Age, growth and condition of trout in Prickley Pear Creek, Montana by Clinton G Bishop

A THESIS Submitted to the Graduate Faculty In partial fulfillment of the requirements for the degree of Master of Science in Fish and Wildlife Management
Montana State University
© Copyright by Clinton G Bishop (1953)
Abstract:
Age, growth and condition of trout in Prlckley Pear Creek, Montana were studed for the years 1949, 1950 and 1951. In nine collections, the scales front 1,284 brown trout, 866 rainbow trout and 127 eastern brook trout were examined. Brown trout growth was the most rapid followed by eastern brook trout. Rainbow trout grew the slowest. Over 85 percent of the trout population were in age groups I-III. Total weight for all fish in the sections decreased 44.5 percent from 1949 to 1951. During this period both brown and rainbow trout growth per day increased.
AGE, GROWTH AKD COIDIIION OF TROUT IIV PRICKISY PEAR CREEKK,
MOIPPAMA
by
CLITIPON G. BISHOP
A THESIS
Submitted to the Gredunte Fsculty
in
partial fulfillment of the requirements
for the degree of
Naster of Science in Fish and Wilaiffe Management
at

Montana State College

Approved:

J. H. Pepper

Head, Major Department

C. J. D. Brown

Chairman, Exarining Cominttee
J. IV. Nelson

Deen, Greduate Division

Bozeman, Montana

 1953Table of Contents
Abstract 3
Introduction 4
Description of stream 4
Fish present 5
Methods and equipment 5
Age and growth 8
Length frequency 8
Brown trout 9
Rainbow trout 12
Bestern brook trout 12
Condttion Pactor 17
Comparison of summer growth and condition 17
Summary 19
Acknowledgements 21
Literature Citea 21

Abstract
Age, growth and condition of trout in Pricliley Pear Creek, Montana were studed for the years 1949, 1950 and 2951. In nine collections, the scales from 1,284 brown trout, 866 rainbow trout and 127 eastern brook trout were exemined. Brom trout growth wes the most. rapid followed by eastern brook trout. Rainbow trout grew the slowest. Over 85 percent of the trout population were in age groups I-III. Total weight for all ifsh in the sections decreased 44.5 percent from 1949 to 1951. During this period both brown and reinbor trout growth per day increased.

Introduction

An Intensive trout pogulation study made on Prickley Pear Creek, Montans during the sumers of 1949, 1950 (Stefenich, 1952), and continued In 1951, provided an unusual opportunity to collect trout for age, growth, and condition studies as they vere releted to populetion chenges during the three years. The semples collected represent near total populations for the sections covered. Alvord (1953) studied the scale characters of knoum age trout in Prickley Pear Creek. Age and growth of rainbow and brown trout from a section of the Missourl River adjacent to the mouth of Prickley Pear Greek were presented by Kathrein (1951). Purlsett (1951) reported on the growth rate of trout in relation to elevation and temperature on three Montana streams. Tro of the most important trout age and growth studies involving vhole populetions are those of shetter and Leonard (1943) in Fiunt Creek, Michigan and Schuek (1945) in Cryatal Creek, Mev York, Shetter and Hazzard (1939) Investigaged age but not growth of trout populetions in three Michigen trout streams.

Description of Stream

Prickley Pear Creek is 23 miles long, flowing in a northeasterly direction and entering the Missouri River 6 miles upstream from Craig, Montens. According to Stefonich (1952) the lover 13 miles, from Wich samples were taken, varied in width from 15 to 60 feet, with a maxdmum depth of 8 feet, and a fell of approximately 41 feet per mile. The distence betveen poole of 3 feet or greater in depth everaged epproximately

260 feet. The stream bottom in riffle areas was gravel and rubble. The everage water temperature during study periods for the three years was 54.6 degrees F., Yith a meximm of 67 degrees F. Water levels were $h 1$ gh in late spring and early summer with a sudden decrease in late sumer followed by a small somewhat steady decrease through fall and winter.

Fish Present

Broum trout (Selmo trutta) ves the most mumerous salmonid folloved. by rainbon trout (Selmo gaindnerii). Small numbers of eastern brook trout (Solvelimus fontinolis) and only one cutthront trout (Salmo clarict1) were found. Mowntain whitelish (Prosopium williemsoni) though never abundent vere most numerous in the spring. The longnose sucker (Cstostomus catostoming) was abundant espeeially in spring and eeriy summer. A fev Trestern white suckers (Cetostoms commercont such-111), carp (Cyprinus casrio) and burbot (Iota lota maculosa) were present. Fresh water sculpins (Cottus beinili punctuletis) were ebrident et all times.

Methods and Equipment

Fish were taken by the electric shock hethod from six 600 foot sections established for the popuietion study (Steranich, 1952). Wine collections were made as follows: four in 1949, three in 1950 (part of one section was shocked e fourth time), and two in 1951.

Captured Iish were anesthetized in urethane. Total lengths vere taicen to the nearest 0.1 Inch and weights to the nearest 0.02 pound. All P1sh vere marked end released. Ho scale semples from recaptured or
hatchery fish were used in this study since growth may have been effected by handling and tagging.

Scales were talren from either the right or left side between the dorsal in and lateral line. These were cleaned and mounted in a glycerinegum arabic meditm and examined and measured on a conventional scale projection machine. Scale measurements were made Irom the center of the focus along the median anterior redius. The calculated growth at the end of each year of life was deternined by use of a nomograph.

Sceles from 1,284 brown trout, 866 rainbour trout, and 127 eastern brook trout were studied (Table 1).

Table 1. The numbers of each species of trout in the sample for each collection in Priclcley Pear Creek.

Species	$\begin{aligned} & \text { Pirist } \\ & \text { collection } \end{aligned}$	$\begin{gathered} \text { Second } \\ \text { collection } \\ \hline \end{gathered}$	$\begin{aligned} & \text { Whind } \\ & \text { collection } \end{aligned}$	$\begin{aligned} & \text { Fourth } \\ & \text { collection } \end{aligned}$	Totals
Brom Reinborr Eestern brook	$\begin{array}{r} 304 \\ 140 \\ 7 \end{array}$	$\begin{aligned} & 226 \\ & 91 \\ & 16 \\ & \hline \end{aligned}$	$\begin{array}{r} 169 \\ 67 \\ 13 \\ \hline \end{array}$	$\begin{array}{r} 91 \\ 70 \\ 7 \end{array}$	$\begin{array}{r} 790 \\ 368 \\ 43 \end{array}$
Browm Rainbor Eastern brook	$\begin{aligned} & 58 \\ & 47 \\ & 13 \\ & \hline \end{aligned}$	$\begin{aligned} & 1950 \\ & 105 \\ & 15 \\ & \hline \end{aligned}$	$\begin{array}{r} 93 \\ 117 \\ \hline 11 \\ \hline \end{array}$	\qquad	$\begin{array}{r} 1201 \\ 237 \\ 275 \\ 40 \\ \hline \end{array}$
Brown Ratnbow Festern brook	$\begin{aligned} & 66 \\ & 57 \\ & 13 \\ & \hline \end{aligned}$	$\begin{gathered} 1951 \\ 166 \\ 191 \\ \hline \end{gathered}$		Total	$\begin{aligned} & 552 \\ & 257 \\ & 223 \end{aligned}$

Brown trout grand total.	1284
Rainbow trout grand total	866
Eastern brook trout grand total	127

\#Partial collections.

$$
-7
$$

The relationship between anterior scale radius and total length for each species was examined by plotting total length against anterior scale radius and fitting a regression line to the data, using the method of least squares. The estimating equation used follows:

$$
\begin{aligned}
& \hat{Y}=\mathrm{a}+\mathrm{bX} \\
& \text { where } \mathrm{X}=\text { scale radius } \\
& Y=\text { total length } \\
& \hat{Y}=\text { estimated value of } Y \text { for a given } X \\
& \mathrm{~b}=\frac{\sum X Y-(\Sigma X)(\Sigma Y) / n}{X^{C}-(\Sigma X)^{2} / n}=\frac{\Sigma X Y}{\Sigma x^{2}} \\
& \mathrm{a}=Y-\mathrm{Z} \bar{X} \\
& \bar{X}=\frac{\Sigma X}{n} \\
& \bar{Y}=\frac{\Sigma Y}{n}
\end{aligned}
$$

Significance of regression was tested by the equation

$$
\begin{aligned}
& F=\frac{b\left(\sum x y\right)}{s_{e}} \\
& \text { where } s_{e}^{2}=\frac{(Y-\hat{Y})^{2}}{n-2}
\end{aligned}
$$

In all three species the slope of the regression line was found to differ significantly from zero.

The fit of the data to a straight line was tested by the formula:

$$
P=\frac{\sum_{i=1}^{k} m_{1}\left(\vec{y}-z-b x_{i}\right)^{2} /(x-2)}{\sum_{i=1}^{k}\left\{\sum_{j=1}^{n i}\left(x_{i j}-\bar{x}_{i}\right)^{2}\right\}(n-k)}
$$

The data on rainbow trout and eastern brook trout were such that a straight line could be considered a good fit. For brown trout, the fit was not as good as for the other species. Horever, a straight line seamed. best from a practical standpoint. This was verified by teat of fit of dete to a second degree polymomial and by examination of the location of the actual values with reference to the straight L line.

Celculeted lengths for each year of life were adjusted according to the intercepts of the regression lines for each apecies by using the Intercepts as the zero point on the nomograph. These intercept values are 2.2 for rainbow trout, 1.0 for brom trout, and 0.9 for eastern brook trout.

Coerficients of condition (c) were celculated for each fish from the Pormule:

$$
c=\frac{H \times 10^{5}}{L^{3}}
$$

where $W=$ veight in pounds
$L=$ total length in inches

Age and Grourth
Length Frequency
The averege length at capture for each age group was compared with the length frequency modes determined for these trout by Steranich (Unpublished data). These agree well with the outstending pealss in the length frequencies (Table 2). Too few eastern brook trout were captured in any one collection to show definite modes in a length frequency.

Table 2. Comparison of average length at capture for each age class with length frequency modes of brown trout and reinbow trout collected in 1949 and 1950 (Iength in inches).

Celculated Length

Broum trout. The grand average calculated lengths for brown trout at annulus formation for years $1-5$ were: $3.8,7.7,11.1,13.7$, and 16.5 (Teble 3). The legal length of 7 Inches vas reached in the second year. Greatest growth occurred in the second year with a marked drop in the fourth year. The population for the sections covered was made up principally of younger age classes. Bighty-aix percent of the fish were in age groups I-III, with age group I being the largest.

Brown trout growth rate in Priclcley Pear Creek was better than that of brom trout taken in Crystal Creek, New York, by Schuck (1945). The

Table 3. Average calculated total longth and increment at esch annulus of brom trout from Prickley Pear Greek (Iength in Inches).

Table 3 (continued) -11.

everage total lengths are not es great as thoge reported by Purkett (1951) for the West Gallatin River, Montane or by Kathrein (1951) for the Missourl River, Montana.

Potnbor trout. The grand average calculated lengths for rainboir trout at annulus formation for years $2-4$ were: $3.5,6.6,9.4$, and 21.8 (Veble 4). Legal length was not resched until the thind year. This was substentielly less then for broum trout. Grourth rate was greatest in the IIrat year with a gredual decline through the third year. Minety-eight percent of the reinbow trout population wras mate up of ifish in age groups I-III. Age elass I was the largest, elosely followed by ege elass II. Reinbow trout in Pricleley Peer Creek grew et a more rapte rate than those collected by Shetter and Hazzard (1939) in three Michigan trout streams, with the exception of yearling fish. In these latter, growth wes slightly better in Mchigan Pl sh. The average total lengths at eech annulus were about the seme as those reported by Purkett (1951) for the West dallatin River and by Holton (1953) for Trout Creek, Montana. Reinbor trout taken from the Missourl River by Kathrein (1951) showed a greater rate of growth.

Pasterm brook trout. The grand average calculated lengths for eastern brook trout at annulus formation for years $1-3$ were: $4.1,7.0$, and 9.6 (Teble 5). Legel length vas reached in the second yeer ns in the brow trout. Growth wes slightly better than for reinbow trout but less then for brom trout. Firstfreer enstern brook trout were lerger them either rainbow trout or brown trout probably due to eaxlier hatching.
-13-
Table 4. Average calculated total length and increment at each annulus of rainbow trout from Prickley Pear Creek (length in inches).

Tabe 4 (continued)

Table 5. Average calculated total length and increment at each ennulus of eastern brook trout from Prickley Pear Creek (length in inches).

Table 5 (continued)

The population of these trout was composed only of fish up to three years old, with one year old I1sh being the largest age class.

The growth rate for these trout was better than that reported by Shetter and Hazzard (1939) for three Michigan trout streans and by Shetter and Leonard (1943) for a limited area in Hunt Creelf, Michigan. The average total lengths are not as great as those. reported for Briager-Spring Greek, Montana (Purkett, 1951). Grouth of eastern brook trout in Prickley Pear Creek was approzimately the same as that reported for Trout Creek (Holton, 1952).

Condition Factor

Condition factors (c) remained approxdmetely the seme for each species of trout throughout years 1-4 (rable 6). Rainbow trout ranged from 35.6 to 41.4 with an average of 39.5 and hed a higher condition factor than either brom trout or eastern brook trout. The lowest coefficient of condition tras for eastern brook trout, with a range of 33.9 to 40.1 and an average of 37.5 . Brown trout ranged from 35.3 to 39.6 with an average of 37.7 .

Comperison of Sumer Grouth and Condition
The average total velght of all fish in the June-July and September collections for 2949 was 398.34 pounds. Thía decreased to 245.67 in 1950 and to 221.11 in 1951 for comparable periods (Table 7). This amounted to a. 44.5 percent loss for the tiro year period. The $10 s s$ in veight of all brown trout was proportional to the total for all fish. The weight of

Table 6. Average coefficients of condition (c) for trout from Prickley Pear Creek for each year.

Species		Age Group							
				II		III		IV	
		C	20.	C.	No.	C	Wo.	C	10.
Brown	1949	37.8	175	37.9		37.7			$\begin{gathered} 33 \\ 7 \\ 10 \end{gathered}$
	1950	39.0	57	37.0	16	39.6	8	35.3	
	1951	38.4	138	37.6	33	37.2	15	37.8	
Rainbor								$\begin{aligned} & 41.4 \\ & 39.4 \end{aligned}$	6 1
	1949	40.1	67.	39.6	84	38.3	26		
	1950	39.1	85	35.6	22	38.2	12		
	1951	40.4	146	39.1	49	40.5	3		
Eastern	brook								
	1949	37.2	11.	40.1	3	33.9	1		
	1950	35.7	9	35.7	9	37.8	2		
	1951	38.4	28.	37.6	21	38.8	2		

Table 7. Average grouth per day from collection $1-3$ each year for brown and rainbow trout with average total weight of all fish for these two collections (growth in inches and weight in pounds).

Year	Species	Average growth per day from collection 1 to collection 3				Interval between collections In days	$\begin{aligned} & \text { Average } \\ & \text { total } \\ & \text { weight of } \\ & \text { all fish } \end{aligned}$
			II				
		Growth	Number	Growth	vunber		
2949	Brown	0.013	175	0.010	73	78	398.34
	Reinbow	0.012	67	0.010	117		
2950	Brown	0.018	57	0.015	95	86	245.67
	Reinbow	0.019	$\begin{array}{r}85 \\ \hline\end{array}$	0.016	32		
1951	Brown Rainbow	0.020 0.030	138 146	0.019 0.023	44	59	221.11

rainbow trout remained relatively high with a loss of only. 23.6 percent. Length Irequency modes remsined relatively the same throughout the three years with a greduel reduction in the mumbers in each mode. Condition factors remained about the eame during the study period.

There was no marked difference between the grovith of non-tagged and the tegged flsh from the same collections studied by Alvord (1953). Average lengths for I and II year classes were computed for each of the firet and third collections of each year.

Due to variation in the length of the interval between the first and thind collections for each of the three years ($59-86$ days), it was not feesible to use the difference in growth between these collections for comparison, so the everage grovth per day for these perlods wras used (Table 7). The growth per dey increased for both brown trout and rainbow trout for each succeeding year. In yearling brow trout the length per dey increased from 0.013 inch in 1949 to 0.020 Inch in 1951. In two year old fish the increase vas from 0.010 to 0.019 for the same period. Rainbor trout grew more rapidly with yearling fish incransing from 0.012 inch In 1949 to 0.030 inch in 1951 and the two year olds from 0.010 to 0.023 . The groirth rate in terms of length increased as the total weight of fish decreased for the study area.

Suremary

1. A study was made of ege, grouth and condition of the trout in Prickley Pear Creek, Nontama. Semples from six study seetlons were collected
for the sumers of 1949, 1950 and 1951.
2. The scales from 1,284 brown trout, 866 rainbor trout and 127 eastern brook trout were examined.
3. All three species of trout were found to have a neasonably good ift to a straight line for the length-scale radius relationship.
4. Brom trout grouth was the most rapid. Bighty-six percent were in age groups I-III. Calculated lengths at annulus formation for years $1-5$ vere: $3.8,7.7,11.1,13.7$ and 16.5 .
5. Rainbow trout groirth was the lowest. IInety-eight percent were in ege groups I-III. Calculated lengths at annulus formation for years $1-4$ vere: $3.5,6.6,9.4$ and 11.8 .
6. Rastern brook trout growth rate was slightly higher than for rainbow trout. No P1sh over three years old was found. Calculated lengthe at annulus formation for years $1-3$ were: $4.1,7.0$ and 9.6 .
7. Condition factors remalned relatively the same for each species with avereges of 37.7 for brom trout, 39.5 for rainbow trout and 37.5 for enstern brook trout.
8. Average growth per day from first to third collection of each year increased for each succeeding year for both brown trout and rainbov trout for age elasses I and II.
9. Growth in length incraased for both brown trout and rainbow trout as the totel veight of all fish decreased during the three year period. The total weight of all P1sh decreased 44.5 percent over this period.

Aclnowledgements
The writer is indebted to Dr. C. J. D. Brow for direction in this study and for assistance in preparation of the manuscilipt, and to Charles K. Phenicie for proposing the problem and for his many suggestions on working up the data. Dr. Bernard Ostle greatly assiuted with the statiatical york. Thanks are due the Montana F1sh and Game Department for Ifnamial assistence and for pernission to use scale collections. Dingell-Johnson Project $\mathrm{P}-5-\mathrm{R}-1$ provided the 1951 scale collections. The writer is grateful to the shocking crews for collection of scales and to Pellow students who assisted in the scale preperation and checking.

Literature Cited.
Alyord, Wi2liam A.
1953. Scate characters of lmomn ege trout. Unpublished thesis, Nontana State College.

Holton, Ceorge D.

1952. A trout population study on a small creek in Gallatin County, Montana. Unpublished thesis, Montana State College. Pp. 2-46. KathreIn, Joseph H.
1953. Growth rate of four species of Pish in a section of the Missour1 River between Holter Den and Cascede, Montana. Trens. Am. Flish. Soc, Vol. $80(2950)$, pp. 93-96.

Phenicie, Charles K.

1950. Rainbow trout growth. Bear Facts and Fish Teles (Montana Fish and Geme Dept.) March 1950, pp. 5-6.

Purkett, Charles A., J1:
1951. Grourth rate of trout in relation to elevation and temperature. Trans. Am. Fish. Soc., Vol. 80 (1950), pp. 251-259.

Schuck, Hownat A.
1945. Survival, population density, growth and movement of the wild broim trout in Crystel Creek. Mrens. Am. P4ah. Soc., Yo1. 73 (2943), PP. 209-230.

Shetter, David 8. and Albert 9. Herzand
1939. Species composition by age groups and stability of Pish popuLations in sections on three Michigan trout streams turtns the sumener of 2937. Prans. Am. Fish. Soc., Vol. 68 (1938), pp. 281-302.

Shetter, Devid 8. and Justin W. Leonard
1943. A poputation stuay of a 21 uitted area in a Michigan trout stream, September 1940, Mrans. Am. Fish. Soc., Vol. 72 (1942), 12. 35-51.

Steranich, Frank A.
2952. Thi poputation and movement of Pish in Prickley Pear Creek, Nontana. Mrans. Any. Fish. Spc., Vol. 81 (1951), pp. 260-274.

31762100159779

