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Abstract—We consider the system where a source randomly
generates status update messages and transmits them via a
network cloud to the intended destination. These update message
can take different times to traverse the network, which we
model as exponential service times, and may result in packets
reaching the destination out of order, rendering some of the
earlier transmissions obsolete. We analyze the status update age
for such a system, and show that it tracks well with simulation
results.

I. INTRODUCTION

The need for real-time status updates in an increasingly

ubiquitous connectivity environment is recognized in [1], in

which a new metric called the status update age has been de-

fined. Status updates are periodic messages that are generated

by a source, such as a sensor, in order to convey the current

state of a measurement or observation. In commercial appli-

cations, these can include but are not limited to environmental

sensing data [2], vehicular sensor measurements [3], etc. While

real-time status updating has become increasingly popular in

commercial applications fueled by the explosion of portable

devices, such status update messages have been commonplace

in military applications in the form of blue force tracking [4],

telemetry data etc., and more recently cooperative spectrum

sensing applications [5]. In such systems the status update age

of a message can be loosely defined as the duration between

the time of observation at the destination (of the current status)

and the time at which that particular packet was originally

generated at the source. These packets may contain individual

measurements or observations, or sometimes a collection of

measurements and/or observations can be aggregated into

a single packet, especially if they are required to reach a

common destination.

In this paper, we consider a system in which a source gener-

ates time-stamped status update messages that are transmitted

through a cloud-based communication system to a monitor

as shown in Figure 1. However, due to various reasons, the

source is limited in its ability to transmit at will, and can

only generate the current information in a random fashion.

For example, this could be due to limited battery resources in

a sensor node that relies on energy harvesting for continued

operation, or because of an application-specific feature that

requires a random sampling of data. Once generated, the

source can immediately transmit this update message without

needing to buffer it in a queue. Ideally, we would like the

destination to receive the status updates in the order that they

Fig. 1. Cloud-based real-time status updating system (green) with competing
traffic (blue/red).

were generated. However, that may not be possible if the

source and destination are separated by a network cloud, and

the update packets are routed through the network via multiple

paths to the destination, resulting in varying packet delivery

times.

An example of the evolution of the status update age in

such a system is shown in Figure 2, where the time average

of the status updates is the normalized area under the sawtooth

waveform. In most cases, the update packets are received by

the destination in the same order as they were transmitted

from the source. However, as explained earlier, because of

the randomness in the packet delivery times, there is a chance

that a packet, e.g., packet 3 which is generated at time t3, may

complete service after a packet generated in the future, e.g.,

packet 4 which reaches the destination at τ4 < τ3. In such a

case, the status age is updated when packet 4 is received at the

destination, but is unaffected when packet 3 is finally received

at τ3. Calculating the average status age in the presence of such

out-of-order packet receptions creates new challenges when

compared to [1], [6], and even then provides only a piece of

the puzzle.

The computation of the average status update age opens up

a whole new set of interesting questions, most importantly,

how does one maintain the freshness of information at the
receiver, and what are the levers of control we can use to
affect it? While intuition suggests that this can be achieved

by making the source generate updates more rapidly, this

could lead to increased congestion in the network and increase

the chances of out-of-order packet reception at the destina-

tion. Note that every time a packet overtakes one or more

previously generated packets, it results in wasted resources.

However, minimizing out-of-order receptions alone could lead

to outdated status information at the destination. Therefore,
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Fig. 2. Evolution of status update age.

this problem offers a rich set of possible options towards

simultaneously reducing wastage of resources and minimizing

the average age of information, which will be our focus for

future work.

The remainder of the paper is organized as follows. In

Section II, we formalize the definition of our system model,

then in Section III we present some useful building blocks

related to the system, which we use to derive the status age

in Section IV and present some numerical results. Finally, we

make some concluding remarks in Section V.

II. SYSTEM MODEL

We now define a system in which a source transmits

packets through a network cloud to a remote destination. At

transmission time, the source transmits a packet containing

the current information, so there is no aging of information

from waiting in a packet queue. As denoted in Figure 2,

transmissions occur at times t0, t1, . . ., and receptions at the

destination occur at times τ0, τ1, . . ..
We call the time between transmissions the interarrival time

Xa, a = 1, 2, . . ., which is equal to ta− ta−1. The interarrival

times are modeled as random, so the source does not have

control over the exact times at which it can transmit updates.

In our setup, the Xa’s are i.i.d. exponential random variables

with rate λ.

We call the time spent in the network the service time

Sa, a = 1, 2, . . ., which is equal to τa−ta. For each interarrival

time Xa, the service time Sa that immediately follows is

modeled as exponential with rate μ, and all the Sa’s are

i.i.d. and independent of the Xa’s. We consider this to be a

simplified model of the random delay due to routing through

the network cloud, which is a result of various phenomena

such as changing link states, competing data traffic, and other

network dynamics.

We assume that packets enter the cloud instantaneously at

each transmission time. Due to the randomness of the service

times, packets are not necessarily received at the destination

in the order in which they are transmitted, as noted in the

introduction. Some packets that arrive out of order are useless

to the receiver since they do not provide newer information. As

a result, the receiver does not update the status for every packet

received, which complicates the calculation of the status age.

Definitions. We define the status age Δ(t) as in [1], where

the age at time t is Δ(t) = t − u(t), where u(t) is the

timestamp of the most recent information at the receiver as

of time t. In our system, the timestamp coincides with the

transmission time of the packet. Given this definition, we can

see that the status age increases linearly with t but is reset

to a smaller value with each packet received that contains

newer information, resulting in the sawtooth pattern shown

in Figure 2.

We define an informative packet as a packet received at the

destination that provides newer information than what has been

received up to that time. For example, in Figure 2, we say that

packet 2 is an informative packet because it is received before

packets 3, 4, and all future packets (τ2 < min(τ3, τ4, . . .)).
However, as noted in the introduction, packet 3 is not consid-

ered informative since it is received after packet 4 (τ3 > τ4).

In terms of Xa’s and Sa’s, the condition for a packet m being

an informative packet is Sm < min
r

(
Sr+

r∑
a=m+1

Xa

)
, where

r = m+ 1,m+ 2, . . ..

We say that a packet p is rendered obsolete if some packet q
transmitted after p (i.e., tq > tp) is received at the destination

first (i.e., τq < τp), e.g., packet 4 renders packet 3 obsolete.

An informative packet is one that is not rendered obsolete.

III. BUILDING BLOCKS

Before we compute the status age for this system, we first

derive some useful building blocks, such as the probability that

a packet is an informative packet, the probability that a packet

renders the previous n packets obsolete, and some statistics

about the service times and interarrival times conditioned on

these events.

A. Conditional Probability of a Packet Being Informative

First we compute the probability that a packet m is an

informative packet, given that its service time is sm and

the interarrival times of future packets are xm+1, xm+2, . . ..
Let E1(m) be the event that a packet m is an informative

packet, and let Xa+b
a = [Xa, Xa+1, . . . , Xa+b]. Then E1(m)

conditioned on its service time Sm and the future interarrival

times X∞m+1 is given by

Pr{E1(m)|Sm = sm,X∞m+1 = x∞m+1}

= Pr

{ ∞⋂
r=1

{
Sm+r >

(
sm −

r∑
k=1

xm+k

)}}

=

∞∏
r=1

(
e−μ(sm−

∑r
k=1 xm+k)�

{
sm >

r∑
k=1

xm+k

}

+ �

{
sm <

r∑
k=1

xm+k

})
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= �{sm < xm+1}+
∞∑
r=1

(
e−μ(rsm−

∑r
k=1(r−k+1)xm+k)

·�
{

r∑
k=1

xm+k < sm <
r+1∑
k=1

xm+k

})
(1)

where xa+b
a = [xa, xa+1, . . . , xa+b] and �{A} = 1 when the

Boolean expression A is true, otherwise �{A} = 0.

B. Conditional Probability of a Packet Rendering the Previous
n Packets Obsolete

Now assuming that there have been at least n + 1 packets

transmitted in the past, we let E2(n) be the event that the

current packet renders exactly n of the previous packets

obsolete (i.e., the packet transmitted before the previous n
packets is an informative packet). For example, in Figure 2,

packet 4 renders exactly 1 packet obsolete, meaning packet 2

is an informative packet and packet 3 is rendered obsolete. We

first find the probability of this event conditioned on Sm and

Xm
m−n:

Pr{E2(n)|Sm = sm,Xm
m−n = xm

m−n}

= Pr

{(
Sm−n−1 < sm +

n∑
k=0

xm−k

)

∩
{ n−1⋂

ñ=0

[
sm−ñ−1 > sm +

ñ∑
k=0

xm−k

]}}

= (1− e−μ(sm+
∑n

k=0 xm−k))

n−1∏
ñ=0

e−μ(sm+
∑ñ

k=0 xm−k)

= e−μnsme−μ
∑n

k=1 kxm−n+k

− e−μ(n+1)sme−μ
∑n+1

k=1 kxm−n+k−1 . (2)

Averaging over the xm
m−n, we then get the probability condi-

tioned on Sm:

Pr{E2(n)|Sm = sm} =
λn∏n

k=1(λ+ kμ)

·
(
e−μnsm − λ

λ+ (n+ 1)μ
e−μ(n+1)sm

)
. (3)

C. Probability of an Informative Packet Rendering Previous
n Packets Obsolete

Having computed conditional probabilities of E1(m) and

E2(n), we will use them to compute the intersection of the

two events. We note that {E1(m)|Sm = sm,X∞m+1 = x∞m+1}
is independent of the Xm

m−n, so averaging the probability

of E2(n) over Xm
m−n as in (3) is valid prior to comput-

ing the probability of their intersection. We also note that

Pr{E2(n)|Sm = sm} consists of two terms with e−μnsm and

e−μ(n+1)sm . For the first term, we average Pr{E1(m)|Sm =
sm,X∞m+1 = x∞m+1} · e−μnsm over sm:

∫ ∞

0

Pr{E1(m)|Sm = sm,X∞m+1 = x∞m+1}e−μnsmfS(sm)dsm

=
1

n+ 1
(1− e−μ(n+1)xm+1)

+

∞∑
r=1

( 1

n+ r + 1
(1− e−μ(n+r+1)xm+r+1)

· e−μ
∑r

k=1(n+k)xm+k

)
.

We then average over x∞m+1 to obtain the expression

1

n+ 1
(1− λ

λ+ (n+ 1)μ
) +

∞∑
r=1

1

n+ r + 1

· (1− λ

λ+ (n+ r + 1)μ
)

λr∏r
k=1(λ+ (n+ k)μ)

. (4)

We repeat the process for the e−μ(n+1)sm which corresponds

to the second term in (3), which turns out to be equal to the

summation in (4). Therefore, the summation is canceled out,

and the overall probability is thus given by

Pr{E1(m) ∩ E2(n)} =
λnμ∏n+1

k=1(λ+ kμ)
. (5)

For brevity, we will let the event E(n) � E1(m) ∩ E2(n),
since the steady-state probability of the event does not depend

on m.

D. Conditional Mean of Sm

To compute the status age, we will need the statistics of the

Sa’s and Xa’s conditioned on the event E(n). We first focus on

the conditional mean of Sm, the service time for informative

packets. To derive the conditional mean E[Sm|E(n)], we first

find the conditional probability

fS|E(n){sm|E(n)}

=
Pr{E(n)|Sm = sm}fS(sm)

Pr{E(n)}

=
fS(sm)

Pr{E(n)}

∫
Pr{E(n)|Sm = sm,X∞m+1 = x∞m+1}

·fX(x∞m+1)dx
∞
m+1

from Bayes’ theorem. We can compute Pr{E(n)|Sm =
sm,X∞m+1 = x∞m+1} by taking the product of (1) and (3).

Then we can compute the expected value

E[Sm|E(n)] =
∫ ∞

0

smfS|E(n){Sm = sm|E(n)}dsm

=
1

Pr{E(n)}

∫ ∫ ∞

0

sm Pr{E(n)|Sm = sm,

X∞m+1 = x∞m+1}fS(sm)dsmfX(x∞m+1)dx
∞
m+1.

We integrate over the sm before integrating over the x∞m+1,

finally yielding

E[Sm|E(n)] =
1

λ+ (n+ 1)μ

(
1 +

λ

λ+ (n+ 2)μ

)
.
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E. Conditional Expectations of
∑m

k=m−n Xk,
∑m

k=m−n X
2
k ,∑m

j=m−n

∑m
k=j+1 XjXk

In this section, we solve for a variety of conditional expec-

tations related to Xm
m−n. To do so, we must first derive the

conditional pdf:

fX|E(n){xm
m−n|E(n)}

=
Pr{E(n)|Xm

m−n = xm
m−n}fX(xm

m−n)

Pr{E(n)}

=
fX(xm

m−n)

Pr{E(n)}

∫∫ ∞

0

Pr{E(n)|Sm = sm,X∞m−n = x∞m−n}

· fS(sm)dsmfX(x∞m+1)dx
∞
m+1.

We can compute Pr{E(n)|Sm = sm,X∞m−n = x∞m−n} by

taking the product of (1) and (2). After averaging out the Sm

and X∞m+1, we get the result

fX|E(n){xm
m−n|E(n)} =

λnμ∏n+1
k=1(λ+ kμ)

·
[( μ

λ+ (n+ 1)μ
+ σ(n)

)
e−μ

∑n−1
k=0 (n−k)xm−k

−
(λ+ (n+ 1)μ

λ
σ(n)

)
e−μ

∑n
k=0(n−k+1)xm−k

]
where

σ(n) =

∞∑
r=1

[
λr

(n+ r + 1)
∏r

k=1(λ+ (n+ k)μ)

·
(
1− λ

λ+ (n+ r + 1)μ

)]
.

To find the conditional sum of means, we compute

E

[
m∑

k=m−n

Xk

∣∣∣∣∣E(n)
]

=

∫ m∑
k=m−n

XkfX|E(n){Xm
m−n = xm

m−n|E(n)}dxm
m−n

=
n∑

k=0

1

λ+ kμ
+

n+ 1

λ
σ(n).

The conditional sum of second moments can be similarly

derived:

E

[
m∑

k=m−n

X2
k

∣∣∣∣∣E(n)
]

=
n∑

k=0

2

(λ+ kμ)2
+

2(n+ 1)

λ2

(
1 +

λ

λ+ (n+ 1)μ

)
σ(n).

Lastly, the conditional sum of crossterms can also be derived

to obtain

E

[
m−1∑

j=m−n

m∑
k=j+1

2XjXk

∣∣∣∣∣E(n)
]

=
n−1∑
j=0

n∑
k=j+1

2

(λ+ jμ)(λ+ kμ)
+

(n+ 1)σ(n)

λ

n∑
k=1

2

λ+ kμ
.

F. Probability of Packet Becoming Obsolete

Finally, we are interested in knowing what percentage of

packets transmitted become obsolete, which is an indicator of

resources that are wasted on non-informative packets. We can

easily find the probability of a packet becoming obsolete as

1− Pr{E1(m)} = ρ

ρ+ 1
−

∞∑
r=1

ρr

(r + 1)
∏r

k=1(ρ+ k)

·
(
1− ρ

ρ+ r + 1

)
where the utilization ρ = λ/μ. The probability of packets be-

coming obsolete is solely a function of the system utilization.

IV. STATUS AGE UNDER RANDOM UPDATES

A. Status Age Computation
Now that we have computed the expressions for the building

blocks relating to the event E(n) and the Xa’s and Sa’s, we

can now compute the average status age for our system. Sim-

ilar to the approach in [1], we express the age by computing

the total area of the trapezoids Q1, Q2, . . . in Figure 2 divided

by the time elapsed T . In our case, the difference is that we

have one trapezoid per informative packet, rather than one for

every packet transmitted, as in [1]. Here, the bottom edges

of the trapezoids can consist of multiple interarrival times

due to some packets being rendered obsolete, rather than one

interarrival time per trapezoid. We ignore the pieces of the

trapezoidal areas that lie outside the edges of the time window,

since they disappear in the limit as the window length T
approaches infinity. The average age over T can be expressed

as

ΔT =
1

T

D(T )∑
d=1

1

2

⎡
⎢⎣
⎛
⎝Sd +

d∑
p=d−nd

Xp

⎞
⎠

2

− S2
d

⎤
⎥⎦

=
1

T

D(T )∑
d=1

1

2

⎡
⎢⎣
⎛
⎝ d∑

p=d−nd

Xp

⎞
⎠

2

+ 2Sd

⎛
⎝ d∑

p=d−nd

Xp

⎞
⎠
⎤
⎥⎦

=
D(T )
T

1

D(T )

D(T )∑
d=1

1

2

[
d∑

p=d−nd

X2
p

+

d−1∑
p=d−nd

d∑
q=p+1

2XpXq + 2Sd

⎛
⎝ d∑

p=d−nd

Xp

⎞
⎠]

where D(T ) is the number of informative packets, and nd is

the number of packets prior to the informative packet d that

are rendered obsolete. If we let T go to infinity, the age is

given by

Δ = λ
1

2

∞∑
n=0

Pr{E(n)}
(
E

[
m∑

k=m−n

X2
k

∣∣∣∣∣E(n)
]

+ E

[
m−1∑

j=m−n

m∑
k=j+1

2XjXk

∣∣∣∣∣E(n)
]

+ 2E[Sm|E(n)]E
[

m∑
k=m−n

Xk

∣∣∣∣∣E(n)
])

.
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Fig. 3. Status age (for various μ) and % obsolete packets vs. utilization.

Note that λ is not equal to the arrival rate of informative

packets limT→∞D(T )/T , but when λ is combined with

Pr{E(n)}, only the informative packets are accounted for.

Finally, after substitution of the terms from the building

blocks in previous section, we can express the average status

age as

Δ = λ
∞∑

n=0

Pr{E(n)}
[

n∑
j=0

(
1

λ+ jμ

·
( (n+ 2)μ

(λ+ (n+ 1)μ)(λ+ (n+ 2)μ)
+

n∑
k=j

1

λ+ kμ

))

+
(n+ 1)σ(n)

λ

(
(n+ 2)μ

(λ+ (n+ 1)μ)(λ+ (n+ 2)μ)

+

n+1∑
l=0

1

λ+ lμ

)]
. (6)

B. Upper and Lower Bounds

We will compare our status age expression with some simple

upper and lower bounds. An upper bound for the status age is

λ multiplied by the average of the trapezoidal areas for each

packet, 1
2 [(Xa+Sa)

2−S2
a], which contains the area under the

curve plus some extraneous segments. This bound is given by

ΔUB = λ
(

E[X2]
2 + E[S]E[X]

)
= 1

λ + 1
μ .

For the lower bound, we consider altering the service time

model such that the new S̃a can be no greater than Xa+1, the

interarrival time of the next packet. This results in trapzoidal

areas under the status age curve that are no greater than those

for our actual system. By conditioning on the probability that

the original Sa is greater than or less than Xa+1, we can

compute the average trapezoidal area, eventually arriving at

the lower bound ΔLB = 1
λ + 1

λ+μ −
λμ

(λ+μ)3 .

C. Numerical Results

We have numerically evaluated our expression for status age

(6) for μ = 0.5, 1, 1.5 and plotted the results vs. the system

utilization ρ in Figure 3. We have also simulated the system

and computed the (simulated) age over 105 time units and

averaged over multiple trials, and the result is very close to the

numerically-evaluated (theoretical) age. The upper and lower

bounds are also included in the figure using dotted/dashed lines

for each μ.
We can see that the status age is minimized when the

system utilization is increased, since more frequent transmis-

sions leads to more frequent updates in this system model.

However, increasing utilization comes at the cost of needless

consumption of network resources. Since packets that are

obsolete do not contribute to reducing the age, they end up

being a waste of resources. We have also plotted in the same

figure the percentage of packets that are rendered obsolete

(green dotted line, right-hand y-axis), and verified the results

via simulation. We see that for high utilization, over 25% of

packets are wasting resources. In our future work, we will

further investigate this tradeoff between minimizing the status

age and needless consumption of resources.

V. CONCLUSION

The age of information for a status updating system through

a network cloud is considered in this work. Formulating

this system model, with random transmission and service

processes, no waiting time, and the possibility of packets

arriving out of order, opens up a new set of problems for

minimizing the status age. In this work, we have computed

the status age for exponential interarrival and service times

with constant rates, but the computation is complicated by the

out-of-order reception, with some packets having no effect on

the status age. We have derived an expression for the status

age and verified it by simulation, and we observe that the

age decreases with increasing system utilization and service

rate, as expected. However, increasing the utilization comes

at the cost of increasing wasted resources spent on packets

that are rendered obsolete. We plan to extend this work by

considering approaches to reduce wastage of resources, as well

as considering different models for the service time statistics

to account for congestion.
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