance compared to other

methods. Niu et al. [208] used ordinal regression and

multiple output CNN for age estimation and reported a

MAE of 3.27 on MORPH II and a private Asian Face Age

Dataset (AFAD). Chen et al. [209] presented a cascaded

CNN that had 0.297 Gaussian error on age estimation.

As further demonstrated in [210–212], CNN have posted

better results in age estimation tasks. Although CNN per-

forms better than other traditional methods, their appli-

cability is limited by high processing demand required for

their implementation. Table 3 shows a summary of studies

in age-group and age estimation.

11 Conclusions
Comprehensive survey of various techniques and

approaches used for age estimation has been presented.

There has been enormous effort from both academia and

industry dedicated towards modelling age estimation,

designing of algorithms, aging face dataset collection,

and protocols for evaluating system performance. Table 3

summarizes the findings of recent studies in age esti-

mation, evaluation protocol used, dataset used, age

estimation approach used (regression, classification, or

hybrid), and feature extraction or age face representation

used.

The main issues to consider in age estimation via

faces are image representation and estimation techniques.

AAM provides a parametric modelling for face represen-

tation. A face is represented as a set of shape and texture

parameters learned from a face image. AAM can repre-

sent both young and old faces since model parameters

encode both facial shape and texture. AAM is often used

in line with regression-based age estimation approaches.

Anthropometric face representation encodes change in

facial shape. Anthropometric approaches to facial repre-

sentation can be very significant in capturing change in

facial shape in young faces. AGES can be used to extract

subjects’ aging patterns when a dataset has sequential

aging face images while age manifold is convenient when a

dataset hasmissing aging face images in a large age dataset

with wide age ranges. Age manifold learning entwines

aging feature extraction and dimensionality reduction.

Age manifold can be used both in classification- and

regression-based approaches. Appearance models often

extract facial features that can be used in regression- or

classification-based age estimation approach. These fea-

tures represent facial appearance. These features could be

texture, shape, or wrinkle. Feature extraction techniques

like LBP, Gabor, BIF, LDA, PCA, and LDP have been often

used for appearance face modeling.

Age estimation can be either approached as age-group

estimation or exact age estimation. Age-group estima-

tion approaches approximate age range in which a face

image can fall. Exact age estimation approaches estimate a

single label (value) that represents the age of a face image.

Both exact age and age-group estimations can be either

classification-based, regression-based, or hybrid of both

classification and regression. Choice between regression

and classification may be guided by face image represen-

tation and size and age distribution of the dataset. For

big datasets with sequential age labels, both classification

and regression can be used, while for datasets with only

age-group labels or significantly missing images at some

ages, classification-based approach may be more appro-

priate. Both classification and regression can be combined

in a hierarchical manner. In this hybrid approach, often

classification is used for age-group estimation followed by

exact age estimation within the age-group using regres-

sion techniques.

Age estimation techniques can be evaluated using mean

absolute error (MAE) or cumulative score (CS). MAE is

appropriate when the training set has a lot of missing ages

while CS is used when the training dataset has samples

at almost every age. Overall performance of the system is

represented by CS. In practice, bothMAE and CS are used

because different techniques and datasets may be biased

for evaluation. The most often used evaluation protocols

are LOPO and Cross-Validation.

There are a number of promising future directions for

age estimation. The following are some of the future

research directions that may see improvement in age

estimation performance:

• Fusion—Feature and decision fusion for age

estimation has not been extensively investigated.

Fusing shape, wrinkle, and texture features may result

into a rich feature set that can distinguish faces in

different ages or age groups. Decisions from multiple

classifiers or regressors could also be fused to see how

they impact age estimation performance.
• Multi-instance—Facial landmarks can be extracted

and considered as an instance for age estimation.

Which parts of the face age faster and how? A face

can be broken down into its components (eyes,

forehead, nose, nose bridge, mouth, and cheeks) and

aging investigation done on each component. Both

geometric and anthropometric appearance face

modeling can be used on each component.
• Ethnic—Faces of subjects from different ethnic

groups age differently. Incorporating ethnic

parameters as in [144] improves age estimation

performance. This approach has not been fully

investigated due to lack of large datasets with images

from different ethnic groups like African, Asian, and

Caucasian.
• Lifestyle—One’s lifestyle affects how the face ages.

Faces of individuals of the same age but with different

lifestyles will appear different. Research has shown that
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smoking has an influence in facial aging [34, 38–41].

It may be interesting to investigate aging and age

estimation among a smoking population and how it

compares to non-smoking population. Taister et al.

[34] asserts that exposure to drug and psychological

stress affects skin texture and color making skin

complexion spotted and blemished. Drug use and

stress could also be investigated to determine their

effect on age estimation.
• Environment—Taister et al. [34] found that general

exposure to wind and arid air influence facial aging.

Arid environment and wind dehydrates the skin

leading to wrinkle formation. An investigation of age

estimation in populations in different environments

is an interesting direction for further research.
• Databases—A large multi-racial database is needed

for effective investigation of aging in different ethnic

groups and gender. Collecting a large database with

well-distributed age labels is essential. Web image

collection is an efficient way of achieving this [154,

155].
• Profile face aging—How do non-frontal parts of the

face age? How to estimate age from non-frontal face

images? Investigations to answer these two questions

could be necessary though are based on availability of

such databases (non-frontal face images). 3D face

modelling could be vital in investigating profile face

aging and age estimation.
• Multi-sensor—Image collection from multiple

imaging sensors could be appropriate for mitigating

degrading factors from uncontrollable and

personalized attributes. Fusion could be done on the

image features for age estimation.
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