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Abstract A weakened ability to effectively resist distraction is a potential basis for reduced 

working memory capacity (WMC) associated with healthy aging. Exploiting data from 

29,631 users of a smartphone game we show that, as age increases, WM performance is 

compromised more by distractors presented during WM maintenance than distractors 

presented during encoding. However, with increasing age, the ability to exclude distraction at 

encoding is a better predictor of WMC in the absence of distraction. A significantly greater 

contribution of distractor filtering at encoding represents a potential compensation for 

reduced WMC in older age.  

 

Significance Statement 

We reveal a novel and highly significant change in how items are held in mind in 

healthy aging. Using smartphones, data were collected from 29,631 participants, between the 

ages of 18-69 years. We compare the ability to exclude distractors when items are entered 

into working memory (Encoding Distraction, ED) and when items are held in mind (Delay 

Distraction, DD). In older adults WM in the absence of distraction was more similar to ED 

exclusion than DD exclusion. A greater reliance on focussed attention during encoding may 

reflect compensation for the more pronounced deterioration we observed in DD exclusion in 

older age. This can inform other areas of cognition and strategies to ameliorate or manage 

debilitating age-related cognitive decline. 

  



Introduction  

The number of items that can be held in working memory (Working Memory 

Capacity, WMC) declines with increasing age (1). Our ability to effectively exclude 

distractors is one basis for this limited WMC (2,3), with impaired inhibitory processing of 

distraction contributing to an age-related reduction in WM performance (4). A specific 

impairment in suppressing distractor representations in older adults has been linked to 

reduced WMC (5). Typically distractors are presented either with the items to be remembered 

(Encoding Distraction, ED, e.g. 6,7) or while these items are held in mind (Delay Distraction, 

DD, e.g. 5,8). We recently highlighted a distinction between the effects of these two types of 

distraction in younger adults (9). Although greater WMC is associated with an enhanced 

ability to exclude distractors in both cases, each makes a unique contribution to WMC (9). 

Here we examine the well-known age-related reduction in WMC. Previous work has 

identified an age-related delay in ED filtering (7) and an early age-related deficit in DD 

suppression (8). We directly compare the age-related decline in ED and DD to assess whether 

an ability to ignore a distraction at encoding or at delay provides the best predictor of general 

WMC.  

We obtained data from 29,631 users of a smartphone game (part of The Great Brain 

Experiment http://www.thegreatbrainexperiment.com), a platform that has enabled us to 

replicate a range of laboratory studies (9,10). Using this medium we implemented a working 

memory (WM) task to enable us to directly compare the effects of age on WM in the absence 

of distractors (no distraction, ND, Fig. 1a), when distractors are presented at encoding 

(encoding distraction, ED, Fig. 1b) and when distractors are presented during maintenance 

(delay distraction, DD) (Fig. 1c). This large subject pool enabled us to consider data from six 

age groups (18-24 years: N=7,658; 25-29 years: N=5,702; 30-39 years: N=8,225; 40-49 

years: N=4,667; 50-59 years: N=2,359; 60-69 years: N=1,020). For each condition the 

number of items to be remembered (WM load) increased as a function of performance until 

either 8 trials had been completed, or a participant failed two successive trials of a given WM 

load. Data were excluded from participants who failed a load 2 trial in any condition. For 

each condition the participant’s score represents the maximum number of items for which 

they could report all items successfully, representing their WMC. 

Results Across all three conditions, performance declined with increasing age (Fig. 2A). 

Considering scores from the ED condition alone, an ANCOVA that controlled for ND score 

revealed a main effect of age (F5,29624=230.18, P<0.0001). Similarly, when considering scores 
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from the DD condition alone, controlling for ND score, we again found a significant main 

effect of age (F5,29624=329.01, P<0.0001). A third ANCOVA, that controlled for ND score 

and which included both ED and DD scores, enabled us to compare the effects of age on each 

type of distraction. We observed a significant interaction between distractor type (ED or DD) 

and age (F5,29624=30.28, P<0.0001), indicative of a greater decline in DD score than ED score 

with increasing age. To ensure ceiling effects do not account for these results, we repeated 

the analysis excluding data from any individual with the maximum score of 10 for any of the 

three conditions (leaving N=9,209). We again observed a main effect of age for ED 

(F5,9202=32.24, P<0.0001) and DD (F5,9202=49.16, P<0.0001), with a significant interaction 

between age and distractor type (F5,9202=4.37, P=0.001). To ensure sample size differences 

between the age groups do not account for the results, we repeated the analysis using only the 

first 1020 participants for each age group. We again observed a main effect of age for ED 

(F5,6113=67.29, P<0.0001) and DD (F5,6113=93.88, P<0.0001), with a significant interaction 

between age and distractor type (F5,6113=8.14, P<0.0001). 

Figure 2B shows the extent to which performance was affected by distraction 

(distraction cost (%) = ((ND score – (ED or DD score))/ND score)*100)). We observed a 

significant correlation between DD cost and age, with increasing age associated with 

increasing cost (r=0.095, P<0.0001). No such correlation was observed for the ED scores 

(r=0.003, P=0.602). Consistently, when using the first 1020 participants from each age 

group, there was a significant correlation between DD cost and age, with increasing age 

associated with increasing cost (r=0.102, P<0.0001), but no such correlation for the ED 

scores (r=0.002, P=0.864).  

Next we addressed the extent to which each type of distractor exclusion (DD or ED) 

predicted WM performance in the absence of overt distraction (ND score, used as a measure 

of WMC). We used the regression model: WMC = α + β1 ED + β2 DD + β3 Age + β4 (ED * 

Age) + β5 (DD * Age) + β6 (ED * DD * Age), where α is the intercept and β1-6 are the 

regression coefficients. As both ED and DD scores were included in the model, we could 

examine the unique contribution of each to WMC, as other sources of variance would be 

shared between the two distraction variables. The model accounted for a significant amount 

of variance (adjusted r
2
 = 0.32, P<0.0001) and as predicted ED and DD score, as well as age, 

made a significant contribution in the model (β1=0.24, β2=0.27, β3=-1.03, where β refers to 

standardised beta; P<0.0001 for each). Importantly the three interaction terms also made 

significant contributions to the model (β4=0.89, β5=0.76, β6=-0.77, P<0.0001
 
for each). As 



illustrated by Fig. 3a, as age increased, the extent to which distractor exclusion predicted 

WMC increased for both types of distraction, but ED performance had a significantly greater 

contribution than DD with increasing age. Adding the two two-way interaction terms to the 

model (WMC = α + β1 ED + β2 DD + β3 Age) explained significantly more variance (r
2
 

change = 0.003, P<0.0001), as did adding the three-way interaction term to that model (r
2
 

change = 0.002, P<0.0001). All of these results remained significant when we considered 

only the first 1020 participants in each age group (adjusted r
2
 = 0.37, P<0.0001; β4=0.62, 

β5=0.54, β6=-0.52, P<0.0001
 

for each; two-way interaction term: r
2
 change = 0.002, 

P<0.0001; three-way interaction term: r
2
 change = 0.002, P<0.0001). 

 

Our results show that in the older age groups, who express an exaggerated reduction in DD 

performance (Fig 2), WMC is better predicted by ED than in the younger age groups (Fig. 3a). To test 

the specificity of the association between WMC and ED exclusion, we divided the sample into two 

age bins of 18-39 years and 40-69 years, and applied partial correlation analysis, controlling for DD 

score. As shown by Fig. 3b, we observed a greater correlation for the older compared to the younger 

age group (older group: r = 0.35, P<0.0001; younger group: r = 0.28, P<0.0001; Fisher’s z = -5.79, 

P<0.0001). The association between WMC and DD (controlling for ED) was also significant for each 

age group (older group: r = 0.29, P<0.0001; younger group: r = 0.29, P<0.0001), but no difference 

was observed between the two age groups (Fisher’s z = 0.42, P=0.674). When we repeated these 

analyses, but now for each of the six original age groups, we could see that the correlation between 

WMC and ED increased between the ages of 30 and 60 (as shown in Fig. 3c), with significant 

differences between the 30-39 and 40-49 year groups (Fisher’s z = -2.57, P=0.010), between the 30-

39 and 50-59 year groups (Fisher’s z = -2.74, P=0.006) and between the 40-49 and 60-69 year groups 

(Fisher’s z = -2.04, P=0.041). The results remained significant when we considered only the first 1020 

participants in each age group, (partial correlation between ED and WMC, controlling for DD: older 

group: r = 0.37, P<0.0001; younger group: r = 0.303, P<0.0001; Fisher’s z = -2.87, P<0.005; partial 

correlation between DD and WMC, controlling for ED: older group: r = 0.28, P<0.0001; younger 

group: r = 0.30, P<0.0001; Fisher’s z = 0.60, P=0.549). Repeating these analyses for each of the six 

original age groups revealed a significant difference in the correlation between WMC and ED 

between the 30-39 and 40-49 year groups (Fisher’s z = -2.19, P=0.029). The difference between the 

30-39 and 50-59 year groups (Fisher’s z = -1.7, P=0.089) and the difference between the 40-49 and 

60-69 year groups (Fisher’s z = -0.86, P=0.390) no longer reached significance. 



As an ability to hold information in mind in the presence of DD is impaired with 

advancing age, it becomes more important to ensure efficient encoding of items. This leads 

WM task performance in the absence of distraction to become more similar to that seen under 

ED. Consistent with this we show that older adults (40-69 years) with a high DD cost 

(>10.00%, the median) have a significantly greater partial correlation between ND score and 

ED score, even when controlling for both DD score and age (r = 0.29, P <0.0001) than is the 

case in those with a low DD cost (<10.00%; r = 0.20, P =1.404; Fisher z = 4.02, P < 0.0001). 

Although age may still contribute to this result, given that age was measured in 10-year age 

ranges, the finding nevertheless supports the idea that an increased similarity between WM 

without distraction and WM with ED can compensate for worse DD exclusion.  

Discussion The greater similarity between WM performance (in the absence of distraction) 

on the one hand and encoding distractor exclusion on the other, with increasing age, argues 

for a greater involvement of focused attention during encoding. In older adults there is 

presumably a greater reliance on focused attention during the encoding period of a WM task 

without distraction, as is required when ED is present. This may be unnecessary in younger 

adults, who more successfully retain weakly encoded information during the delay period. 

Our results would also seem to complement findings showing a transfer of benefit from 

perceptual discrimination training to WM performance in older adults, where training-

induced changes in early visual processing during encoding predict WM improvement (11). 

The idea that naturally occurring changes with increasing age represent an adaptive encoding 

change, promoted by impaired delay distractor exclusion, provides the most parsimonious 

explanation of our data though we acknowledge other non-psychological factors are likely to 

contribute, including reduced frontal neural responsivity reported in older adults during 

encoding (12) as well as age-related perceptual impairments (13).  

To the best of our knowledge, the neural underpinnings of encoding and delay 

distractor exclusion have yet to be defined. One suggestion is that the basal ganglia plays a 

role in selectively initiating storage of new memories (14,3), whereas frontal cortex plays a 

role in buffering remembered items from delay distraction (15-18). The latter has been 

identified as a potential locus for greater interference effects in older adults (19).   

Although we observed a significant age-related decline in both ED and DD exclusion, 

this decline was greater for DD. It may be possible to equalize performance on the ED and 

DD task conditions in older adults by changing task parameters, for example the encoding 

period duration. What we show is that when the presentation duration of targets and 



distractors are held constant at 1s, DD shows greater age-related decline than ED. It is 

unclear why increasing age should affect delay distraction to a greater extent than encoding 

distraction one possibility is that if delay distractors are not completely excluded, then 

judgments of temporal order are required to dissociate the relevant from irrelevant 

information. There is no such temporal order associated with encoding distractors as they 

appear together with the relevant, to be encoded, information. Such judgments are disrupted 

in older age, possibly due to emerging frontal dysfunction (20). It is also possible that 

generalized slowing in older age leads to longer latencies in the presence of delay distraction 

(the more difficult condition) compared to encoding distraction, resulting in a greater decline 

in WM performance (21). A tendency for older adults to perform WM tasks without 

distraction, as if encoding distractors were present, as we observe here, may help to preserve 

encoding relative to delay distractor exclusion during aging.  

We show the effects of age on WM extend beyond a simple overall decline, and 

instead point to an age-related change in how information is remembered. WM in the absence 

of distraction becomes more similar to an individual’s ability to ignore distraction at 

encoding, perhaps reflecting an increasing reliance on focused attention at encoding with 

increasing age. This finding is relevant to a goal of ameliorating cognitive decline as well as 

highlighting the importance of a distinction between encoding and delay distraction 

exclusion. This distinction is also one that has relevance for neuropsychiatric disorders where 

WM and distractor filtering are likely to be impaired, such as ADHD (22).  

 

Methods 

Participants 

 
Data from participants aged 18-69 years were considered. Data were excluded from 1,805 participants 

who failed at the easiest level of any of the six conditions (i.e. failed two consecutive trials of WM 

load 2). Following these exclusions, data from 29631 participants remained for analysis. 

Experimental Design and Task  

This smartphone game forms part of the “The Great Brain Experiment”, which is funded by the 

Wellcome Trust (http://thegreatbrainexperiment.com). The game involves six conditions, three of 

which are considered here. Participants were asked to remember the positions of red circles that 

appeared on a 4x4 grid for 1s, and ignore yellow circles. At the end of each trial they were presented 

with an empty grid and asked to press on the grid positions in which red circles had appeared. In all 

http://thegreatbrainexperiment.com/


three conditions there was a delay period of 1s during which an empty grid was shown, after the red 

circles had disappeared and before participants could make their response. In the ND condition only 

red circles were displayed. In the ED condition two yellow distractor circles were shown together 

with the red circles. In the DD condition two yellow distractor circles were displayed during the delay 

period. For each condition there were three red circles to remember in the first trial. If the participant 

failed to respond correctly, there were two red circles to remember on the second trial. If that trial was 

not performed correctly, that condition ended. If a trial was performed correctly, the number of red 

circles (WM load) increased by one in the next trial. If a participant failed on any load from load 4 

onwards, they were given one more trial of that load. If they failed two successive trials of a 

condition, that condition ended. A maximum of eight trials were given in each condition.  

Data analysis 

Here we consider data only from the first time each participant played the game. Performance in each 

condition was measured as the maximum WM load at which a trial was answered correctly. The 

maximum score for each condition was 10. The score from the ND condition was used as a measure 

of WMC. All analysis was performed using IBM SPSS Statistics Version 21 and the accompanying P 

values were determined by two-tailed analysis. 

To determine whether the ability to effectively ignore ED and DD declined with increasing age, we 

performed separate ANCOVAs for ED and DD scores to determine the effect of age, while 

controlling for WM performance in the ND condition. To compare the effects of age on ED and DD 

exclusion, a third ANCOVA was performed to determine the effects of distractor type (ED or DD), 

age, and their interaction, while again controlling for ND performance. To enable us to correlate the 

extent to which WM performance was affected by each type of distraction with age, we calculated 

distraction cost for both ED and DD using the formula: distraction cost (%) = ((ND score – ED or DD 

score)/ND score)*100.  

To determine whether there was an age-related change in the extent to which ED and DD exclusion 

uniquely predicts WMC, we performed a hierarchical regression analysis. Performance in the ND 

condition was our measure of WMC and ED and DD scores were predictor variables, together with 

Age. The interaction between ED score and age and the interaction between DD score and age were 

then added to the model. R
2
 change between the two models was used to assess the variability in 

WMC that could be explained by age-related change in the contribution of distractor exclusion. 

Finally the interaction between ED score, DD score and age was added to the model. R
2
 change 

between this and the previous model was used to assess the variability in WMC that could be 

explained by the increasing contribution of ED relative to DD with increasing age. Standardised beta 

values are reported in the text, but Fig. 3 shows unstandardized B coefficients as here all variables 

represent the maximum number of items successfully reported.  



Having established a larger contribution of ED exclusion than DD exclusion to WMC with increasing 

age, we performed correlation analyses to determine whether ED exclusion becomes more similar to 

WM performance in the absence of distraction. Partial correlations were performed between ND score 

and ED score, controlling for DD score, for both younger (18-39 years) and older adults (40-69 

years), and a Fisher’s Z test was used to compare the results. For illustration the results of partial 

correlation analyses between ND score and DD score, controlling for ED score, are also shown. Also 

for illustration, correlation analyses were performed for each of the six original age groups, with 

Fisher’s z statistics shown to highlight significant differences between directly neighbouring age 

groups and between age groups with one intermediate age group.  

Finally, to assess whether older adults with worse DD exclusion show a greater similarity between 

ND score and ED exclusion, the older adult group (40-69 years) was divided by a median split 

according to DD cost (greater than or less than 10.00%). Partial correlation analysis was performed 

between ND score and ED score, controlling for both DD score and age group (40-49 years, 50-59 

years or 60-69 years). Despite controlling for age it should be noted that age may still contribute to 

this correlation, given our imprecise measure of age. 
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Figure Legends 

Fig. 1. The smartphone game. Red circles are presented simultaneously, followed by a delay 

of 1s. Participants should then indicate the positions of the red circles. (A) No distraction 

(ND) condition; only red circles are shown. (B) Encoding distraction (ED) condition; two 

yellow circles (distractors) are presented with the red circles. (C) Delay distraction (DD) 

condition; two yellow circles (distractors) are presented during the delay. 

Fig. 2. Task performance. (A) The mean score for each condition, for each age group. (B) 

The performance cost associated with the inclusion of ED (red) or DD (blue), for each age 

group. Error bars represent means ± SEM.  

Fig. 3. The association between ED and DD scores and WMC. (a) The B coefficients for ED 

(red) and DD (blue), for each age group, from the regression model (ND score = α + B1 ED 

score + B2 DD score). (b,c) The correlation coefficients for partial correlations between ND 

score and ED score, controlling for DD score, and also between ND score and DD score, 

controlling for ED score. Results are shown for (b) participants of 18 to 39 years (green) and 

40 to 69 years (orange) and (c) the six age groups. * P < 0.05; ** P < 0.01; *** P < 0.001 

(Fisher’s z test). (d) The correlation coefficients for partial correlations between ND score 

and ED score, controlling for DD score for older adults (40-69 years) with a high or low DD 

cost (a median split; the median was 10.00%).  

  



 

 



 


