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Age-related immune response heterogeneity 
to SARS-CoV-2 vaccine BNT162b2

Dami A. Collier1,2,3,29, Isabella A. T. M. Ferreira1,2,29, Prasanti Kotagiri1,2,29, Rawlings P. Datir1,2,3,29, 

Eleanor Y. Lim2,29, Emma Touizer3, Bo Meng1,2, Adam Abdullahi1, The CITIID-NIHR BioResource 

COVID-19 Collaboration*, Anne Elmer4,5, Nathalie Kingston4,5, Barbara Graves4, 

Emma Le Gresley4,5, Daniela Caputo4,5, Laura Bergamaschi1, Kenneth G. C. Smith1,2, 

John R. Bradley2,4, Lourdes Ceron-Gutierrez6, Paulina Cortes-Acevedo7, 

Gabriela Barcenas-Morales7, Michelle A. Linterman8, Laura E. McCoy3, Chris Davis9, 

Emma Thomson9, Paul A. Lyons1,2, Eoin McKinney1,2 ✉, Rainer Doffinger5 ✉, Mark Wills1,2 ✉ & 

Ravindra K. Gupta1,2 ✉

Although two-dose mRNA vaccination provides excellent protection against 

SARS-CoV-2, there is little information about vaccine e�cacy against variants of 

concern (VOC) in individuals above eighty years of age1. Here we analysed immune 

responses following vaccination with the BNT162b2 mRNA vaccine2 in elderly 

participants and younger healthcare workers. Serum neutralization and levels of 

binding IgG or IgA after the �rst vaccine dose were lower in older individuals, with a 

marked drop in participants over eighty years old. Sera from participants above eighty 

showed lower neutralization potency against the B.1.1.7 (Alpha), B.1.351 (Beta) and P.1. 

(Gamma) VOC than against the wild-type virus and were more likely to lack any 

neutralization against VOC following the �rst dose. However, following the second 

dose, neutralization against VOC was detectable regardless of age. The frequency of 

SARS-CoV-2 spike-speci�c memory B cells was higher in elderly responders (whose 

serum showed neutralization activity) than in non-responders after the �rst dose. 

Elderly participants showed a clear reduction in somatic hypermutation of 

class-switched cells. The production of interferon-γ and interleukin-2 by SARS-CoV-2 

spike-speci�c T cells was lower in older participants, and both cytokines were 

secreted primarily by CD4 T cells. We conclude that the elderly are a high-risk 

population and that speci�c measures to boost vaccine responses in this population 

are warranted, particularly where variants of concern are circulating.

Vaccines designed to elicit protective immune responses remain 

the key hope for containing the COVID-19 pandemic caused by 

SARS-CoV-2. In particular, mRNA vaccines have shown excellent 

efficacy when administered as two doses separated by a three- or 

four-week gap2,3. There is increasing evidence that neutralizing 

responses are a correlate of protection4–6. Few trial data on neutral-

izing responses or vaccine efficacy in individuals above the age of 

80 are available1. This is even more pertinent for settings in which 

a dosing interval of 12–16 weeks or more has been implemented to 

maximize the administration of first doses7. In addition, the emer-

gence of new variants with increased transmissibility8 and reduced 

sensitivity to vaccine-elicited antibodies9, and for which vaccines 

are less able to prevent infection10, has raised fears for vulnerable 

groups in whom the magnitude and quality of immune responses 

may be suboptimal.

 
Neutralization following immunization

We studied 140 participants who had received at least one vaccination 

(median age 72 years (interquartile range (IQR) 44–83), 51% female; 

Extended Data Fig. 1). We first validated the use of a pseudotyped virus 

(PV) system to investigate neutralization, by comparing geometric mean 

titres (GMTs) between PVs expressing the Wuhan-1 D614G spike (referred 

to here as wild-type) and a B.1 lineage live virus isolate, using sera isolated 

from thirteen individuals after two vaccine doses (Extended Data Fig. 2). 

We observed a high correlation between the two approaches, consistent 

with other findings11, and proceeded with the PV system.

We explored the association between age and ability to neutralize 

virus by plotting the proportion of individuals whose sera produced 

detectable virus neutralization after the first dose at a given age. This 

analysis showed a nonlinear relationship with a marked drop around 
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the age of 80 years (Fig. 1a). Given this nonlinear change in a correlate of 

protection, we performed selected subsequent analyses with age both 

as a continuous variable and as a categorical variable. When individuals 

aged 80 years or more were tested between 3 and 12 weeks after their 

first dose, around half showed no evidence of neutralization (Extended 

Data Fig. 2). Geometric mean neutralization titre (GMT) was lower in 

participants aged 80 years or more than in younger individuals (48.2 

(95% confidence interval (CI) 34.6–67.1) versus 104.1 (95% CI 69.7–155.2), 

P = 0.004; Extended Data Table 1, Fig. 1b). GMT showed evidence of an 

inverse association with age (Extended Data Fig. 2). The GMT following 

the second dose was significantly higher in individuals for whom there 

had been a 12-week interval between doses compared with a 3-week 

interval between doses (Extended Data Fig. 2). A clinically accredited 

assay for N antibodies9 showed evidence that five individuals in each 

group had previously been infected with SARS-CoV-2 (Extended Data 

Table 1), and we adjusted for this in multivariable analyses (Extended 

Data Tables 2, 3). Neutralizing titres for sera from vaccinated individuals 

were higher after the second dose than after the first dose, regardless of 

age (Fig. 1b). In participants who had suboptimal or no neutralization 

after dose 1, and who subsequently received the second dose within the 

study period (Fig. 1c), all but two elderly participants responded with 

an increase in neutralization activity (Extended Data Table 1, Fig. 1b).

Given our observation that participants aged 80 years or more had 

lower neutralization responses following the first dose than younger 

individuals, we hypothesized that this could lead to sub-protective 

neutralizing responses against the B.1.1.7, B.1.351 and P.1 VOCs, which 

were first identified in the UK, South Africa and Brazil, respectively 

(Extended Data Fig. 2). We therefore examined serum neutralization 

by age group against PVs bearing the wild-type spike protein or spike 

proteins from the three VOCs (Fig. 1d, e). There was a clear reduction 

in neutralizing titres against VOCs (Fig. 1d), and titres were lower 

for individuals over 80 years old than for younger individuals. The 

proportions of individuals with detectable neutralization showed 

a similar pattern (Fig. 1e, Extended Data Tables 2, 3). Following the 

second dose, although there were differences in GMT for the VOCs 

between the age groups (Fig. 1f), nearly all participants across age 

groups had detectable neutralization responses across the VOCs 

tested (Fig. 1g).

B cell responses to mRNA vaccination

We measured binding antibody responses to the full-length wild-type 

(Wuhan-1) spike protein9. Levels of IgG and all IgG subclasses against 

spike protein increased between vaccine doses (Fig. 2a), and were similar 

after the second dose to those observed following natural infection. Like 

the neutralization titres, levels of IgG against spike declined with age 

(Fig. 2b, Extended Data Fig. 3). IgG and its subclasses correlated with 

serum neutralization (Fig. 2c, Extended Data Fig. 3). The concentrations of 

total and subclass anti-spike IgGs were significantly lower in participants 

aged 80 or older than in the younger group (Fig. 2d). IgA responses also 

increased between the two doses and correlated with neutralization 

after dose 1 (Extended Data Fig. 3). In addition, phenotyping of periph-

eral blood mononuclear cells (PBMCs) by flow cytometry showed that 

neutralization in the over-80 age group was associated with a higher 

a cb

ed One dose

f gTwo doses

1.0

0.8

0.6

0.4

0.2

0P
ro

b
a
b

ili
ty

 o
f 

ID
5

0
 >

 1
 i
n

 2
0

20 40 60 80 100

Age (years)

0

20

40

60

80

100

P
ro

p
o

rt
io

n
 w

it
h
 I
D

5
0
 >

 1
 in

 2
0
 (
%

)

0

20

40

60

80

100

P
ro

p
o

rt
io

n
 w

it
h
 I
D

5
0
 >

 1
 in

 2
0
 (
%

)

WT B.1.1.7 B.1.351P1

1

10

100

10,000

5
0
%

 s
e
ru

m
 n

e
u
tr

a
liz

a
ti
o

n
 t

it
re

NS

NS

5
0
%

 s
e
ru

m
 n

e
u
tr

a
liz

a
ti
o

n
 t

it
re

101

102

103

104

105

106

101

102

103

104

105

106

**

**

****
****

**** **** **

** ** *

5
0
%

 s
e
ru

m
 n

e
u
tr

a
liz

a
ti
o

n
 t

it
re

01234
–25

0

25

50

75

100

log10[inverse dilution] log10[inverse dilution]

N
e
u

tr
a
liz

a
ti
o

n
 (
%

)

–25

0

25

50

75

100

N
e
u

tr
a
liz

a
ti
o

n
 (
%

)

ID 4

01234

ID 8

H
S

<
80

 y
ea

rs
 d

os
e 

1

<
80

 y
ea

rs
 d

os
e 

2

≥
80

 y
ea

rs
 d

os
e 

1

≥
80

 y
ea

rs
 d

os
e 

2

H
S

<
80

 y
ea

rs
 W

T

≥
80

 y
ea

rs
 W

T

<
80

 y
ea

rs

≥
80

 y
ea

rs

<
80

 y
ea

rs

≥
80

 y
ea

rs

<
80

 y
ea

rs

≥
80

 y
ea

rs

<
80

 y
ea

rs

≥
80

 y
ea

rs

WT B.1.1.7 B.1.351P1

<
80

 y
ea

rs

≥
80

 y
ea

rs

<
80

 y
ea

rs

≥
80

 y
ea

rs

<
80

 y
ea

rs

≥
80

 y
ea

rs

<
80

 y
ea

rs

≥
80

 y
ea

rs

<
80

 y
ea

rs
 B

.1
.1

.7

≥
80

 y
ea

rs
 B

.1
.1

.7

<
80

 y
ea

rs
 B

.1
.3

51

≥
80

 y
ea

rs
 B

.1
.3

51

<
80

 y
ea

rs
 P

1

≥
80

 y
ea

rs
 P

1

H
S

<
80

 y
ea

rs
 W

T

≥
80

 y
ea

rs
 W

T

<
80

 y
ea

rs
 B

.1
.1

.7

≥
80

 y
ea

rs
 B

.1
.1

.7

<
80

 y
ea

rs
 B

.1
.3

51

≥
80

 y
ea

rs
 B

.1
.3

51

<
80

 y
ea

rs
 P

1

≥
80

 y
ea

rs
 P

1

Fig. 1 | SARS-CoV-2 neutralization by 

sera from BNT162b2 vaccinated 

individuals. a, Proportion of individuals 

with detectable serum neutralization of 

PV after the first dose of Pfizer BNT162b2 

vaccine by age. Cut-off for serum 

neutralization is an inhibitory dilution at 

which 50% inhibition of infection is 

achieved (ID50) of 20. Shading, 95% CI.  

b, Serum neutralization of PV after dose 1 

(blue) and dose 2 (red) by age group  

(<80 years (n = 79), ≥ 80 years (n = 59)).  

c, Neutralization curves for serum from 

two individuals (ID 4 and ID 8) with lower 

responses after the first dose (blue) and 

increased neutralization activity after the 

second dose (red) of BNT162b2 against 

pseudovirus expressing wild-type spike 

protein (D614G). Data shown as 

mean ± s.e.m. of technical replicates.  

d, f, Neutralization of SARS-CoV-2 VOCs  

by sera after dose 1 (d) and dose 2 (f) of 

BNT162b2. d, WT, n = 138; B.1.1.7, n = 135; 

B.1.351, n = 82; P.1, n = 82. f, WT, n = 64; 

B.1.1.7, n = 53; B.1.351, n = 32; P.1, n = 32. 

Data shown as GMT ± s.d. e, g, The 

proportion of participant vaccine sera 

with neutralization activity against 

wild-type and mutant spike proteins after 

dose 1 (e) and dose 2 (g) (ID50 > 1 in 20 

dilution of sera). GMT ± s.d. are 

representative of two independent 

experiments each with two technical 

repeats. Mann–Whitney test was used for 

unpaired comparisons and Wilcoxon 

matched-pairs signed rank test for paired 

comparisons. *P < 0.05, **P < 0.01, 

****P < 0.0001; NS, not significant. HS, 

human AB serum control.
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proportion of spike-specific IgG+IgM−CD19+ memory B cells (Fig. 3e). Nota-

bly, the proportion of these cells did not differentiate neutralizers from 

non-neutralizers in the under-80 group (Fig. 3e, Extended Data Fig. 4).

We performed B cell repertoire sequencing on bulk PBMCs to assess 

isotype and variable gene usage, somatic hypermutation and diversity 

of the repertoire between the two age groups and in relation to neutrali-

zation. There were no differences in isotype proportions between the 

two age groups (Extended Data Fig. 5), or by neutralization (Fig. 3a). 

We found an increase in usage of the immunoglobulin heavy variable 

4 (IGHV4) family in the older age group, with an increased propor-

tion of IGHV4.34, IGHV4.39, IGHV4.59 and IGHV4.61, whereas in the 

younger age group there was an increase in usage of the IGHV1 family, 

with increases in IGHV1.18 and IGHV1.69D (Fig. 3b). We did not find any 

significant differences in V gene usage associated with neutralization 

(Extended Data Fig. 5).

Differences in somatic hypermutation could affect neutralization 

through antibody affinity maturation. We found that participants 

aged 80 years or more had a lower level of somatic hypermutation in 

class-switched B cell receptors (BCRs) than the younger group, and that 

the difference was driven by the IgA1/2 isotype (Fig. 3c). We also did 

not find any relationship between measures of diversity and neutrali-

zation potency or age group (Fig. 3d, Extended Data Fig. 5). We next 

examined the B cell repertoire for public clones known to be associ-

ated with SARS-CoV-2 neutralization. We explored the convergence 

between BCR clones in our study and the CoV-AbDab database12 and 

found that participants under 80 years of age had a higher frequency 

of convergent clones, in keeping with increased neutralization, when 

compared with the older group (Fig. 3e).

T cell responses to mRNA vaccination

Although it is increasingly recognized that neutralizing antibodies 

dominate protection against initial infection4,13, T cells might limit 

disease progression5 when neutralizing antibody titres are low14. We 

therefore determined the T cell response to SARS-CoV-2 spike protein in 

vaccinated individuals by stimulating PBMCs with overlapping peptide 

pools to the wild-type SARS-CoV-2 spike, using an interferon-γ (IFNγ) 

and interleukin-2 (IL-2) FluoroSpot assay to count spike-specific T cells. 

When we plotted IFNγ-spike specific T cell responses against age as a 

continuous variable, there was a negative correlation with a drop-off at 

around 80 years (Fig. 4a). A similar effect, albeit less pronounced, was 

seen for IL-2 (Fig. 4b). However, there did not appear to be a relationship 

between cytokine production by PBMCs and neutralization titre after 

the first dose (Extended Data Fig. 6).

Following the first dose of vaccine, the frequency of IFNγ-secreting 

T cells against a CEF+ peptide pool that included cytomegalovirus 

(CMV)-, Epstein-Barr virus (EBV)- and influenza-specific peptides did 

not differ by age category and was similar to healthy SARS-CoV-2 unex-

posed controls (Extended Data Fig. 6). This indicates that differences 

in observed responses were likely to be vaccine-specific rather than 

resulting from generalized suboptimal T cell responses or immune 

paresis. However, IFNγ spike-specific T cell responses were signifi-

cantly larger in immunized individuals below 80 years of age than in 

an unexposed population of the same age (Fig. 4c). However, in par-

ticipants aged 80 years or more, the IFNγ spike-specific T cell response 

following the first dose did not differ from that of unexposed con-

trols (Fig. 4c). By contrast, spike-specific IL-2 T cell frequencies were 
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Fig. 2 | SARS-CoV-2 spike-binding antibody responses and SARS-CoV-2 

spike-specific memory B cells in blood following vaccination with 

BNT162b2. a, Total anti-spike IgG and subclasses after first and second doses 

of vaccine and in individuals with prior COVID-19. MFI, mean fluorescence 

intensity. b, Pearson’s correlation (r) between anti-spike IgG binding antibody 

responses after first dose and age (n = 134). c, Pearson’s correlation between 

anti-spike IgG (n = 134) binding antibody responses and neutralization by sera 

against SARS-CoV-2 in a spike lentiviral pseudotyping assay expressing 

wild-type spike (D614G). d, Anti-spike IgG subclass responses to first dose 

vaccine stratified by age (<80 and ≥80 years). e, CD19+ memory B cells (left, as 

percentage of PBMCs) and SARS-CoV-2 spike-specific CD19+IgG+IgM− memory 

B cells (right, as percentage of all memory B cells) from FACS-sorted PBMCs. 

n = 16 for ≥80 years, n = 16 for <80 years; stratified by neutralizing response 

after first dose, n = 8 in each category. MFI – mean fluorescence intensity. 

Mann–Whitney test was used for unpaired comparisons. *P < 0.05, **P < 0.01, 
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significantly higher in both vaccinated groups than in unexposed con-

trols (Fig. 4d). Notably, although spike-specific IFNγ and IL-2 responses 

in PBMCs after the first dose of vaccine were similar to those found 

after natural infection (Extended Data Fig. 6), the second dose did 

not appear to increase these responses, either overall (Extended Data 

Fig. 6) or within age categories (Fig. 4e, f). Following depletion of CD4 

or CD8 T cells, the majority of IFNγ and IL-2 production was from CD4+ 

T cells in vaccinated individuals (Fig. 4g, h). Those aged 80 or more 

had markedly lower spike-specific IL-2 CD4+ T cell responses than their 

younger counterparts (Fig. 4g).

CMV serostatus has been associated with poorer responses to vac-

cination and infections15,16. The rate of CMV IgG positivity was higher 

in the older age group (Extended Data Fig. 6); unexpectedly, though, 

CMV-positive individuals in this group had significantly higher IFNγ, 

but not IL-2, responses to SARS-CoV-2 spike peptides than CMV-negative 

individuals in the same age group (Extended Data Fig. 6).
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Fig. 3 | B cell repertoire following vaccination with first dose of BNT162b2. 

a, Isotype usage according to unique VDJ sequence in participants <80 (n = 22) 

or ≥80 years old (n = 28) and association with neutralization of spike 

pseudotyped virus. Neutralization cut-off for 50% neutralization was set at 20. 

Mann–Whitney U-test. b, Heat map showing differences in V gene usage 

between the <80 and ≥80 groups. Mann–Whitney U-test with Benjamini–

Hochberg false discovery rate (FDR) correction; *P < 0.1. c, Mean somatic 

hypermutation for participants <80 or ≥80 years old, grouped according to 

isotype class. Mann–Whitney U-test. d, Diversity indices for neutralizing and 

non-neutralizing groups. The inverse is depicted for Simpson’s index. t-test.  

e, BCR comparison of patients in the two age groups for the first 50 days after 

vaccination (<80, n = 27; ≥80, n = 5) with public clones known to be associated 

with SARS-CoV-2 using the CoV-AbDab database12. Clones from participants 

and the database were co-clustered based on matching IGHV and IGHJ 

segments, matching CDR-H3 region length and 85% CDR-H3 sequence amino 

acid homology. One-sided t-test. For boxplots: centre line, median; box,  

25th–75th percentile; whiskers, 1.5× IQR.
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Autoantibodies and inflammatory molecules

Finally, we investigated the possibility of interactions between senes-

cence and mRNA vaccine responses. Autoantibodies and inflammatory 

cytokines or chemokines are associated with immune senescence17. We 

first measured a panel of autoantibodies in the sera of 101 participants 

following the first dose of the BNT162b2 vaccine. Eight participants had 

autoantibodies against myeloperoxidase (anti-MPO), two against fibril-

larin and one against cardiolipin (Extended Data Fig. 7). As expected, all 

but one of the participants with anti-MPO autoantibodies were over the 

age of 80 years (Extended Data Fig. 7). There was a trend towards reduced 

anti-spike IgG levels and serum neutralization against the wild-type and 

B.1.17 spike proteins in participants with autoantibodies, although this 

did not reach statistical significance (probably owing to the small sample 

size; Extended Data Fig. 7). Next, we explored the association between 

serum cytokines or chemokines and neutralization of SARS-CoV-2 PV, as 

well as their association with age. PIDF, a known senescence-associated 

secretory phenotype (SASP) molecule, was the only molecule that was 

enriched in sera from participants aged over 80 years, and there was no 

association between any of these molecules and the ability of sera to 

neutralize SARS-CoV-2 PVs (Extended Data Fig. 7).

Discussion

Neutralizing antibodies are a likely correlate of protection against 

SARS-CoV-2 infection, as suggested by vaccine efficacy studies, pre-

clinical studies in mice and non-human primates, and data from the 

early use of convalescent plasma in elderly patients4,5,10,13,14,18,23. There 

is a lack of data on neutralizing antibody immune responses following 

mRNA vaccination in the elderly, and no data, to our knowledge, on 

variants of concern in this group. In a clinical study that specifically 

looked at older adults vaccinated with BNT162b2, the GMT after the 

first dose was 12 in a set of 12 subjects between ages of 65 and 85 years, 

rising to 149 seven days after the second dose1. Furthermore, in a study 

of the Moderna 1273 mRNA vaccine in individuals above 55 years of 

age, neutralization was detectable only after the second dose, whereas 

binding antibodies were detectable after both doses19. In a randomized 

phase I study on BNT162b1 in younger (18–55 years) and older adults 

(65–85 years), virus neutralization was lower in the older age group 22 

days after the first dose20. These data reflect the finding that responses 

to the ChAdOx1 nCov-19 (AZD-1222) vaccine were lower in older than in  

younger mice, and the difference was overcome by booster dosing21.

Here, in a cohort of 140 individuals, we have shown not only an inverse 

relationship between age and neutralizing responses following the first 

dose of BNT162b2, but also a more precipitous decline around the age of 

80 years. Individuals aged 80 or more were prioritized for vaccination in 

the UK and elsewhere, as they represented the group at greatest risk of 

severe COVID-1922. We found that around half of those above the age of 80 

have a suboptimal neutralizing antibody response after the first dose of 

BNT162b2, accompanied by lower T cell responses compared to younger 

individuals. Individuals over 80 years of age differed from the younger 

group in four main respects that could explain poorer neutralization of 

SARS-CoV-2. First, serum IgG levels were lower, accompanied by a lower 

proportion of peripheral spike-specific IgG+IgM−CD19+ memory B cells. 

Second, the elderly displayed lower somatic hypermutation in the BCR 

gene. Third, the elderly had lower enrichment for public BCR clonotypes 

that are associated with neutralization. And fourth, the older group dis-

played a marked reduction in IL-2-producing spike-reactive CD4+ T cells. 

Therefore, possible explanations for their poorer neutralizing responses 

include lower concentrations of antibodies (quantity) and/or lower-affinity 

antibodies (quality) resulting from B cell selection, reduced CD4+ T cell 

help, or a combination of both. These data parallel those in aged mice, 

where ChAdOx1 nCov-19 (AZD-1222) vaccine responses were reported to 

be lower than in younger mice, and this was overcome by booster dosing21.

Critically, we show that elderly individuals are likely to be at greater 

risk from VOCs, as a greater proportion of individuals in the over-80 age 
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Fig. 4 | T cell responses to BNT162b2 vaccine after the first and second 

doses. a, b, FluoroSpot analysis by age for IFNγ (a) and IL-2 (b) T cell responses 

specific to SARS-CoV-2 spike protein peptide pool following PBMC stimulation. 

SFU, spot-forming units. Scatter plots show linear correlation line bounded by 

95% CI; β, slope/regression coefficient. c, d, FluoroSpot analysis for IFNγ (c) and 

IL-2 (d) T cell responses specific to SARS-CoV-2 spike protein peptide pool 

following stimulation of unexposed PBMCs (stored PBMCs from 2014–2016, 

n = 20) and PBMCs from vaccinated individuals (<80 IFNγ, n = 46; <80 IL-2, 

n = 44; ≥80 IFNγ, n = 35; ≥80 IL-2, n = 27) three weeks or more after the first dose 

of BNT162b2. e, f, FluoroSpot analysis for IFNγ (e) and IL-2 (f) T cell responses 

specific to SARS-CoV-2 spike protein peptide pool following stimulation of 

unexposed PBMCs (n = 20) and PBMCs from vaccinated individuals three weeks 

after the first or second dose (first dose: <80 IFNγ, n = 46; <80 IL-2, n = 45; ≥80 

IFNγ, n = 31; ≥80 IL-2, n = 19; second dose: <80 IFNγ, n = 15; <80 IL-2, n = 15; ≥80 

IFNγ, n = 24; ≥80 IL-2, n = 24). g, h, FluoroSpot analysis for IL-2 (g) and IFNγ (h) 

CD4 and CD8 T cell responses specific to SARS-CoV-2 spike protein peptide 

pool following stimulation after column-based PBMC separation. Mann–

Whitney test was used for unpaired comparisons and Wilcoxon matched-pairs 

signed rank test for paired comparisons. *P < 0.05, ***P < 0.001, ****P < 0.0001; 

NS, not significant. Error bars, s.d.
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group showed no neutralizing activity to P.1 and B.1.1.7 after the first dose. 

Reassuringly, we observed neutralizing responses across all age groups 

after the second dose, although further work is needed to understand the 

effect of age on the durability of immune responses following vaccination.
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Methods

Study design

Community participants or healthcare workers who received their 

first dose of the BNT162b2 vaccine between 14 December 2020 and 

10 February 2021 were consecutively recruited at Addenbrooke’s 

Hospital into the COVID-19 cohort of the NIHR Bioresource. Partici-

pants were followed up for up to 3 weeks after receiving their second 

dose of the BNT162b2 vaccine. They provided blood samples 3 to 12 

weeks after their first dose and again 3 weeks after the second dose 

of the vaccine. Consecutive participants were eligible without exclu-

sion. The exposure of interest was age, categorized into two exposure 

levels (<80 and ≥80 years). The outcome of interest was inadequate 

vaccine-elicited serum antibody neutralization activity at least 3 weeks 

after the first dose. This was measured as the dilution of serum required 

to inhibit infection by 50% (ID50) in an in vitro neutralization assay. 

An ID50 of 20 or below was deemed inadequate neutralization. Bind-

ing antibody responses to the spike, receptor-binding domain (RBD) 

and nucleocapsid were measured by multiplex particle-based flow 

cytometry and spike-specific T cell responses were measured by IFNγ 

and IL-2 FluoroSpot assays. Measurement of serum autoantibodies and 

characterization of the B cell receptor (BCR) repertoire following the 

first vaccine dose were exploratory outcomes.

We assumed a risk ratio of non-neutralization in the ≥80 years group 

compared with the <80 years group of 5. Using an alpha of 0.05 and 

power of 90% required a sample size of 50 with a 1:1 ratio in each group.

Ethical approval

The study was approved by the East of England – Cambridge Central 

Research Ethics Committee (17/EE/0025). PBMCs from unexposed 

volunteers previously recruited by the NIHR BioResource Centre Cam-

bridge through the ARIA study (2014–2016) were used with ethical 

approval from the Cambridge Human Biology Research Ethics Com-

mittee (HBREC.2014.07) and currently North of Scotland Research 

Ethics Committee 1 (NS/17/0110).

Statistical analyses

Descriptive analyses of demographic and clinical data are presented 

as median and IQR when continuous and as frequency and proportion 

(%) when categorical. Differences between continuous and categori-

cal data were tested using Wilcoxon rank sum and Chi-square tests, 

respectively. Logistic regression was used to model the association 

between age group and neutralization by vaccine-elicited antibodies 

after the first dose of the BNT162b2 vaccine. The effects of sex and time 

interval from vaccination to sampling as confounders were adjusted 

for. Linear regression was also used to explore the association between 

age as a continuous variable and log-transformed ID50, binding anti-

body levels, antibody subclass levels and T cell response after dose 1 

and dose 2 of the BNT162b2 vaccine. Bonferroni adjustment was made 

for multiple comparisons in the linear correlation analyses between 

binding antibody levels, ID50, age and T cell responses. The Pearson’s 

normally distributed correlation coefficient for linear data and Spear-

man’s non-normally distributed correlation for nonlinear data were 

reported. Statistical analyses were done using Stata v13, Prism v9 and 

R (version 3.5.1).

Generation of mutants and pseudotyped viruses

Wild-type pseudotyped virus (bearing mutation D614G), B.1.1.7 pseu-

dotyped viruses (bearing mutations ∆69/70, ∆144, N501Y, A570D, 

D614G, P681H, T716I and S982A and D1118H), B.1.351 pseudotyped virus 

(bearing mutations L18F, D80A, D215G, ∆242-4, R246I, K417N, E484K, 

N501Y, D614G, A701V) and P.1 pseudotyped virus (bearing mutations 

L18F, T20N, P26S, D138Y, R190S, K417T, E484K, N501Y, D614G, H655Y, 

T1027I and V1176F) were generated. In brief, amino acid substitutions 

were introduced into the D614G pCDNA_SARS-CoV-2_S plasmid as 

previously described23 using the QuikChange Lightening Site-Directed 

Mutagenesis kit, according to the manufacturer’s instructions (Agilent 

Technologies). Sequences were verified by Sanger sequencing. The 

pseudoviruses were generated in a triple plasmid transfection system 

whereby the spike-expressing plasmid along with a lentviral packaging 

vector (p8.9) and luciferase expression vector (psCSFLW) were trans-

fected into 293T cells (a gift from Greg Towers; tested for mycoplasma) 

with Fugene HD transfection reagent (Promega). The viruses were 

harvested after 48 h and stored at −80 °C. TCID50 was determined by 

titration of the viruses on 293T cells expressing ACE-2 and TMPRSS224.

Pseudotyped virus neutralization assays

Spike pseudotype assays have been shown to have similar charac-

teristics as neutralization testing using fully infectious wild-type 

SARS-CoV-211. Virus neutralization assays were performed on 293T cells 

transiently transfected with ACE2 and TMPRSS2 using SARS-CoV-2 spike 

pseudotyped virus expressing luciferase24. Pseudotyped virus was incu-

bated with serial dilutions of heat-inactivated human serum samples or 

sera from vaccinated individuals in duplicate for 1 h at 37 °C. Virus and 

cell-only controls were also included. Then, freshly trypsinized 293T 

ACE2/TMPRSS2-expressing cells were added to each well. Following 48 

h incubation with 5% CO2 at 37 °C, luminescence was measured using 

the Steady-Glo Luciferase assay system (Promega). Neutralization 

was calculated relative to virus-only controls. Dilution curves were 

presented as a mean neutralization with s.e.m. ID50 values were calcu-

lated in GraphPad Prism. The limit of detection for 50% neutralization 

was set at an ID50 of 20. The ID50 within groups were summarized as 

a geometric mean titre (GMT) and statistical comparison between 

groups were made with Mann–Whitney or Wilxocon ranked sign tests.

Live virus serum neutralization assays

A549-ACE2-TMPRSS2 cells were seeded at a cell density of 2.4 × 104 per 

well in a 96-well plate 24 h before inoculation. Serum was titrated start-

ing at a final dilution of 1:50 with live B.1 virus PHE2 (EPI_ISL_407073) 

isolate being added at a multiplicity of infection (MOI) of 0.01. The 

mixture was then incubated for 1 h before being added to the cells. 

Seventy-two hours after infection, the plates were fixed with 8% for-

maldehyde and then stained with Coomassie blue for 30 min. The 

plates were washed and dried overnight before using a Celigo Imaging 

Cytometer (Nexcelom) to measure the staining intensity. Percentage 

cell survival was determined by comparing the intensity of the stain-

ing to an uninfected well. A nonlinear sigmoidal 4PL model (Graphpad 

Prism 9) was used to determine the IC50 for each serum. The correlation 

between log-transformed ID50 obtained from the pseudotyped virus 

and live virus systems were explored using linear regression. Pearson’s 

correlation coefficient was determined.

SARS-CoV-2 serology by multiplex particle-based flow 

cytometry (Luminex)

Recombinant SARS-CoV-2 nucleocapsid, spike and RBD were covalently 

coupled to distinct carboxylated bead sets (Luminex) to form a 3-plex 

and analysed as previously described25. Specific binding was reported 

as mean fluorescence intensities (MFI).

CMV serology

HCMV IgG levels were determined using an IgG enzyme-linked immu-

nosorbent assay (ELISA), HCMV Captia (Trinity Biotech) according 

to the manufacturer’s instructions, on plasma derived from clotted 

blood samples.

Serum autoantibodies

Serum was screened for the presence of autoantibodies using the Proto-

Plex autoimmune panel (Life Technologies) according to the manufac-

turer’s instructions. In brief, 2.5 µl serum was incubated with Luminex 

MagPlex magnetic microspheres in a multiplex format conjugated to 
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19 full-length human autoantigens (cardiolipin, CENP B, H2a(F2A2) 

and H4 (F2A1), Jo-1, La/SS-B, Mi-2b, myeloperoxidase, proteinase-3, 

pyruvate dehydrogenase, RNP complex, Ro52/SS-A, Scl-34, Scl-70, 

Smith antigen, thyroglobulin, thyroid peroxidase, transglutaminase, 

U1-snRNP 68, and whole histone) along with bovine serum albumin 

(BSA). Detection was undertaken using goat-anti-human IgG-RPE in a 

96-well flat-bottomed plate and the plate was read in a Luminex xMAP 

200 system. Raw fluorescence intensities (FI) were further processed 

in R (version 3.5.1) Non-specific BSA-bound FI was subtracted from 

background-corrected total FI for each antigen before log2 transforma-

tion and thresholding. Outlier values (Q3 + 1.5 × IQR) in each distribution 

were defined as positive.

Serum chemokine and cytokine analysis

Serum proteins were quantified using a validated electrochemilumi-

nescent sandwich assay quantification kit (Mesoscale Discovery VPlex) 

according to the manufacturer’s instructions. In brief, both sera and 

standard calibration controls were incubated with SULFO-tagged anti-

bodies targeting IFNγ, IL-10, IL-12p70, IL-13, IL-1β, IL-2, IL-4, IL-6, IL-8, 

TNFα, GC-CSF, IL-1α, IL-12, IL-15, IL-16, IL-17A, IL-5, IL-7, TNFβ, VEGF, MCP1, 

MCP4, eotaxin, eotaxin3, IP10, MDC, MIP1α, MIP1β, TARC, IL-17B, IL-17C, 

IL-17D, IL-1RA, IL-3, IL-9, TSLP, VEGFA, VEGFC, VEGFD, VEGFR1/FLT1, PIGF, 

TIE2, FGF, ICAM1, VCAM1, SAA and CRP and read using an MSD MESO 

S600 instrument. Concentrations were calculated by comparison with 

an internal standard calibration curve fitted to a four-parameter logis-

tic model. Values below (19%) or above (0%) the reference range were 

imputed at the lower/upper limit of detection, respectively. Association 

of each cytokine level with SARS-CoV-2 neutralizing antibody titre, 

neutralization status (1/0) and age was undertaken using Kendall’s tau 

and Wilcoxon tests with FDR <5% considered significant.

B cell receptor repertoire library preparation

PBMCs were lysed and RNA extracted using Qiagen AllPrep DNA/RNA 

mini kits and Allprep DNA/RNA Micro kits according to the manufac-

turer’s protocol. The RNA was quantified using a Qubit. B cell receptor 

repertoire libraries were generated for 52 COVID-19 vaccinated indi-

viduals (58 samples) as follows: 200 ng total RNA from PAXgenes (14 µl 

volume) was combined with 1 µl 10 mM dNTP and 10 µM reverse primer 

mix (2 µl) and incubated for 5 min at 70 °C. The mixture was immediately 

placed on ice for 1 min and then subsequently combined with 1 µl DTT 

(0.1 M), 1 µl SuperScriptIV (Thermo Fisher Scientific), 4 µl SSIV Buffer 

(Thermo Fisher Scientific) and 1 µl RNase inhibitor. The solution was 

incubated at 50 °C for 60 min followed by 15 min inactivation at 70 °C. 

cDNA was cleaned with AMPure XP beads and PCR-amplified with a 5′ 

V-gene multiplex primer mix and 3′ universal reverse primer using the 

KAPA protocol and the following thermal cycling conditions: 1 cycle 

(95 °C, 5 min); 5 cycles (98 °C, 20 s; 72 °C, 30 s); 5 cycles (98 °C, 15 s; 65 °C, 

30 s; 72 °C, 30 s); 19 cycles (98 °C, 15 s; 60 °C, 30 s; 72 °C, 30 s); 1 step (72 °C, 

5 min). Sequencing libraries were prepared using Illumina protocols and 

sequenced using 300-bp paired-end sequencing on a MiSeq machine.

Sequence analysis

Raw reads were filtered for base quality using a median Phred score 

of ≥ 32 (http://sourceforge.net/projects/quasr/). Forward and reverse 

reads were merged where a minimum 20-bp identical overlapping 

region was present. Sequences were retained where more than 80% base 

sequence similarity was present between all sequences with the same 

barcode. The constant-region allele with highest sequence similarity 

was identified by 10-mer matching to the reference constant-region 

genes from the IMGT database. Sequences without complete reading 

frames and non-immunoglobulin sequences were removed and only 

reads with significant similarity to reference IGHV and J genes from 

the IMGT database using BLAST were retained. Immunoglobulin gene 

use and sequence annotation were performed in IMGT V-QUEST, and 

repertoire differences were analysed by custom scripts in Python.

Public BCR analysis

Convergent clones were annotated with the same IGHV and IGHJ seg-

ments, had the same CDR-H3 region length and were clustered based on 

85% CDR-H3 sequence amino acid homology. A cluster was considered 

convergent with the CoV-AbDab database if it contained sequences 

from post-vaccinated individuals and from the database.

Flow cytometry

The following antibodies or staining reagents were purchased from 

BioLegend: CD19 (SJ25C, 363028), CD3 (OKT3, 317328), CD11C (3.9, 

301608), CD25 (M-A251, 356126), CD14 (M5E2,301836), and IgM 

(IgG1-k, 314524). CCR7 (150503, 561143) and IgG (G18-145, 561297) 

were obtained from BD Bioscience, CD45RA (T6D11, 130-113-359) from 

Miltyeni Biotech, and CD8A (SK1, 48-0087-42) from eBiosciences. 

The LIVE/DEAD Fixable Aqua Dead Cell Stain Kit was obtained from 

Invitrogen. Biotinylated spike protein expressed and purified as pre-

viously described26 was conjugated to streptavidin R-phycoerythrin 

(PJRS25-1) or streptavidin APC obtained from Agilent Technologies. 

PBMCs were isolated from study participants and stored in liquid 

nitrogen. Aliquots containing 107 cells were thawed and stained in 

PBS containing 2 mM EDTA at 4 °C with the above antibody panel 

and then transferred to 0.04% BSA in PBS. Events were acquired on 

a FACSAria Fusion (BD Biosciences). Analyses were carried out in 

FlowJo version 10.7.1.

IFNγ and IL-2 FluoroSpot T cell assays

PBMCs were isolated from the heparinized blood samples using 

Histopaque-1077 (Sigma-Aldrich) and SepMate-50 tubes (StemCell 

Technologies). Frozen PBMCs were rapidly thawed and diluted into 10 

ml TexMACS medium (Miltenyi Biotech), centrifuged and resuspended 

in 10 ml fresh medium with 10 U/ml DNase (Benzonase, Merck-Millipore 

via Sigma-Aldrich). PBMCs were then incubated at 37 °C for 1 h, followed 

by centrifugation and resuspension in fresh medium supplemented 

with 5% human AB serum (Sigma Aldrich) before being counted. PBMCs 

were stained with 2 µl LIVE/DEAD Fixable Far Red Dead Cell Stain Kit 

(Thermo Fisher Scientific) and live PBMCs were enumerated on the BD 

Accuri C6 flow cytometer.

Overlapping spike SARS-CoV-2 peptide stimulation

A peptide pool was generated using the following: 1. PepTivator 

SARS-CoV-2 Prot_S containing the sequence domains (amino acids) 

304–338, 421–475, 492–519, 683–707, 741–770, 785–802, and 885–

1,273 and the N-terminal S1 domain of the surface glycoprotein (S) 

of SARS-CoV-2 (GenBank MN908947.3, Protein QHD43416.1). 2. The 

PepTivator SARS-CoV-2 Prot_S1 containing amino acids 1–692. The 

peptides used are 15 amino acids with 11-amino acid overlaps.

We incubated 1.0 to 2.5 × 105 PBMCs from vaccinated individuals in 

pre-coated FluoroSpotFLEX plates (anti-IFNγ and anti-IL-2 capture antibod-

ies, Mabtech) in duplicate with the spike peptide pool mix as described 

above (specific for Wuhan-1, QHD43416.1 spike SARS-CoV-2 protein; 

Miltenyi Biotech) or a mixture of peptides specific for cytomegalovirus, 

Epstein–Barr virus and influenza virus (CEF+, Miltenyi Biotech) (final 

peptide concentration as recommended by the manufacturer: 1 µg/

ml/peptide) in addition to an unstimulated (medium only) and positive 

control mix (containing anti-CD3 (Mabtech AB) and Staphylococcus 

Enterotoxin B (SEB, Sigma Aldrich)) at 37 °C in a humidified CO2 atmos-

phere for 42 h. The cells and medium were then decanted from the plate 

and the assay developed according to the manufacturer’s instructions. 

Developed plates were read using an AID iSpot reader (Oxford Biosys-

tems) and counted using AID EliSpot v7 software (Autoimmun Diag-

nostika). Peptide-specific frequencies were calculated by subtracting 

for background cytokine-specific spots (unstimulated control) and 

expressed as SFU per 106 PBMCs. With the same peptide pool, we also 

stimulated PBMC that had been collected and biobanked between 2014 

http://sourceforge.net/projects/quasr/


and 2016, representing a healthy population that had not been exposed 

to SARS-CoV-2, and PBMCs from donors who had been infected with 

SARS-CoV-2 (confirmed by RT–PCR) for comparison of T cell responses 

following natural infection.

CD4 and CD8 depletion from PBMCs for subsequent FluoroSpot 

analysis

Peripheral blood mononuclear cells were depleted of either CD4+ or 

CD8+ T cells by magnetic-activated cell sorting (MACS) using anti-CD4 

or anti-CD8 direct beads (Miltenyi Biotec), according to the manufac-

turer’s instructions, and separated using an AutoMACS Pro (Miltenyi 

Biotec). The efficiency of depletion was determined by staining cells 

with a mix of CD3-FITC, CD4-PE, and CD8-PerCPCy5.5 antibodies (all 

BioLegend) and analysing by flow cytometry.

Reporting summary

Further information on research design is available in the Nature 

Research Reporting Summary linked to this paper.

Data availability

Sequence data have been deposited at the European Genome-Phenome 

Archive (https://ega-archive.org/) which is hosted by the EBI and the 

CRG under accession number EGAS00001005380. Data are available 

without restriction.
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Extended Data Fig. 1 | Study flow diagram for samples and analyses. n values are shown for each analysis.



Extended Data Fig. 2 | SARS-CoV-2 neutralization by serum from 

individuals vaccinated with Pfizer BNT162b2 vaccine. a, Linear correlation 

of live virus neutralization with SARS-CoV-2 spike PV neutralization for 13 sera 

from individuals vaccinated with BNT162b2. Linear regression line plotted 

bounded by 95% CI. b, SARS-CoV-2 PV neutralization by sera from individuals 

vaccinated with first dose of BNT162b2 (n = 140) plotted against time since first 

dose. c, Correlation of SARS-CoV-2 neutralization by sera from individuals 

vaccinated with BNT162b2 with age. Serum neutralization of spike (D614G) 

pseudotyped lentiviral particles (ID50) after dose 1 (top, n = 138) or dose 2 

(bottom, n = 64) by age. Linear regression line plotted bounded by 95% CI. 

Bonferroni adjustment was made for multiple comparisons in linear 

regression. d, ID50 against wild-type (D614G) PV following the second dose of 

vaccine stratified by age and interval between vaccine doses (3 weeks (n = 21) 

and 12 weeks (n = 43)). GMT ± s.d., Mann–Whitney test. e, Spike mutations in 

VOCs, along with number of sequences in GISAID database.
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Extended Data Fig. 3 | Binding IgG and IgA spike antibody responses 

following BNT162b2 vaccination. a, Correlations between serum binding IgG 

subclass 1–4 antibody responses following vaccination with first dose of 

BNT162b2 and age in years (n = 133). b, Correlations between serum binding IgG 

subclass 1–4 antibody responses following vaccination with first dose of 

BNT162b2 and serum neutralization using a PV system (n = 133). c, IgA 

responses to spike, nucleocapsid and RBD after first dose (light green, n = 133) 

and second dose (dark green, n = 21) compared to individuals with prior 

infection (red, n = 18) and negative controls (grey, n = 18) at serum dilution of 1 

in 100. d, Correlations between serum binding IgA spike antibody responses 

following vaccination with first dose of BNT162b2 and serum neutralization 

using a PV system (n = 133). Bonferroni adjustment was made for multiple 

comparisons. Spike proteins tested are Wuhan-1 with D614G (WT). Linear 

regression lines plotted bounded by 95% CI.



Extended Data Fig. 4 | Peripheral blood lymphocyte subsets following first 

dose of BNT162b2. PBMCs were sorted by FACS (n = 16 above 80 years of age, 

n = 16 below 80 years of age). a, Gating strategy for flow cytometry analysis of 

human immune cells after vaccination. b, Data for indicated sorted cell subsets 

stratified by neutralizing response after first dose (n = 8 in each category). NK 

cells, natural killer cells; Treg cells, regulatory T cells. Error bars, s.d.
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Extended Data Fig. 5 | B cell repertoire following vaccination with first dose 

of BNT162b2. a, Isotype usage according to unique VDJ sequence in 

<80-year-old (n = 22) and ≥80-year-old groups (n = 28). Differences between 

groups were calculated using Mann–Whitney U-test. b, V gene usage as a 

proportion, by neutralization of spike PV. Neutralization cut-off for 50% 

neutralization was set at 20. Differences between groups were calculated using 

Mann–Whitney U-test. c, Diversity indices comparing the two age groups. The 

inverse is depicted for Simpson’s index and the Shannon–Weiner index is 

normalized. Differences between groups were calculated using a t-test. For 

boxplots: centre line, median; box, 25th–75th percentile; whiskers, 1.5× IQR.



Extended Data Fig. 6 | See next page for caption.
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Extended Data Fig. 6 | T cell responses following vaccination with 

BNT162b2. Correlation between T cell responses against SARS-CoV-2 spike 

peptide pool and serum neutralization of spike (D614G) pseudotyped lentiviral 

particles (ID50). a, b, Correlation of IFNγ (a, n = 79) and IL-2 (b, n = 69) 

FluoroSpot and ID50 after first dose. Linear regression lines with 95% CI are 

plotted. Bonferroni adjustment was made for multiple comparisons.  

c, FluoroSpot IFNγ PBMC responses to peptide pool of CEF peptide pool. 

Responses from unexposed PBMCs (stored from 2014–2016, n = 20), <80 years 

group (n = 46) and ≥80 years group (n = 35) three weeks after the first dose  

of vaccine. d, e, FluoroSpot analysis for IFNγ (d) and IL-2 T cell responses (e) 

specific to SARS-CoV-2 spike protein peptide pool following stimulation of 

PBMCs from infected donors (n = 46), unexposed donors (n = 20) and 

vaccinated individuals three weeks or more after the first dose (IFNγ, n = 77;  

IL-2, n = 64) and three weeks after the second dose (IFNγ and IL-2, n = 39).  

f–i, Human cytomegalovirus serostatus, T cell responses and serum 

neutralization of spike (D614G) pseudotyped lentiviral particles (ID50) after 

the first dose of vaccine. f, HCMV serostatus for <80- and ≥80-year age groups 

(n = 72). g, h, IFNγ (g, n = 72) and IL-2 (h, n = 64) FluoroSpot responses after the 

first dose. i, ID50 after the first dose by CMV serostatus. Error bars, s.d.



Extended Data Fig. 7 | Autoantibodies and inflammatory markers in 

participants who received at least one dose of the BNT162b2 vaccine and 

relationship to SARS-CoV-2 spike-specific IgG and SARS-CoV-2 PV 

neutralization. n = 101. a, Heatmap of log2-transformed fluorescence intensity 

of 19 autoantibodies; red, positive; blue, negative. b, Age (mean ± s.d.) in years 

by anti-MPO antibody-positive (red) or -negative (blue) status. c, IgG subclass 

responses to spike after first dose of BNT162b2 vaccine in individuals with or 

without anti-MPO antibodies (n = 100). d, GMT ± s.d of sera from individuals 

after their first dose of vaccine against wild-type and B.1.1.7 spike mutant 

SARS-CoV-2 PVs by anti-MPO antibody status. e, Nonparametric rank 

correlation (Kendall’s tau-b) of wild-type (WT) PV neutralization, variant 

(B.1.17) PV neutralization and age (<80 or ≥80 years) against each of 53 

cytokines or chemokines. Heatmaps illustrate Tau-b statistic (left) and 

significance (right, –log10FDR).
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Extended Data Table 1 | Characteristics of study participants and neutralization data for wild-type SARS-CoV-2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
aChi-square test. 
bNeutralization data unavailable for two individuals. 
cNeutralization data unavailable for one individual. 
dMann–Whitney test. 
eNeutralization data available for 27 of 80 individuals. 
fNeutralization data available for 37 of 60 individuals. 
gTest of proportions.



Extended Data Table 2 | Neutralization after the first dose of BNT162b2 vaccine against wild-type and B1.1.7 PVs

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

*Mutually adjusted for other variables in the table. OR, odds ratio.
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Extended Data Table 3 | Neutralization in participants after the first dose of BNT162b2 vaccine against wild-type and B.1.1.7, 
B.1.351 and P.1 spike mutant PVs

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

*Mutually adjusted for other variables in the table.
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Statistics
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Software and code

Policy information about availability of computer code

Data collection Graphpad Prism v9 was used to produce figures. 

Stata v13 was used for statistical analyses. 

FlowJo version 10.7.1 for flow cytometry analyses. 

IMGT-V QUEST was used for immunoglobulin gene use and sequence annotation 

B cell receptor repertoire analyses was performed in Python.

Data analysis Logistic regression was used to model the association between age group and neutralisation by vaccine-elicited antibodies after the first 

dose of the BNT162b2 vaccine. The effect of sex and time interval from vaccination to sampling as confounders were adjusted for. Linear 

regression was also used to explore the association between age as a continuous variable and log transformed ID50, binding antibody 

levels, antibody subclass levels and T cell response after dose 1 and dose 2 of the BNT162b2 vaccine. 

 

The difference in continuous and categorical data were tested using Wilcoxon rank sum or Mann-Whitney test and Chi square test 

respectively.
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Sequence data have been deposited at the European Genome -phenome Archive (EGA) which is hosted by the EBI and the CRG under accession number 

EGAS00001005380.
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Sample size We assumed a risk ratio of non-neutralisation in the ≥80 years group compared with <80 years group of 5. Using an alpha of 0.05 and power 

of 90% required a sample size of 50 with a 1:1 ratio in each group. We however recruited 140 participants in order to reduce the risk of Type I 

error as multiple analyses were undertaken.

Data exclusions Consecutively presenting participants were recruited with no exclusion.

Replication Experiments were done in technical duplicates and a repeat was done.

Randomization Not applicable as this was not an intervention study.

Blinding Not applicable as this was not an intervention study.
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n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology

Animals and other organisms

Human research participants

Clinical data

Methods

n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Antibodies

Antibodies used anti-CD4+ or anti-CD8+ direct beads (Miltenyi Biotec) 

CD3-FITC, CD4-PE, and CD8- PerCPCy5.5 antibody (BioLegend) 

CD19 (SJ25C, 363028), CD3 (OKT3, 317328), CD11c (3.9, 301608), CD25 (M-A251, 356126), CD14 (M5E2,301836), and IgM (IgG1-

k, 314524) (all Biolegend). 

CCR7 (150503, 561143) and IgG (G18-145, 561297) (BD Biosciences) 

CD45RA (T6D11, 130-113-359) ( Miltyeni Biotech) 

CD8a (SK1, 48-0087-42) (eBiosciences) 

Validation Validation by manufacturer as detailed on their website.
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Eukaryotic cell lines

Policy information about cell lines

Cell line source(s) HEK 293T and HeLa cells were used.

Authentication None of the cell lines used were authenticated.

Mycoplasma contamination All cell lines used were tested (by PCR) and were mycoplasma free.

Commonly misidentified lines
(See ICLAC register)

 No commonly misidentified lines were used in this study.

Human research participants

Policy information about studies involving human research participants

Population characteristics Community participants or health care workers receiving the first dose of the BNT162b2 vaccine between the 14th of December 

2020 to the 10th of February 2021 were consecutively recruited. 140 participants were recruited.

Recruitment Participants attending Addenbrooke's Hospital for their COVID-19 vaccination were recruited through the NIHR BioResource 

Centre Cambridge.

Ethics oversight The study was approved by the East of England – Cambridge Central Research Ethics Committee.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Flow Cytometry

Plots

Confirm that:

The axis labels state the marker and fluorochrome used (e.g. CD4-FITC).

The axis scales are clearly visible. Include numbers along axes only for bottom left plot of group (a 'group' is an analysis of identical markers).

All plots are contour plots with outliers or pseudocolor plots.

A numerical value for number of cells or percentage (with statistics) is provided.

Methodology

Sample preparation PBMCs were isolated from whole blood samples using Lymphoprep and stored in liquid nitrogen. Cells were thawed and stained 

in PBS containing 2nM EDTA at 4 °C 

Instrument Instrument: FACSAria Fusion (BD Biosciences).

Software FlowJo version 10.7.1

Cell population abundance 2 x 10^5 to 2 x 10^6

Gating strategy Total lymphocytes were gated, then live dead. From live dead, CD3- and CD3+ cells were separated. CD3+ cells were separated 

into CD8- and CD8+ cells. CD8+ memory cells were determined using CCR7 and CD45RA from the CD8+ gate. From the CD8- 

gate, CD4 memory cells were determined using CCR7 and CD45RA. From the CD4 memory gate, Tregs were separated from CD4 

memory cells with CD25. The CD3- gate was used to separate CD14- and CD14+ cells. CD14- cells were separated in CD19+CD56- 

and CD19-CD56+ gates. From the CD19+ gate, B memory cells were determined using IgG and IgM. IgG+IgM- cells were gated 

and from these cells, B memory cells doubly positive for Spike were gated.

Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information.
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