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Am. J. Physiol. 271 (Regulatory Integrative Camp. Physiol. 
40): R1078-R1084,1996.-We postulated that aging is associ- 
ated with disruption in the fractallike long-range correlations 
that characterize healthy sinus rhythm cardiac interval 
dynamics. Ten young (21-34 yr) and 10 elderly (68-81 yr) 
rigorously screened healthy subjects underwent 120 min of 
continuous supine resting electrocardiographic recording. We 
analyzed the interbeat interval time series using standard 
time and frequency domain statistics and using a fractal 
measure, detrended fluctuation analysis, to quantify long- 
range correlation properties. In healthy young subjects, inter- 
beat intervals demonstrated fractal scaling, with scaling 
exponents ((x) from the fluctuation analysis close to a value of 
1.0. In the group of healthy elderly subjects, the interbeat 
interval time series had two scaling regions. Over the short 
range, interbeat interval fluctuations resembled a random 
walk process (Brownian noise, ~1 = 1.5), whereas over the 
longer range they resembled white noise (CX = 0.5). Short ((x,)- 
and long-range ((x1) scaling exponents were significantly 
different in the elderly subjects compared with young ((x, = 
1.12 ? 0.19 vs. 0.90 t 0.14, respectively, P = 0.009; <x1 = 
0.75 2 0.17 vs. 0.99 t 0.10, respectively, P = 0.002). The 
crossover behavior from one scaling region to another could 
be modeled as a first-order autoregressive process, which 
closely fit the data from four elderly subjects. This implies 
that a single characteristic time scale may be dominating 
heartbeat control in these subjects. The age-related loss of 
fractal organization in heartbeat dynamics may reflect the 
degradation of integrated physiological regulatory systems 
and may impair an individual’s ability to adapt to stress. 

heart rate; cardiovascular control; modeling 

SEVERAL RECENT STUDIES (3,8,18,20,22,23) have shown 
that the normal beat-to-beat fluctuations of the healthy 
sinus rhythm heartbeat are neither strictly regular nor 
completely random, but demonstrate an underlying 
fractallike structure, characterized by the presence of 
similar dynamic behaviors operating over multiple 
scales in time (long-range correlations). It is likely that 
the complex dynamics of the healthy heartbeat arise 
from numerous coupled control systems and feedback 
loops that regulate the cardiac cycle on different time 
scales (10). 

Aging has a profound impact on many of the interact- 
ing neural and endocrine mechanisms that regulate 
heart rate (10, 12). Parasympathetic and sympathetic 
influences become attenuated, renin and angiotensin 

levels fall, and circadian hormonal and temperature 
rhythms lose amplitude (11). The heart rate time series 
loses much of its complex, irregular behavior (10, 12). 
This change in cardiac dynamics has been quantified by 
statistics such as “approximate entropy” and “approxi- 
mate dimension,” which are lower in healthy elderly 
subjects compared with young (7, 19). Furthermore, 
power spectral analysis reveals a relative loss of higher 
frequency heart rate fluctuations, suggesting a change 
in the fractal scaling that characterizes healthy heart 
rate dynamics (13). 

However, several methodological issues limit the 
interpretation of previous studies. First, previously 
applied statistical measures are highly sensitive to 
nonstationarities in time series data and therefore 
cannot identify the underlying structure of physiologi- 
cal fluctuations if there are trends due to external 
environmental influences. As a result, some previous 
studies have examined relatively short stationary data 
sets that are not long enough to determine correlation 
properties over multiple time scales (7, 13, 19). One 
study examined longer time series, but these were 
derived from ambulatory cardiac recordings that are 
highly influenced by activity, sleep, and other factors 
that may produce problematic trends in the data (4). 
Finally, previous studies of aging are limited by the 
lack of rigorous screening procedures to exclude the 
presence of occult coronary artery disease in elderly 
subjects. 

We recently introduced the technique of detrended 
fluctuation analysis (DFA), based on a modified root 
mean square analysis of a random walk, to assess the 
intrinsic correlation properties of a dynamic system 
separated from external trends in the data (16). The 
present study applied this technique to 2 h of continu- 
ous electrocardiographic data gathered from rigorously 
screened, healthy young and old subjects during wake- 
ful supine rest. Our aim was to test the hypothesis that 
aging, in the absence of disease or nonstationary envi- 
ronmental influences, is associated with an alteration 
in long-range (fractal) correlations in sinus rhythm 
interbeat interval dynamics. 

METHODS 

Subjects. Two groups of healthy human subjects, 10 young 
(mean age 27 yr, range 21-34 yr) and 10 elderly (mean age 74 
yr, range 68-81 yr), participated in this study. Each group 
consisted of five women and five men. All subjects provided 
written informed consent and underwent a screening history, 
physical examination, routine blood count and biochemical 
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Fig. 1. Interbeat interval time series (left) and their 
corresponding frequency spectra (right, plotted as log 
power vs. log frequency) for a young and old subject 
are shown in A and 23, respectively. To account for 
differences in the mean and variance of interbeat 
intervals between young and elderly subjects, the 
amplitude of R-R interval fluctuations is resealed as 
SD units centered around a mean of zero. Thus the 
visible difference in the structures of the time series is 
related to their dynamic properties (sequential order- 
ing in time) rather than their interbeat interval 
distributions. Also shown are time series and fre- 
quency spectra for three types of dynamic behavior. 
White noise (C) is a sequence of independent random 
values with 01 = 0.5, representing no correlation 
between values. Frequency spectrum is horizontal 
with equal power in all frequencies and a correspond- 
ing P-exponent of 0. Brownian noise (D), also known 
as a random walk, has (x = 1.5 and p = 2, indicating 
presence of short-term correlations and, conse- 
quently, a large amplitude of fluctuation for values 
that are relatively far apart (i.e., low frequency). 
Fractal (l/n noise (23) shows long-range correlations, 
with an cx and p of 1.0. 

Beat number 
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analysis, electrocardiogram (ECG), and exercise tolerance 
test. Only healthy, nonsmoking subjects with normal exercise 
tolerance tests, no medical problems, and taking no medica- 
tions were admitted to the study. 

ProtocoZ. Subjects lay supine for 120 min while continuous 
ECG signals were collected. All subjects remained in an 
inactive state in sinus rhythm while watching the movie 
“Fantasia” (Disney) to help maintain wakefulness. The con- 
tinuous ECG was digitized at 250 Hz. Each heartbeat was 
annotated using an automated arrhythmia detection algo- 
rithm, and each beat annotation was verified by visual 
inspection. The R-R interval (interbeat interval) time series 
for each subject was then computed. This time series was 
used for the DFA. A Fourier power spectrum analysis was also 
performed on the original R-R interval time series, but 
without detrending. 

AnaZysis of correlations: DFA. Fluctuations in any inter- 
beat interval time series can be usefully analyzed by compar- 
ing their behavior to various types of “noise” seen in dynamic 
systems (Fig. 1). The noisy signals produced by these systems 
have different statistical correlations that reveal important 
properties of their dynamics. 

With white noise, no correlations exist in the time series, 
and the sequence of interbeat intervals is completely random 
(Fig. 1C). Th e f  requency spectrum of white noise is flat, 
because all frequencies are present in equal intensity (power) 

across the entire spectrum (like white light, in which each of 
the component colors has equal intensity). Alternatively, 
there may be short-range correlations in the time series that 
decay rapidly as the data points move further apart. This type 
of short-range correlation is very common in nature. One 
extreme example is the so-called random walk or Brownian 
noise (Fig. 10). In this case, the interbeat interval at any 
given instant is strongly correlated to the previous interval. 
The frequency spectrum for a random walk process is charac- 
terized by a rapidly decaying smooth curve in which the 
amount (power) of the fluctuation is inversely proportional to 
the frequency squared ( llf2). The exponent 2 in this “power 
law” relationship between frequency and power is called the 
scaling exponent p. 

Another type of noise that is commonly encountered in 
nature exhibits persistent long-range correlations (1,14); i.e., 
the value at every point is partially dependent on the values 
at all previous points. This is called “l/f noise” (Fig. 1E). The 
frequency spectrum is also a smooth curve, but the amplitude 
of fluctuations is inversely proportional to the first power of 
frequency <l/f, p = l), obeying the l/f power law of fractallike 
processes. l/f Noise is usually associated with the dynamic 
behavior of time series generated by complex systems that 
have multiple time scales. By visual inspection, the young 
and old subjects’ interbeat interval time series shown in Fig. 
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1, A and B, appear to share features with the different noises A 
in Fig. 1, C-E. 1.6 

One way to quantify the dynamic differences in the inter- 3 1.4 
beat interval time series is to apply standard Fourier analysis 
techniques and calculate the P-exponent in the power law 

$ , 2 
E . 

relating frequency to power (8, 13). This exponent is simply u ‘-O 
the negative slope of the regression line drawn through the fx 0.8 

log-log plot of power vs. frequency. A (3-exponent (slope) of 0 
represents the flat spectrum of white noise, whereas other 
values suggest that there are correlations in the data. Avalue 
close to 1 indicates the presence of a fractal process with 
long-range correlations, whereas a value close to 2 suggests 
there are primarily short-term correlations analogous to a 
random walk (see Fig. 1). 
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One drawback of the power spectrum analysis is that it is 
highly influenced by nonstationarities in the data, making 
the P-exponent estimate unreliable. Therefore, we also used 
DFA (16) for more accurate measurement of the correlation 
properties. This method permits the detection of correlations 
embedded in a seemingly nonstationary time series and 
avoids the spurious detection of apparent long-range correla- 
tions that are an artifact of nonstationarities. Because the 
detrending procedure is implemented on all scales, DFA can 
be used to quantify the self-similar properties of a signal. DFA 
has been previously validated (21) and successfully applied to 
detect long-range correlations in highly heterogeneous DNA 
sequences (2, 15) and other complex physiological signals (6). 

To illustrate the DFA algorithm, we use the interbeat 
interval time series shown in Fig. 2A as an example. The total 
length of the interbeat interval time series (N) is first 
integrated 

k 

y(k) = c [R-R(i) - R-R,,,1 
i=l 

where R-R(I) is the ith interbeat interval and R-R,,, is the 
average interbeat interval. Next, the integrated time series is 
divided into boxes of equal length n (Fig. 2, B and C). In each 
box of length n, a least-squares line is fit to the data 
(representing the trend in that box) (Fig. 2B). The y- 
coordinate of the straight line segments is denoted by y,(k). 
Next, we detrend the integrated time series, y(k), by subtract- 
ing the local trend, y,(k), in each box. The root mean square 
fluctuation of this integrated and detrended time series is 
calculated by 

F(n) = 1lN c [y(k) - y,(k)12 
k=l 

This computation is repeated over all time scales (box sizes) 

Typically, F(n) will increase with box size (Fig. 20). A linear 

to provide a relationship between F(n), the average fluctua- 
tion as a function of box size, and the box size n (Fig. 2, B-D). 

relationship on a double-log graph indicates the presence of 

In this study, box size ranged from 4 to -300 beats. Abox size 
larger than 300 beats would give a less accurate fluctuation 

scaling, i.e., F(n) ==: n”. 

value because of the finite-length effects of the data (15). 

Under such conditions, the fluctua- 
tions can be characterized by a scaling exponent oc, the slope 
of the line relating log F(n) to log n (Fig. 20). An cx of 0.5 
corresponds to white noise, QI = 1 represents llfnoise, and QL = 
1.5 indicates Brownian noise or a random walk. The exponent 
cx is related to p by a simple formula (15): (x = (1 + @/2. 

Crossover phenomena. A good linear fit of the log F(n) vs. 
log n plot (DFA plot) indicates that F(n) is proportional to na, 
where Q is the single exponent describing the correlation 
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Fig. 2. Detrended fluctuation analysis: interbeat interval time series 
(A) is integrated and shown by the heavy curve in B. Vertical dotted 
lines indicate a box of size n = 200 beats; solid straight line segments 
represent the “trend” estimated in each box by a linear least-squares 
fit. At this box size, the fluctuation of the curve around the trend, 
F(200), is calculated. When the box size is decreased to 100 (C), the 
trends more accurately fit the curve and the fluctuation value 
decreases. D: F(n) plotted against several box sizes, n, on a log-log 
scale. Curve is approximately linear over 2 regions with a slope (x, for 
small box sizes and cxl for larger box sizes. 

properties of the entire range of time scales. However, in some 
of the subjects’ interbeat interval time series we found that 
the DFA plot was not strictly linear but rather consisted of 
two distinct linear regions of different slopes separated at a 
break point n@. This observation suggests there is a short- 
range scaling exponent, QI,, over periods of 4 to nbP beats, and 
a long-range exponent, <xl , over longer periods. 

To systematically identify the break point for each subject, 
we examined the second derivative of the DFA plot. Because 
the ideal break point separates two linear regions of different 
slopes, we placed the break point between the two regions of 
relatively stable slope, at the point where the slope was 
changing most rapidly. The second derivative function, d2/ 
d(log&2 [log&+2)], has local extrema at such points, and 
the break points were chosen to coincide with these extrema. 

StatisticaL anaZysis. Statistical comparisons between groups 
of young and elderly subjects were conducted using Student’s 
t-test. AP < 0.05 was considered statistically significant. 
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RESULTS 

The mean heart rates of the young and elderly 
subjects were similar. Although the standard deviation 
of heart rate was significantly greater in the young 
subjects compared with the old (P < 0.0001; Table l), 
this measure of variance does not provide information 
about the dynamic properties of the time series. Figure 
1 shows the interbeat intervals for representative 
young and elderly subjects in A and B, respectively. The 
difference in the dynamic behavior of the two interbeat 
interval time series is visually apparent. The scaling 
exponents of the interbeat interval time series are 
independent of the mean and SD and provide addi- 
tional information about the underlying structure of 
the data. 

The results of the power spectral analysis are shown 
in Table 1. The group of older subjects tended to have a 
larger P-exponent (more negative slope) than the youn- 
ger subjects, consistent with previous results (13). 
However, this difference did not quite reach statistical 
significance. 

Within the entire group of 20 subjects, “bP usually 
ranged from 25 to 30 heartbeats. Therefore, ~1, (short- 
range exponent) represents correlations on a scale of 30 
beats or less, and ~1~ (long-range exponent) represents 
correlations on a scale lasting from the length of 40 
beats to 10 min. The average values of a, and al for the 
young and old subjects are shown in Table 1. There was 
a highly significant difference between ~1, and al for elderly 
subjects (P = O.OOOZ>, but not for the young (P = 0.14). 

Figure 3 is a scatter plot showing the distribution of 
individual a, and al values among the 20 subjects. The 
plot reveals that most of the older subjects have a 
larger a, compared with the young, tending more 
toward a value of 1.5 (Brownian noise). For cxl most of 
the young subjects’ values are clustered around 1 (l/f 
noise), whereas for most of the elderly subjects al is 
lower, closer to a value of 0.5 (white noise). The 
differences in these scaling exponents between young 
and elderly groups are statistically significant (Ta- 
ble 1). 

Model development for crossover phenomena. As indi- 
cated above, elderly subjects exhibited crossover behav- 
ior in their interbeat interval scaling exponents, from a 
higher value of cx (close to Brownian noise) for fluctua- 
tions on small time scales, to a lower value of (x (close to 

Table 1. Heart rate and fluctuation 
measures for subjects 

Young Old 
(n = 10) (n = 10) 

Student’s 
t-Test 

P Value 

Mean heart rate 60.55k8.77 57.22rt8.60 0.404 
Range of heart rate 46-73 41-71 
SD heart rate 6.12 + 1.28 2.8220.99 CO.001 
Fluctuation measures 

% 0.90 t 0.14 1.12 + 0.19 0.009 

a1 0.99LO.10 0.75kO.17 0.002 
P 1.14+0.15 1.3320.29 0.101 

Values are means t SD; n = no. of subjects. 
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Fig. 3. Long-range vs. short-range correlation, quantified by cx-expo- 
nent, for young and old, male and female subjects. Break points 
between the long- and short-range linear segments were chosen 
where local extrema occurred in the second derivative of the log-log 
fluctuation plot (Fig. 20). Note the clustering of the young subjects 
near cxl = 1.0 and the separation between young and old subjects. 

white noise) for larger time scales. We modeled this 
type of crossover behavior by a simple stochastic model 
from time series analysis, a first-order autoregressive 
process: R-R(i + 1) = aR-R(i) + E(i), where E(i) is a 
random variable chosen from a Gaussian distribution. 
The model simply states that the next interbeat inter- 
val, R-R(i + 1), combines two inputs: 1) stochastic noise 
(E) of the system and 2) information about the present 
interbeat interval R-R(i). The coefficient a indicates 
how strongly this information propagates from one 
beat to the next. We are interested in the case where 
OSall. 

There are several relevant points about this model. 
First, it is easy to show that 

R-R(i + m) = aR-R(i + m - 1) 

+ E(i + m - 1) = . l . = a”R-R(i) + F(E) 

where m is an interval in time and F(E) is a function of 
the stochastic variable E and is therefore independent 
of R-R. Thus the correlation between R-R(i + m) and 
R-R(i) is proportional to am = exp(mln a). In other 
words, the autocorrelation function decays in an expo- 
nential way with a characteristic time scale 7 = -l/in 
a, because am = exp(mln a) = exp(-m/T). We can also 
calculate the power spectrum [S( f )] of our model by a 
Fourier transform of the autocorrelation function. We 
obtain 

CT 
S(f) = 

1 + (2TfT)2 

where C is a constant. 
Let us next consider two extreme cases of our model 

to get a better picture of the above calculation. 1) Under 
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the condition a = 0, there is no correlation between any fit this model particularly well. Three of these subjects 
two interbeat intervals; i.e., the R-R time series from were the oldest in our sample (76, 77, and 81 yr), and 
this model will be white noise. Indeed, 7 = - l/in 0 = the other was 71 years of age. There were no gender 
-l/-m = 0 and S(f) is flat (equal to a constant). 2) differences in our results (Fig. 3). 
Under the opposite extreme condition, a = 1, R-R time 
series behaves like a random walk (Brownian noise), DISCUSSION 
with 7 going to m and S( f> to -l/f. 

For a not equal to 0 or 1, S(f) shows a crossover from This study provides new information about age- 
Brownian noise for small time scales (CT), where the related alterations in cardiovascular dynamics. We 
short-range correlation dominates the system, to white confirm previous observations in healthy young sub- 
noise for large time scales (>T), where the noise (E) in jects (8, 18, 20, 22, 23) that cardiac interbeat intervals 
the system dominates the process. Note that this are neither random nor regular, but demonstrate frac- 
behavior is very similar to the interbeat interval time tal scaling, similar to those seen in many biological 
series of some of the elderly subjects. systems (1, 14). This is evident in the short- and 

Figure 4 shows a comparison between data from one long-term a-exponent values near 1, which is character- 
elderly subject and our model simulation. We rescale istic of llfnoise. 
the R-R time series to have zero mean and unit Most importantly, our data suggest there may be a 
standard deviation, so the model has only one free breakdown in the fractal scaling of interbeat interval 
parameter, a, to fit. The Fourier power spectrum and fluctuations with healthy aging. In healthy elderly 
DFA plots confirm that the model can indeed mimic the subjects as a group, there were two scaling regions in 
fluctuations of interbeat interval in this elderly subject. the interbeat interval time series, suggesting that 
Four elderly subjects, whose ~1, ranged from 1.19 to 1.40 processes influencing cardiac cycles over ~40 beats 
and QI~ from 0.44 to 0.80 (bottom right corner of Fig. 3), differ from those that operate over the longer term. It is 

-4 
0 200 400 600 800 

B beat number 

4," I I ’ ” 13 ” 1” 8 

Fig. 4. R-R interval time series of a healthy 77-yr-old 
woman (A), simulated time series generated by a first- 
order autoregressive model (B), and the frequency spec- 

trum [s(f >; Cl and fluctuation plot (D) for the elderly 
subject (solid line) and model simulation (dashed line). 
Note the crossover behavior resulting in 2 scaling re- 
gions in the frequency spectra and fluctuation plots for 
both actual and simulated data. The model appears to fit 
the subject’s data quite closely. -4"""" " " " ' " 
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possible that short-term fluctuations in interbeat inter- 
vals represent primarily autonomic and respiratory 
influences, whereas longer-term physiological fluctua- 
tions are also due to endocrine systems, metabolic 
processes, volume shifts, and other influences. Over the 
short range in elderly subjects, interbeat interval fluc- 
tuations resembled a random walk process (Brownian 
noise), whereas over the longer range they resembled 
white noise. This apparent loss of fractal organization 
in heartbeat dynamics may reflect the degradation and 
decoupling of integrated physiological regulatory sys- 
tems with aging. 

Finally, we have shown that the dynamic heartbeat 
behavior of some elderly subjects (particularly the 
three oldest subjects located on the bottom right corner 
of the 01, vs. QI~ relation shown in Fig. 3) fits a first-order 
autoregressive model. This model provides an explana- 
tion for the observed crossover behavior of the data 
from certain elderly subjects. For the healthy young 
subjects, less crossover was observed, as indicated by 
their position near the diagonal line ~1, = ~1~ in Fig. 3. 
This finding in the young implies a balance between 
many different physiological inputs that operate over 
different time scales to regulate cardiac cycle times. In 
contrast, if some of these inputs degrade and others 
dominate the system as a result of aging, crossover 
behavior may appear. In the autoregressive model 
discussed above, the interbeat intervals are strongly 
correlated over the short time scale, but then the 
correlation decays in an exponential fashion. This 
model suggests that one input with a characteristic 
time scale, 7, dominates the system. 

There was large interindividual variability in the 
a-exponents and crossover behaviors of the elderly 
subjects. It is notable that three of the four subjects in 
whom the loss of fractal scaling was most marked were 
the oldest in our sample. This preliminary observation 
suggests that physiological aging may be associated 
with a progressive degradation in long-range interbeat 
interval correlations, which occurs at different rates in 
different individuals. Measures such as DFA that can 
quantify the dynamic properties of physiological sys- 
tems may have application as biomarkers of physiologi- 
cal aging. 

An age-related loss of fractal scaling in cardiovascu- 
lar dynamics may impair an individual’s ability to 
adapt to external and internal perturbations and predis- 
pose elderly people to the onset of disease (10,12>. This 
notion is supported by the previous observation that 
the development of presyncope during lower body nega- 
tive pressure is associated with a reduction in the 
fractal dimension of heart rate variability (3). Further- 
more, congestive heart failure is associated with a loss 
of long-range correlations in interbeat interval dynam- 
ics, with an average ~1, value of 0.80 t 0.26 (mean t 
SD) and ~11 value of 1.12 2 0.22, both significantly 
different from values seen in normal subjects (17). 
Although aging may increase the risk of developing 
diseases like congestive heart failure, the age-related 
loss of fractal scaling is in an opposite direction, with a 
mean (*SD> cy, value of 1.12 t 0.19 and cxl of 0.75 t 

0.17. The possibility that cardiac dynamics in healthy 
aging are distinct from those seen in heart disease 
opens new opportunities for the use of fluctuation 
measures as diagnostic tools to distinguish normal 
aging from occult disease. Further studies are needed 
in large groups of individuals with various ages and 
pathological conditions. 

This study has several strengths as well as potential 
limitations. First, by using the new DFA technique and 
studying subjects under carefully controlled resting 
conditions, we have largely overcome the problem of 
distinguishing true physiological fluctuations from non- 
stationary environmental trends in time series data. 
Second, we have tried to ensure that our subjects are 
entirely healthy. On the basis of a rigorous screening 
protocol, including an exercise tolerance test, subjects 
were determined to be free of any detectable diseases, 
as well as medication use or toxic exposures that could 
influence the results. Although this increases our confi- 
dence that the findings represent changes solely attrib- 
utable to physiological aging, the cross-sectional rather 
than longitudinal design of this study raises the possi- 
bility that our results may be due to cohort or other 
effects. The current study also did not address the 
physiological mechanisms underlying the changes in 
interbeat interval dynamics we observed. 

Perspectives 

The fractal organization of healthy sinus rhythm 
heartbeat dynamics is poorly understood but may 
represent a network of coupled neuronal pathways and 
feedback loops that regulates cardiac cycle time and 
thus permits rapid adaptation to physiological stress. 
Because vagal blockade with atropine sulfate appears 
to increase the P-exponent (i.e., reduce the fractal 
scaling) of resting R-R interval fluctuations in healthy 
humans; Ref. 23), the fractal nature of cardiac interval 
dynamics may be mediated in part by parasympathetic 
neural activity. Healthy aging is associated with a 
decline in vagal control of heart rate (5), as well as an 
impaired cardiac chronotropic response to P-adrenergic 
stimulation (9). Therefore, the observed age-related 
alterations in fractal scaling of interbeat interval dy- 
namics may be partially due to degradation of auto- 
nomic nervous system influences. The loss of scale 
invariance and emergence of a dominant time scale in 
cardiac interbeat intervals of elderly subjects is consis- 
tent with this hypothesis. Additional studies are needed 
to determine the physiological mechanisms underlying 
the fractal nature of cardiac dynamics and how these 
change with aging and cardiovascular disease. Further- 
more, if a loss of fractal scaling in the output of 
physiological control systems is associated with im- 
paired adaptability or resiliency, measures such as DFA 
may be able to quantify individual disturbances in 
adaptive capacity and predict the onset of disease. 
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