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Abstract

Background: It has been reported that the composition of human gut microbiota changes with age; however,

few studies have used molecular techniques to investigate the long-term, sequential changes in gut microbiota

composition. In this study, we investigated the sequential changes in gut microbiota composition in newborn to

centenarian Japanese subjects.

Results: Fecal samples from 367 healthy Japanese subjects between the ages of 0 and 104 years were analyzed by

high-throughput sequencing of amplicons derived from the V3-V4 region of the 16S rRNA gene. Analysis based on

bacterial co-abundance groups (CAGs) defined by Kendall correlations between genera revealed that certain transition

types of microbiota were enriched in infants, adults, elderly individuals and both infant and elderly subjects. More

positive correlations between the relative abundances of genera were observed in the elderly-associated CAGs

compared with the infant- and adult-associated CAGs. Hierarchical Ward’s linkage clustering based on the abundance

of genera indicated five clusters, with median (interquartile range) ages of 3 (0–35), 33 (24–45), 42 (32–62), 77 (36–84)

and 94 (86–98) years. Subjects were predominantly clustered with their matched age; however, some of them fell into

mismatched age clusters. Furthermore, clustering based on the proportion of transporters predicted by phylogenetic

investigation of communities by reconstruction of unobserved states (PICRUSt) showed that subjects were divided into

two age-related groups, the adult-enriched and infant/elderly-enriched clusters. Notably, all the drug transporters

based on Kyoto Encyclopedia of Genes and Genomes (KEGG) Orthology groups were found in the

infant/elderly-enriched cluster.

Conclusion: Our results indicate some patterns and transition points in the compositional changes in gut microbiota

with age. In addition, the transporter property prediction results suggest that nutrients in the gut might play an

important role in changing the gut microbiota composition with age.
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Background
The microbiota composition of the human gut changes

with age, and alterations in this composition influence

human health. In the early 1970s, culture-based methods

were used to demonstrate that the gut microbiota

composition changes during the aging process [1]. Re-

cent studies using molecular methods have also indicated

clear differences in the composition of gut microbiota

among infants, toddlers, adults and the elderly [2]. After

birth, the initial microbiota composition is affected by the

mode of birth [3–5] and the mother’s gut microbiota

[6, 7]. Subsequently, a significant shift in the composition

of the gut microbe community occurs when the infant

transitions to a more solid and varied diet. A recent report

suggested that the age-affiliated microbiota population

shifts from 3 days to 2 years after birth and that major

differences are apparent between 2 years and adulthood

[8]. Other reports have indicated that the phylogenetic
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composition of the bacterial communities evolve

towards an adult-like configuration within the 3- [9]

or 4-year [10] period after birth. It has been recently

shown that the gut microbiota is not yet established

at 5 years of age [11]. Another broad shift in gut

microbe populations occurs later in life. However,

almost all studies related to the gut microbiota of the

elderly have been performed on subjects classified

into segmented age groups based on varying defini-

tions of ‘elderly’, such as ‘over 60’ [12], ‘over 65’ [13],

‘over 70’ [14] or ‘centenarian’ [15]. It is unclear when

and how the microbiota composition shifts from the

adult stage to the elderly stage. Yatsunenko et al. [9]

conducted a large study with subjects aged 0–83 years

and revealed the sequential changes that occur with

age. Their report provided important insights, such as

the period required to form an adult-like gut

microbiota, greater between-subject variation among

children than adults, differences in the phylogenetic

composition of gut microbiota among individuals

from different countries and an increase in bacterial

diversity with age. Nevertheless, the sequential changes

that occur in the elderly remained unclear due to the

limited number of subjects older than 60 years. Fur-

thermore, although abundant data on gut microbiota

composition are available in some public databases,

sequential changes cannot be evaluated with these

public data because of biases stemming from differ-

ences in study methods, especially in DNA extraction

[16, 17], and nationality differences among the sub-

jects [9, 18–22].

We identified the sequential changes in gut micro-

biota composition in Japanese subjects over a wide age

range, 0–104 years. Our results provide new insights

into the developmental period for gut microbiota

composition and the patterns of change with age.

Results
Overview of gut microbiota composition in each age

group

A total of 1,839,703 high-quality paired sequences were

obtained from the 371 samples, with 4,959 ± 1,813

(average ± standard deviation) reads per sample, which

were clustered into 5,952 OTUs and classified into 187

bacterial groups at the genus level (186 genera and one

unidentified group). We first calculated UniFrac

distances to determine the extent of similarity between

microbial communities. UniFrac PCoA (principal co-

ordinate analysis) of 5,952 OTUs indicated that age ex-

plained the variation in our data set using both weighted

and un-weighted analyses (Fig. 1). No gender differences

were observed (Additional file 1).

The phylum and genus compositions of gut microbiota

in each age group are shown in Fig. 2, Additional file 2

and Additional file 3. In agreement with previous results,

the microbiota composition included four predominant

phyla. The relative abundance of Actinobacteria substan-

tially decreased after weaning and continued to decrease

with age. Firmicutes was the most predominant phylum

after weaning but was less abundant in children younger

than 4 years compared with subjects older than 4 years.

Increases in the relative abundance of Bacteroidetes and

Proteobacteria were observed in subjects over 70 years

old. The relative abundance of Bacteroidetes did not

change sequentially, but a stepwise increase was observed

beyond 70 years of age. The change in the relative abun-

dance of Proteobacteria was opposite that of Firmicutes.

Age-related changes in genera and their correlations

To explore the changes in gut microbiota with age in

detail, we calculated the co-abundance associations of

genera and then clustered the correlated genera into

nine CAGs (Additional file 4), which describe the

Fig. 1 UniFrac clustering for each age group. a Unweighted and b weighted UniFrac PCoA of gut microbiota from 371 samples collected from

the infant to the centenarian stage. Each number in the legend indicates a group as shown in Table 1
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significant differences in microbiota structure among

subject groups (Permutational MANOVA, p < 0.001).

The transition from infant to centenarian was accompanied

by distinctive CAG dominance, with a significant abun-

dance of Bacteroides, [Eubacterium] and Clostridiaceae

CAGs (elderly-associated CAGs); Enterobacteriaceae CAGs

(infant and elderly-associated CAGs); Bifidobacterium

CAGs (infant/child-associated CAGs); and Lachnospiraceae

CAGs (adult-associated CAGs) (Fig. 3). Megamonas and

Peptoniphilus CAGs were relatively enriched in the elderly.

Dorea CAG abundance appeared unrelated to aging.

Sequential changes occurred in the relative abundance of

Bacteroides, Lachnospiraceae and Bifidobacterium CAGs in

the gut microbiota during childhood and adolescence. Not

all CAGs were composed exclusively of related species, as

shown in Additional files 5 and 6. Wiggum plots showed

the relative abundance of each genus and significant associ-

ations between nine CAGs (Fig. 4, Additional file 5).

Among the 186 genera, 116 had associations with other

genera with an absolute coefficient value >0.3 (Additional

file 5 and 6 and Fig. 4). Almost all of the correlations were

positive; the only four negative correlations were observed

between Enterobacteriaceae and Lachnospiraceae, Entero-

bacteriaceae and Blautia, Bifidobacterium and Parabacter-

oides and Veillonella and [Mogibacteriaceae]. A greater

number of positive correlations were observed in the

elderly-associated CAGs, especially the Bacteroides and

[Eubacterium] CAGs. We then performed in vitro assays to

investigate some relevant relationships among genera. In

accordance with the Wiggum plot results, both of Parabac-

teroides distasonis JCM 5825 and Bifidobacterium longum

JCM 1217 growth were suppressed when co-cultivate with

each other (Additional file 7). A similar negative relation-

ship was observed between Escherichia coli JCM 1649, be-

long to family Enterobacteriaceae and Blautia producta

JCM 1471. In contrast, Bacteroides uniformis JCM 5828

growth increased when co-cultivated with Parabacteroides

distasonis JCM 5825.

As for gut microbiota diversity, all four alpha diversity

scores based on PD whole tree, Chao1, the number of

observed species and the Shannon index substantially in-

creased after weaning and continued to increase sequen-

tially until the twenties. These scores were stable during

adulthood and then increased again at the elderly stage

until the centenarian stage (Fig. 5).

Period of age-related change in community structure of

gut microbiota

We performed hierarchical Ward’s linkage clustering

based on the abundance of genus-like groups to predict

the period of age-related reshaping of gut microbiota.

Genus-like groups belonging to the same phylum did

not comprise the same cluster, suggesting that the age-

related pattern of change was different between the

phylum and genus levels. The subjects were divided into

three age clusters, for infant, adult and elderly cluster

(Additional file 8). The relative abundance of Actinobac-

teria and Clostridia were significantly higher in infant

and adult cluster, respectively (Additional file 9). The

elderly cluster showed the significantly higher abundance

of Bacteroidetes, Betaproteobacteria and Deltaproteobac-

teria (Additional file 9). When the subjects were divided

into five age clusters, the median (interquartile range) age

was 3 (0.5–35) in the infant cluster, 33 (24.75–45.5) in

Fig. 2 Age-related sequential changes in gut microbiota composition. Overview of phylum/genus composition. Orange, Actinobacteria; Blue,

Firmicutes; Red, Bacteroidetes; Pink, Proteobacteria; Black, sum of other phyla. Each component of the cumulative bar chart indicates a genus.

Each number indicates a group as shown in Table 1
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Fig. 4 Network plot highlighting relationships between genera in nine CAGs. The colors of each node indicate the nine CAGs as shown in Fig. 3.

Circle size indicates genus abundance. Pink and blue lines show significant positive and negative correlations between two bacterial genera with

an absolute coefficient value greater than 0.3. Taxa that are found in more than 50 % of the subjects were indicated

Fig. 3 Transition type of each co-abundance group (CAG) from infant to centenarian. Each number indicates a group as shown in Table 1.

Box-plots show the interquartile range (IQR) of the sum of z-scores converted from the relative abundance of genera belonging to the same

CAG. Open circles and asterisks indicate outliers from 1.5- to 3.0-fold IQR and over 3.0-fold IQR, respectively
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adult cluster I, 42 (32–62) in adult cluster II, 74 (34–81.5)

in elderly cluster I and 93.5 (85–98) in elderly cluster II

(Additional file 8). The age distributions were similar

between the adult I and II clusters and between the elderly

I and II clusters. The adult clusters and the elderly

clusters showed significant differences in the relative

abundance of 32 and 28, respectively, of the 61

genus-like groups, which were found in 50 % of the

subjects in any cluster (Additional files 10 and 11).

Subjects were predominantly clustered by age; how-

ever, some subjects, but not those in the elderly II

cluster, fell into a mismatched-age cluster (Additional

files 8 and 12).

Functional properties predicted by PICRUSt

We performed PICRUSt analysis to predict the

relative abundance of transporter genes because an

altered diet [2] and antibiotic treatment [31] have

been reported to be among the most powerful factors

that affect the gut microbiota. Clustering based on

the relative abundance of the predicted transporters

showed that subjects were divided into two age-

related groups, the adult-enriched and infant/elderly-

enriched clusters (Additional file 13). For example,

there was a lower abundance of a predicted xylose

transporter (KEGG module: M00215) in pre-weaned

infants, probably reflecting the different dietary habits

of subjects in each segmented age group (Additional

file 14). Interestingly, all drug transporters based on

KEGG Orthology groups were found in the infant/

elderly-enriched cluster (Additional files 13 and 15).

Discussion
The composition of gut microbiota is thought to change

during the aging process [1]; however, few reports have

utilized molecular techniques to investigate the long-

term, sequential changes in gut microbiota composition.

Our results are in agreement with those of recent studies

indicating clear differences in gut microbiota compos-

ition among infants, adults and the elderly [2, 23]. The

present study using LEfSe method indicated that Actino-

bacteria, Clostridia and Bacteroidetes, Betaproteobac-

teria and Deltaproteobacteria were representative taxa in

infant, adults and the elderly cluster. Additionally, our

results revealed the sequential changes that occur with

age from newborns to centenarians. Furthermore, our

results showed that Japanese adults (21–69 years old)

have a greater abundance of the genera Blautia and

Bifidobacterium (interquartile ranges (IQR) of 18 (12–24)

% and 7 (2–14) %, respectively) and a relatively lower

abundance of genera related to Bacteroidetes (IQR 4

(1–10) %), compared with those reported in previous

studies in other nations. For example, the estimated

abundance of Blautia, Bifidobacterium and Bacteroi-

detes were < 10 %, < 2 % and > 10 %, respectively, in

US and Colombia [19], Korea, China and US [20] and

Ireland [30]. These patterns might be characteristic of

the gut microbiota composition of the Japanese popu-

lation, although they may also reflect the DNA

extraction method [16, 17] and the amplified region

of the 16S rRNA gene [24].

Although there are differences among individuals, our

analysis of the phylum composition of gut microbiota in

each age group showed a significant shift in the relative

abundance of Actinobacteria in infants from before to

after weaning. The compositional pattern of gut micro-

biota during childhood has been thought to impact

health later in life [11, 25], but children older than

2 years have not been sufficiently investigated. Our data

show that some genera belonging to Bacteroides,

Fig. 5 Age-related change in alpha-diversities of gut microbiota. Dashed line indicates a polynomial approximation for each alpha-diversity. Each

number below the figure indicates a group as shown in Table 1
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Lachnospiraceae and Bifidobacterium CAGs and the

alpha diversity of gut microbiota continued to change

sequentially with age in subjects younger than twenty,

reflecting the human gut microbiota maturation process.

However, children younger than 20 years fell into both

the infant and adult clusters, regardless of their age,

when clustered based on the abundance of genus-like

groups, thus illustrating the individual differences in the

gut microbiota maturation process.

In the present study, the Wiggum plot showed nega-

tive relationships between the relative abundance of

Enterobacteriaceae, which creates an greater endotoxin

challenge for the weakened intestinal barrier and thus

results in increased stimulation of the inflammatory

response [26], and the abundance of Blautia and

Lachnospiraceae;g (Fig. 4), which belonged to the adult-

associated CAG (Lachnospiraceae;g CAG). Other butyrate-

producing bacteria, such as Coprococcus, Roseburia and

Faecalibacterium, were also clustered in the same CAG.

Furusawa et al. reported that microbial-derived butyrate

regulates Treg cell differentiation in vitro and in vivo [27].

Given the age-related reduction in the abundance of

the genus Bifidobacterium, which down-regulates

pro-inflammatory responses in the gut epithelium

[28–30], our results suggested that the aging-related

dysbiosis in elderly subjects may be a contributing

factor to inflammatory responses that occur with

advancing age.

We performed in vitro assays to investigate bacterial

interactions, including those between Enterobacteriaceae

and Blautia. These results were in accordance with the

Wiggum plot results. However, these results might have

some biases from the different of environmental condi-

tion between in human gut and in vitro assay. In

addition, it is uncertain that all bacterial interactions are

consistent with the relationships in the Wiggum plot,

because genera with positive relationships in the

Wiggum plot might grow well under the same environ-

mental conditions without a mutualistic relationship. In

contrast, some genera combinations have been reported

to exhibit mutualistic relationships,although the absolute

values of the correlation coefficients were below 0.3 (no

visible relationship in the Wiggum plot). Pande et al.

revealed that Acinetobacter baylyi and Escherichia coli

reciprocally exchange essential amino acids [31]. It has

also been reported that Bifidobacterium populations can

be stimulated efficiently with a concomitant decrease in

Enterobacteriaceae [32, 33]. Acetate, one of the main fer-

mentation products of Bifidobacterium, was reported to

promote the growth of butyrate-producing bacteria and

the in vitro production of butyrate [34, 35]. Further-

more, Bifidobacterium longum has been reported to alter

gut luminal metabolism via interactions with Bacteroides

caccae and Eubacterium rectale [36]. Considering these

reports, the correlations between gut microbiota mem-

bers might be more complicated than shown in the Wig-

gum plot. Our computational analysis results must be

interpreted cautiously because they are based on a lim-

ited data set. An advanced culture method is needed to

clarify the relationships among gut microbiota.

A wide diversity of microorganisms is needed to utilize

the many nutrients in adult diets [37]. In addition, a low

gut microbiota diversity has been associated with an

increasing number of conditions, such as autism [38],

autoimmune disease [39] and obesity [40]. Maintaining

sufficient bacterial richness and diversity is important

for providing gut microbiota with functional redun-

dancy, adaptability and thus systematic robustness

against environmental challenges [41]. In this study, we

observed an increase in gut microbiota diversity with

aging until the centenarian stage. Claesson et al. re-

ported that the alpha diversity of the gut microbiota in

community dwellers was significantly higher than that of

people in long-stay care [42]. Therefore, in the present

study, the observed increase in microbiota diversity with

age was likely due to the inclusion of community-

dwelling elderly participants. In contrast, centenarians in

a Chinese longevous village population had a more

diverse gut microbiota than did younger elderly aged

85–99 years [43]. It is uncertain why the trend in diver-

sity differed between Chinese and Japanese centenarians.

Biagi et al. [44] showed a significantly compromised

gut microbiota in centenarians but not in elderly sub-

jects aged approximately 70 years compared with a

group of younger adults. The authors therefore sug-

gested that a healthy gut microbiota community might

be affected by aging-related physiological and behavioral

changes that occur after 70 years of age, which was con-

sidered the threshold age for defining an individual as

elderly. In agreement with this hypothesis, our clustering

data suggested that most subjects over 70 years of age

comprised two elderly-type clusters (Additional file 8).

Nevertheless, the distribution of subjects was not clear

from the classification based on subject age. This result

suggested that other factors besides age contribute to

the composition of gut microbiota communities.

Our study did not allow us to determine why gut

microbiota changed with age because we lacked lifestyle

and dietary habit information on the subjects. To begin

to address this question, we performed PICRUSt analysis

to predict the relative abundance of transporter genes

because we hypothesized that bacterial transporters that

incorporate nutrients from the gut environment would

differ if dietary habit was a predominant contributor to

gut microbiota composition. Clustering based on the

relative abundance of the predicted transporters showed

that subjects were divided into two age-related groups,

the adult-enriched and infant/elderly-enriched clusters,
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implying that nutrients in the gut evoke the different gut

microbiota compositions between adult and infant/

elderly subjects. Not all transporters can explain the

relationship with the dietary habits of subjects in each

segmented age group, but, for example, the increase

in the relative abundance of predicted xylose trans-

porters in subjects after weaning seems to reflect the

change from mother’s milk to an omnivorous diet.

Interestingly, all the drug transporters based on

KEGG Orthology groups were found in the infant/

elderly-enriched cluster, perhaps due to the frequent

antibiotic treatment of infants and the elderly com-

pared with adults.

In addition, elderly people are known to have decreased

intestinal function relative to younger people, which

affects digestion, nutrient absorption and immune activity

[45, 46] and may also impact the microbiota composition

[47, 48]. We found that certain oral bacteria, such as

Porphyromonas, Treponema, Fusobacterium and Pseudor-

amibacter, which have difficulty reaching the intestinal

tract due to barriers such as gastric juice and bile acid,

were enriched in the elderly-associated CAGs (Additional

file 6). Therefore, the decline in gastrointestinal tract func-

tionality in the elderly may also lead to significant changes

in gut microbiota.

Conclusion

In conclusion, we provide a description of the changes

in gut microbiota with age, thus illustrating the long tra-

jectory throughout human life. Our results indicate

some patterns and transition points in gut microbiota

composition with age. The gut microbiota in subjects

younger than 20 years changed with age as it matured,

and that of subjects older than 70 years changed again

into the elderly type. In addition, the transporter

property prediction results suggested that nutrients in

the gut might play an important role in changing the gut

microbiota composition with age.

Our findings help clarify the gut microbiota compos-

ition in a healthy population at each age period. Further

analyses investigating lifestyle traits or prospective co-

horts focused on subjects who appear to have a gut

microbiota typical of an age group older than their

matched age would be valuable for revealing the

relationships between gut microbiota and host health,

including the aging process.

Methods

Subjects

Fecal samples were collected from a total of 367

community-dwelling Japanese volunteers (one sample

per subject, except for two samples from one boy and

one girl collected at preweaning and weaning and

three samples from one girl at preweaning, weaning

and 5 years of age) between 0 and 104 years of age

(157 men and 210 women). Subjects over 80 years of

age were directly recruited by the authors to confirm

that they were community dwellers. The distribution

of subjects according to age and individual data are

shown in Table 1 and Additional file 12. No signifi-

cant differences in gender distribution were observed

among the age groups (Fisher’s test, p = 0.997). Fecal

samples were collected from subjects that participated

in three different studies. Two study protocols were

for the collection of feces from subjects aged 21–65

years old or from community-dwelling elderly individuals

and were approved by the Local Ethics Committee of

the nonprofit organization Japan Health Promotion

Supporting Network (Wakayama, Japan). The third

study protocol was for the collection of feces from

subjects aged 0–100 years old and was approved by

the ethics committee of Kensyou-kai Incorporated

Medical Institution (Osaka, Japan). Written informed

consent was obtained from all subjects or from their

legal guardians or relatives.

To identify the sequential changes in gut microbiota

composition that occur with age, subjects were di-

vided into 10-year age groups, except for subjects

aged less than 10 years, who were divided into four

groups: preweaning, weaning, weaned to 3 years old

and 4–9 years old.

Table 1 Sample distribution

Group Age Number
of samples

(Male/Female)

Segmentation (Mean ± SD)

1 Preweaning (0.3 ± 0.1) 14 (7/7)

2 Weaning (0.8 ± 0.4) 12 (6/6)

3 Weaned-3 years old (2.4 ± 0.6) 18 (10/8)

4 4–9 years old (6.1 ± 1.9) 14 (6/8)

10 10–19 years old (14.1 ± 3.6) 10 (7/3)

20 20–29 years old (25.9 ± 2.7) 40 (16/24)

30 30–39 years old (33.9 ± 2.3) 88 (45/43)

40 40–49 years old (43.8 ± 3.1) 34 (13/21)

50 50–59 years old (53.3 ± 2.6) 25 (12/13)

60 60–69 years old (63 ± 2.7) 28 (11/17)

70 70–79 years old (76.8 ± 2.1) 15 (5/10)

80 80–89 years old (83.3 ± 2.4) 48 (16/32)

90 90–99 years old (94.2 ± 2.7) 19 (4/15)

100 Over 100 years old (101.3 ± 1.8) 6 (0/6)

Sum 371 (158/213)

The mean (± SD) age of the entire cohort was 44.3 ± 28.6 years

Gut microbiota were analyzed for one sample per subject, except for two

samples from one boy and one girl at preweaning and weaning and three

samples from one girl at preweaning, weaning and 5 years of age
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Sampling

Fresh fecal samples were transferred by the subjects into

tubes and immediately enclosed in plastic bags containing

AnaeroPouch (Mitsubishi Gas Chemical, Tokyo, Japan) to

create an anaerobic environment.

Storage

The fecal samples collected from subjects younger than

80 years were stored at −20 °C for three days at most

and were transported to the laboratory by logistics com-

panies. The samples collected from subjects older than

80 years were stored at −20 °C and then delivered to the

laboratory by the study authors within one day. Immedi-

ately upon receipt, the fecal samples were stored at

−80 °C until the day of analysis.

DNA extraction

A total of 20 mg of each fecal sample was collected from

three regions (upper, middle and lower) and mixed well,

and DNA was extracted using the bead-beating method

as previously described [49]. After centrifugation at

14,000 × g for 5 min, 400 μl of the supernatant was

extracted with phenol-chloroform, and 250 μl of the

supernatant was precipitated with isopropanol. Purified

DNA was suspended in 2,000 μl of Tris-EDTA buffer

(pH 8•0).

Sequencing and data processing

The V3-V4 region of the bacterial 16S rRNA gene was

then amplified by PCR with the TaKaRa Ex Taq HS Kit

(TaKaRa Bio, Shiga, Japan) and the primer sets Tru357F

(5′-CGCTCTTCCGATCTCTGTACGGRAGGCAGCA

G-3′) and Tru806R (5′-CGCTCTTCCGATCTGACG-

GACTACHVGGGTWTCTAAT-3′). Each 1-μl sample

of DNA, at a concentration of approximately 10–

200 ng/μl as measured using a Nanodrop 2000

(Thermo Fisher Scientific, Waltham, MA, USA), was

amplified in triplicate using the following protocol:

preheating at 94 °C for 3 min; 20 cycles of denatur-

ation at 94 °C for 30 s, annealing at 50 °C for 30 s

and extension at 72 °C for 30 s; and a final terminal

extension at 72 °C for 10 min. After verifying the

amplified DNA based on PCR product size using the

QIAxcel system (Qiagen, Valencia, CA, USA), the

triplicate samples were combined. A 1-μl sample of

the combined PCR products was amplified using the

following barcoded primers adapted for Illumina

MiSeq: Fwd 5′-AATGATACGGCGACCACCGAGAT

CTACACXXXXXXXXACACTCTTTCCCTACACGAC

GCTCTTCCGATCTCTG-3′ and Rev 5′-CAAGCAGAA

GACGGCATACGAGATXXXXXXXXGTGACTGGAGT

TCAGACGTGTGCTCTTCCGATCTGAC-3′, where X

represents a barcode base. The DNA was amplified

according to the protocol described above except that

only 8 cycles were performed. After validating the 2nd

amplified DNA product using the QIAxcel system,

the PCR products were purified using a QIAquick 96

PCR Purification Kit (Qiagen, Valencia, CA, USA) ac-

cording to the manufacturer’s protocol. The purified

products were quantified using a Quant-iT PicoGreen

dsDNA Assay Kit (Life Technologies, Carlsbad, CA,

USA). Subsequently, equal amounts of the amplicons

from multiple samples were pooled, and primer dimers

were removed using a GeneRead Size Selection Kit

(Qiagen, Valencia, CA, USA). The pooled libraries were

sequenced using an Illumina MiSeq instrument with a

MiSeq v3 Reagent Kit (Illumina, Inc., San Diego, CA,

USA).

After removing sequences consistent with data from

the Genome Reference Consortium human build 37

(GRCh37) or PhiX 174 from the raw Illumina paired-

end reads, the 3′ region of each read with a PHRED

quality score of less than 17 was trimmed. Trimmed

reads less than 150 bp in length with an average quality

score of less than 25 or those lacking paired reads were

also removed. The reads that passed the quality filters

were combined using the fastq-join script in EA-Utils

(version 1.1.2–537) [50].

Taxonomic analysis

The sequences were analyzed using the QIIME software

package version 1.8.0 [51, 52] (http://qiime.org/).

Potential chimeric sequences were removed using

UCHIME, assigned to operational taxonomic units

(OTUs) using Open-reference OTU picking [53] with a

97 % threshold of pairwise identity, and then classified

taxonomically using the Greengenes reference database

(http://greengenes.secondgenome.com/downloads/database/

13_5) [54]. An advantage of using the open reference

method is that it minimizes spurious hits of sequen-

cing reads to taxa that are not present in the gut; as

a result, the number of obtained OTUs was lower

than that in previous reports.

Diversity analysis

The microbial diversity within each age-segmented

group [alpha diversity including Chao1, number of

observed species (the number of OTUs), phylogenetic

distance (PD) whole tree, and Shannon diversity index]

and the distances between subjects (UniFrac distance as

beta diversity) were estimated using QIIME version 1.8.0

software.

Clustering analysis

Hierarchical analysis was performed using the hclust

function in R package 3.2.1. Distances based on the

squared Euclidean distance were calculated for input into

an agglomerative algorithm through Ward’s method. The
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population densities (z-scores) of genera scaled by color

are displayed together with a dendrogram of bacterial

genera in a heat map.

Bacterial co-abundance groups (CAGs)

All genus-like-level groups, except for an unidentified

group, were entered into this analysis. CAGs were defined

by a heat plot showing Kendall correlations between genera

clustered by Pearson’s correlation coefficient and Ward’s

linkage hierarchical clustering in R using the Made4 pack-

age [55] as previously described [42]. The transition type of

each CAG with aging indicates the sum of z-scores con-

verted from the relative abundance of genera belonging to

the same CAG. Network plots highlighting correlative rela-

tionships were visualized using Cytoscape version 3.2.1

[56]. These associations were controlled for multiple testing

using the q-value method, and only those with a false dis-

covery rate <0.05 were retained. The cut-off for line in the

Wiggum plots was set at an absolute coefficient value of

greater than 0.3.

Bacterial strains and culture conditions

Cultivable strains were selected based on the Wiggum plot

results and were obtained from public culture collections

(Additional file 16). All the strains were pre-cultured at

37 °C for 16 h under anaerobic conditions in Gifu

Anaerobic Medium (GAM) broth (Nissui Seiyaku Co. Ltd.,

Tokyo, Japan). Then, approximately 1 × 108 cell in the pre-

cultures, which were calculated by a density of McFarland,

were added to GAM broth and incubated at 37 °C for 5 h

under anaerobic conditions. After this culture period, the

microorganisms were collected by centrifugation at

10,000 × g and DNA was extracted by the same method as

described in the DNA extraction section. Experiments

were performed in triplicate.

Real-time PCR for quantitative determination of cell number

Real-time PCR was performed using an ABI PRISM

7500 Fast Real-time PCR System (Life Technologies,

Carlsbad, CA, USA) with SYBR Premix Ex Taq (TaKaRa

Bio Inc, Shiga, Japan). The primer sets are shown in

Additional file 17 [57–60]. The amplification program

consisted of one cycle of 94 °C for 10 s, followed by 40 cy-

cles of 94 °C for 5 s, the appropriate annealing temperature

for 30 s and 72 °C for 30 s. Fluorescent products were

detected during the last step of each cycle. Melting curves

were obtained by heating from 60 to 95 °C in 0.2 °C/s

increments with continuous fluorescence collection.

Phylogenetic investigation of communities by

reconstruction of unobserved states (PICRUSt) analysis

PICRUSt analysis was performed to predict the relative

abundance of transporter genes [61]. Independent of the

taxonomic analysis, 97 % of the OTUs were picked using a

closed-reference OTU picking protocol (QIIME 1.8.0 [51,

52]) and the Greengenes database (database/13_8) [54] pre-

clustered at 97 % identity. The obtained OTU table was

normalized by 16S rRNA copy number, and functional

genes were predicted from the Kyoto Encyclopedia of

Genes and Genomes (KEGG) catalogue [62].

Statistical analysis

The gender distribution of subjects and intergroup differ-

ences at the genus level in each subcluster were analyzed

by Fisher’s test and the Mann-Whitney U test, respect-

ively, using SPSS version 23.0 statistical software (IBM,

Armonk, NY, USA). Intergroup differences at the phylum,

class, order, family and genus level in each cluster were

analyzed by the linear discriminant analysis (LDA) effect

size (LEfSe) method [63] with default settings on website

(https://huttenhower.sph.harvard.edu/galaxy/root). Permu-

tational MANOVA [64] was performed to test for signifi-

cant differences in CAGs using the vegan package in R.

Values of p < 0.05 were considered statistically significant.

Data deposition

DNA sequences corresponding to the 16S rRNA gene

data have been deposited in DDBJ under accession

number DRA004160.

Additional files

Additional file 1: UniFrac clustering for gender distribution. (A)

Unweighted and (B) weighted UniFrac PCoA of gut microbiota from 371

samples collected from the infant to the centenarian stage. Male and

female subjects are displayed as blue and red, respectively. (PDF 155 kb)

Additional file 2: Relative abundance of four predominant phyla. The

box-plot indicates the interquartile range (IQR) of the relative abundance

of each phylum at each age stage. (PDF 211 kb)

Additional file 3: Relative abundance of each microbiota at genus level.

(XLSX 873 kb)

Additional file 4: Definition of bacterial co-abundance groups (CAGs).

CAGs were defined by a heat plot showing Kendall correlations between

genera clustered by Pearson’s correlation coefficient and Ward’s linkage

hierarchical clustering. The colors within the clustering indicate the nine

CAGs as shown in Fig. 3. (PDF 148 kb)

Additional file 5: Network plot highlighting relationships between

genera in nine CAGs. The colors of each node indicate the nine CAGs as

shown in Fig. 3. Circle size indicates genus abundance. Pink and blue

lines show significant positive and negative correlations between two

bacterial genera with an absolute coefficient value greater than 0.3.

(PDF 401 kb)

Additional file 6: Bacterial groups at genus-like level in each CAG.

(XLSX 863 kb)

Additional file 7: Cell number of bacteria in vitro assay. (XLSX 855 kb)

Additional file 8: Hierarchical Ward’s linkage clustering based on

bacterial proportion at the genus level. Age-related groups (Infant,

Elderly1, Elderly2, Adult1 and Adult2) were revealed through Ward’s

linkage clustering using the squared Euclidean distance. The population

densities (z-score) of genera scaled by color are displayed together with

a dendrogram of bacterial genera in a heat map. The colors within the

horizontal and vertical clustering represent age-segmented groups as

shown in Fig. 1 and phylum as shown in Fig. 2. (PDF 245 kb)
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Additional file 9: LEfSe results on human microbiota in infant, adult

and elderly cluster. (A) Histogram of the LDA scores computed for

features differentially abundant between three age-related clusters. (B)

Taxonomic representation of statistically differences between three

age-related clusters. Differences are represented in the color of the

most abundant class (yellow non-significant). Each circle’s diameter is

proportional to the taxon’s abundance. (PDF 400 kb)

Additional file 10: Taxa that are found in more than 50 % of the

subjects in any cluster (shown in Additional file 8) with significantly

difference between adult 1 and adult 2 clusters. (XLSX 857 kb)

Additional file 11: Taxa that are found in more than 50 % of the

subjects in any cluster (shown in Additional file 8) with significantly

difference between elderly 1 and elderly 2 clusters. (XLSX 859 kb)

Additional file 12: Individual data. (XLSX 875 kb)

Additional file 13: Hierarchical Ward’s linkage clustering based on the

proportion of transporter genes predicted by PICRUSt. Age-related groups

(adult-enriched and infant/elderly-enriched clusters) were revealed by

Ward’s linkage clustering using the squared Euclidean distance. The

population densities (z-score) of the transporters scaled by color are

displayed together with a dendrogram of the transporters in a heat map.

The colors within the horizontal clustering represent the age-segmented

groups as shown in Fig. 1 The color code for the vertical clustering

indicates KEGG Orthology (KO) as follows: white, ABC Transporters,

Eukaryotic Type; yellow, ABC Transporters, Prokaryotic Type; blue, Solute

Carrier Family (SLC); orange, Major Facilitator Superfamily (MFS); red,

Phosphotransferase System (PTS); and green, Other Transporters. (PDF 209 kb)

Additional file 14: Relative abundance of predicted D-Xylose transporter

(KEGG module: M00215). The KEGG module M00215 consists of three KO

entries, K10543, K10544 and K10545. Each number indicates a group as

shown in Table 1. Box-plots show the interquartile range (IQR) of the relative

abundance of the predicted D-Xylose transporter. Open circles indicate

outliers from 1.5- to 3.0-fold IQR. (PDF 96 kb)

Additional file 15: List of predicted transporters in Additional file 13.

(XLSX 879 kb)

Additional file 16: Bacterial strains used in this study. (XLSX 855 kb)

Additional file 17: PCR primers for detection of each species. (XLSX 857 kb)
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