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Age-related macular degeneration (AMD) is a neurodegenerative disease of the aging

retina, in which patients experience severe vision loss. Therapies available to patients

are limited and are only effective in a sub-population of patients. Future comprehensive

clinical care depends on identifying new therapeutic targets and adopting a multi-

therapeutic approach. With this goal in mind, this review examines the fundamental

concepts underlying the development and progression of AMD and re-evaluates the

pathogenic pathways associated with the disease, focusing on the impact of injury

at the cellular level, with the understanding that critical assessment of the literature

may help pave the way to identifying disease-relevant targets. During this process,

we elaborate on responses of AMD vulnerable cells, including photoreceptors, retinal

pigment epithelial cells, microglia, and choroidal endothelial cells, based on in vitro and

in vivo studies, to select stressful agents, and discuss current therapeutic developments

in the field, targeting different aspects of AMD pathobiology.

Keywords: age-related macular degeneration, oxidative stress, retinal pigment epithelial (RPE), choroidal

endothelial cells, therapy

INTRODUCTION

Age-related macular degeneration (AMD) is the leading cause of irreversible central vision loss
in the Western hemisphere (Wong et al., 2014). It has been postulated that with the growing
aging population, the prevalence and burden of AMD will continue to rise. In the early stages
of the disease, visual deficits include impaired dark adaption, but otherwise may be minimal.
However, as the disease evolves, vision becomes progressively more compromised, the retinal
tissue degenerates, and suffers permanent damage. Traditionally, AMD has been classified broadly
into two clinical sub-types; dry or non-exudative and wet/neovascular or exudative (Ferris et al.,
2013; Spaide et al., 2018). In developed countries, approximately 10% of the population over
the age of 65 years and 25% over the age of 75 years are purported to have been diagnosed
with AMD. It is further estimated that in the US, about 11 million people (∼85% of all AMD)
have dry AMD, while 1.5 million (∼15% of all AMD) are affected by the advanced stages of
the disease (Joachim et al., 2015; Chou et al., 2016), with an estimated 70,000 new cases of wet
AMD identified each year (Rudnicka et al., 2015). Though select treatment options targeting
vascular leakage and stability are available for patients presenting with the wet or neovascular
form of the disease, it has been shown to be effective in only a subpopulation of patients (Nagai
et al., 2016). Importantly, no treatment options are available for the early and intermediate
stages of AMD. The lack of treatments is in part due to the complexity of the disease, as not
only multiple genetic and environmental risk factors but also different cell types within the
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inner and outer retina, have been shown to be involved in
the pathophysiology of AMD (Malek and Lad, 2014; Malek
et al., 2018; Choudhary and Malek, 2020). Therefore, it is vital
to further understand the molecular mechanisms underlying
disease development and progression, in concert with the
temporal development of pathological changes that occur in the
retina. This is necessary in order to identify potential therapeutic
targets. Herein, we will review the pathology and visual deficits
associated with the different clinical subtypes of AMD and outline
the pathogenic pathways linked to the development of AMD,with
a focus on the growing body of evidence indicating that stress and
injury to AMD vulnerable cells including photoreceptors, retinal
pigment epithelial cells (RPE), retinal immune cells and choroidal
endothelial cells, is a crucial component of the disease.

AMD CLASSIFICATION AND GRADING

The hallmark lesions of the early stages of dry AMD, often referred
to as non-neovascular or non-exudative AMD (Figure 1), are
sub-RPE deposits called drusen, derived from the German word
for node or geode. Drusen formation have been noted in the
peripheral regions with age, however, in early dry AMD they
become larger and are found within the macula. Other indicators
of dry AMD are RPE abnormalities, hyperpigmentation, and
atrophy, as well as choriocapillary loss (Mullins et al., 2011;
Malek and Lad, 2014) distinctive morphology from that seen
in the normal posterior pole (Figures 1P–T). Clinically, drusen
are small, yellowish appearing lesions located between the
basal lamina of the RPE and the inner collagenous layer
of Bruch’s membrane (a penta-laminar extracellular matrix,
upon which the RPE cells reside) (Figures 1A–E). Histological
evaluation of AMD donor tissue along with in vivo imaging
of the posterior pole of AMD patients using optical coherence
tomography (OCT) has revealed the presence of a variety
of deposits characteristic of aging and AMD, beyond drusen,
including basal laminar deposits, present between the RPE and
its basal lamina, containing lipid-rich material and wide-spaced
collagen; basal linear deposits containing phospholipids and
located between the RPE basal lamina and Bruch membrane,
within the same plane as drusen; and sub-retinal drusenoid
deposits containing some established drusen markers (e.g.,
unesterified cholesterol, apolipoprotein E and complement factor
H), but not all (e.g., esterified cholesterol) (Rudolf et al.,
2008; Chen et al., 2020). Drusen size has been instrumental
in classifying the severity of disease with small drusen, sized
up to 63 µm in diameter; intermediate, sized between 64 and
125 µm in diameter; and large drusen exceeding 125 µm
in diameter. These deposits have further been categorized
based on their shape and boundaries, referred to as hard
when they present with well-demarcated borders, soft with
poorly demarcated borders and confluent when drusen are
continuous without clear borders. In general, an eye with
large, soft, and confluent drusen is at a higher risk of
progressing to either of the advanced forms of AMD, geographic
atrophy or choroidal neovascularization, relative to an eye with
only hard drusen.

The non-neovascular advanced stage of dry atrophic AMD
also known as geographic atrophy involves degeneration of
the RPE, retina and the choriocapillaris with well-demarcated
borders, resembling the map of a ‘continent’ (Figures 1F–

J). The atrophic regions tend to be multi-focal, may or
may not involve the foveal center (Ferris et al., 2013;
Spaide et al., 2018) and often present bilaterally (Mann
et al., 2011). The wet or neovascular advanced form of AMD
is characterized by the presence of vascular growth from
the choroid penetrating Bruch’s membrane, referred to as
choroidal neovascularization, within the macula (Figures 1K–

O). Though wet AMD is less frequent than dry AMD, the
need for successful therapies is paramount as it is responsible
for 90% of acute blindness. The clinical manifestations of
neovascular AMD are varied and include subretinal and
intraretinal fluid, retinal, subretinal, or sub-RPE hemorrhage,
lipid exudates, plaque-like yellow-green choroidal neovascular
membranes, RPE detachment, and RPE tear. In the end-
stages, the neovascular membrane may evolve into a ‘disciform
scar’ (hypertrophic, fibrovascular, or atrophic macular scar)
causing permanent central vision loss (Ferris et al., 2013;
Spaide et al., 2018).

It is important to note that geographic atrophy and choroidal
neovascularization are not mutually exclusive as the atrophic
retina may result in the development of a neovascular lesion
(mostly at the edge of the atrophic region, especially if the
contralateral eye is wet), and wet AMD may proceed to
macular atrophy.

EPIDEMIOLOGY AND RISK FACTORS OF
AMD

The complexity of AMD lies not only in the variety of pathologies
associated with the disease, but it is also reflected in the
number of risk factors identified to date. Formative population-
based investigations and genome-wide association studies, have
revealed significant knowledge about AMD prevalence and
genetic risk, respectively. The landmark study from 1992, “The
Beaver Dam Study,” provided one of the first estimates of the
prevalence of features of maculopathy including soft drusen,
pigmentary abnormalities, choroidal neovascularization, and
geographic atrophy, over a broad spectrum of ages (Klein et al.,
1992). In general, the prevalence of advanced forms of the
disease (wet AMD and geographic atrophy) was discovered to
increase with each decade of life, being the highest after 75 years
of age (Mitchell et al., 1995; Vingerling et al., 1995; Congdon
et al., 2004; Joachim et al., 2015). The higher frequency of
more severe macular pathology in the elderly, especially in the
aging western population, brought to light the severity of this
disease as an ongoing public health problem. Epidemiologic
studies have also identified key risk factors for AMD, with
advanced age acknowledged as the main one and cigarette
smoking coming in second. Additional risk factors include
but are not limited to positive family history, sex (female),
hyperopia, light iris color, hypertension, hypercholesterolemia,
cardiovascular diseases, obesity, and elevated inflammatory
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FIGURE 1 | Photomicrographs showing different stages of AMD. Photomicrographs showing different stages of AMD compared to normal macula. Non-exudative

AMD, intermediate (A–E, fundus photo, fundus autofluorescence, optical coherence tomography, fundus angiography and indocyanine green, respectively) showing

drusen (white arrow), non-exudative AMD, advanced with subfoveal involvement (F–J) showing large, central GA (red arrow), Exudative AMD (K–O) showing

Choroidal Neovascular Membrane (CNVM) and retinal hemorrhage (green arrow), Normal macula (P–T).

markers (Seddon et al., 1996, 2003; Age-Related Eye Disease
Study Research Group, 2000; Hyman et al., 2000; Smith et al.,
2001; Klein et al., 2003; Tomany et al., 2004; Malek and Lad, 2014;
Armstrong and Mousavi, 2015). Importantly, the prevalence of
the advanced forms of AMD appears to vary in different ethnic
and racial groups, with the highest risk reported in the Caucasian
population (5.4%) and lowest in African-Americans (2.4%); and
the risk for Hispanics and Asians falling in between (4.2 and 4.6%,
respectively) (Frank et al., 2000; Klein et al., 2004; Choudhury
et al., 2016; Cheung et al., 2017).

Large genome-wide association studies of AMD, to date,
have identified 52 genetic variants at 34 genetic loci associated
with AMD. These genes harbor mutations that affect various
biological pathways, including complement regulation, lipid
metabolism, extracellular collagen matrix, angiogenesis, and all-
trans-retinaldehyde metabolism, to name a few. Two major
susceptibility genes for AMD that have been the focus of intense
investigation, are the well-characterized CFH (1q31) that codes
complement factor H, and poorly understood ARMS2 (10q26)
(Hageman et al., 2005; Jakobsdottir et al., 2005; Klein et al.,
2005; Scholl et al., 2005; Souied et al., 2005). The CFH mutation
confers a 4.6- and 7.6-fold increased risk for AMD, while the
ARMS2mutation confers a 2.7- and 8.2-fold in heterozygotes and
homozygotes, respectively. Most recently family-based exome
sequencing studies have identified rare coding variants for
novel candidate genes at eight previously reported loci, with 13
additional candidates detected outside of known regions, further
highlighting the multi-factorial nature of AMD (Fritsche et al.,

2013; Cheng et al., 2015; Fritsche et al., 2016; Gorin et al., 2016;
Han et al., 2020). Genetic testing is currently available for AMD,
but it is controversial and not officially recommended, given the
limited treatment options available to patients. However, with the
rapid advancements in this research field, this is likely to change
soon (Edwards, 2006; Chew et al., 2015; Stone, 2015; Cascella
et al., 2018; Warwick and Lotery, 2018).

AMD-DRIVING PATHOGENIC PATHWAYS

Despite extensive research, we still do not fully understand
critical drivers involved in the initiation of AMD and
progression from the early to advanced stages. This, in
turn, has made predicting progression and effective treatments
difficult. However, breakthroughs in identifying probable
pathogenic pathways and molecular mechanisms associated
with disease, born out of a consolidation of AMD pathologies,
identified through observations of in vivo and ex vivo tissues,
epidemiological studies, and in particular high-risk genes linked
with AMD development, have been instrumental in the pursuit
of animal models and potential therapies. These pathways,
which are also often related to aging, include but are not limited
to: complement activation, lipid trafficking and metabolism,
vitamin A cycle/metabolism, proteostasis, bioenergetics,
autophagy/mitophagy, extracellular matrix turnover, choroidal
vascular dropout, and last but not least oxidant-induced and
non-oxidant associated cellular injury and stress (Pool et al.,
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2020). The possible roles of each of these pathways in AMD
warrant a special review in and of themselves. However, the rest
of this review will focus on the impact of various stress modalities
on cells vulnerable in AMD, whose induction has been attributed
to modifiable dietary and environmental factors as well as factors
that remain unknown.

IMPACT OF OXIDANT AND
NON-OXIDANT STRESS AND INJURY ON
AMD

Oxidative stress is often defined as a disturbance in the
equilibrium between the amounts of reactive oxygen species
and antioxidant production/detoxification capacity of cells. This
equilibrium is critical for cell and tissue survival such that the
consequence of any imbalance would be tissue injury. Injury
to cells, however, can also occur in response to environmental
factors and aging in general, compromising the tissues ability
to respond effectively and counter stress (Luo et al., 2020).
Importantly, the cells response to injury can also vary in
accordance with the level of stress (low versus high) and the
length of exposure (acute versus chronic), such that young
healthy cells may counter acute stress more formidably that aged
cells, specifically effecting cellular processes including autophagy,
phagocytosis, proteosomal degradation, toxic clearance and
metabolism, among others. Thus, it is not surprising that stress
also has a major impact on aging neurodegenerative diseases
such as AMD. Beyond the age factor, the retina is particularly
vulnerable to photo-oxidative stress as it is chronically exposed
to light (B Domènech and Marfany, 2020). Visual transduction
pathways can result in reactive oxygen species production in
response to oxidation of the building blocks of the photoreceptor
outer segments, polyunsaturated fatty acids. Other mechanisms
that put the retina in the line of fire for vulnerability to
stress include modifiable behavioral risks, including smoking
and indulging in diets rich in high fat and cholesterol (Klettner
et al., 2013). Additional evidence for stress comes from proteomic
studies of Bruch’s membrane tissue from AMD donors, revealing
the presence of oxidative products (Beattie et al., 2010; Yuan et al.,
2010), and the AREDS studies, which have shown an association
between reduced prevalence of AMD and high dietary intake of
antioxidants (Chew et al., 2013, 2014). With all this in mind, it
is not surprising that there is a large body of evidence pointing
to oxidant and non-oxidant stress as a bona fide pathobiologial
process in AMD, including in vitro and in vivo studies examining
AMD-vulnerable cells and tissues, which we will further review
below (Figure 2).

Retinal Ganglion Cells
The innermost retinal layer is primarily composed of ganglion
cells. Though this layer is not a primary vulnerable site in AMD,
thinning has been reported in dry AMD patients (Yenice et al.,
2015) and as a consequence of retinal remodeling following
photoreceptor degeneration (Garcia-Ayuso et al., 2018).
Furthermore, a subset of ganglion cells contain melanopsin
and are light-sensitive, significant given this layer is exposed

to chronic light (Garcia-Ayuso et al., 2015). In response to
overproduction of reactive oxygen species including superoxide
anions, hydrogen peroxide, and hydroxyl radicals, ganglion cells
die (Cao et al., 2015). However, they have also been shown to be
remarkably resistant to cell death induction by these stressors
in part due to their endogenous peroxides (Kortuem et al.,
2000). As expected, this has led to a quest for neuroprotectives.
In vitro and in vivo studies have revealed protective roles for
master antioxidant defense regulators including the nuclear
transcription factor kB (NF-kB) and nuclear factor – erythroid
2 – related factor 2 (NRF2) as well as polysaccharides, growth
factors, including transforming growth factor beta, nerve growth
factor, and brain-derived neurotrophic factor; endogenous
antioxidant factors including glutathione, superoxide dismutase,
and catalase to name a few (Pietrucha-Dutczak et al., 2018).

Microglia
The retinal microglia are resident immune cells thought to
be critical to the initiation of retinal inflammation (Rashid
et al., 2019). A major consequence of oxidative and non-oxidant
stress is inflammation. Though traditionally, abnormal microglial
activity has been associated with retinal diseases including
diabetic retinopathy, hereditary retinopathies, and glaucoma,
recent evidence points to a role in AMD as well (Fletcher,
2020). Enlarged amoeboid microglia have been found adjacent
to RPE cells overlying drusen in AMD retinal sections and
may be a potential source for NLRP3 (NOD-, LRR- and pyrin
domain-containing protein 3) inflammasome activation of RPE
cells and increased pro-inflammatory cytokines such as IL-1
beta (Madeira et al., 2015). In vitro culture studies have shown
that conditioned media from reactive microglial cells can trigger
caspase-mediated photoreceptor cell death (Madeira et al., 2018).
In vivo studies have also provided evidence for a role of microglia
in retinal phenotypes associated with AMD. For example, in mice
exposed to bright white, photoreceptor cell death, and retinal
degeneration occurs along with migration of microglial cells to
the outer retina (Wang et al., 2014). Another mouse model
that presents with dry AMD phenotypes involves immunizing
mice with carboxyethylpyrrole-adducted proteins. In these mice
there is evidence of infiltrating phagocytes around degenerating
photoreceptors and RPE cells (Hollyfield et al., 2008; Hollyfield,
2010). The question as to whether or not infiltratingmacrophages
are beneficial or detrimental is a complex one and ties into why
the cells accumulate to begin with, which may be due to an
increase in migration of monocytes into the retina or failure of
immune cell clearance. In the carboxyethylpyrrole immunized
mouse model, though sub-retinal macrophages are present, they
are not seen in areas with severe RPE degeneration, suggesting
that they may have a beneficial effect, perhaps in removing debris.
Importantly in the wet laser-induced experimental mouse model
of AMD, recruitment of ameboid microglia and mononuclear
phagocytes are seen within the neovascular lesion, the number of
which varies with the severity and nature of the lesion (fibrotic
versus leaking), reflecting the dynamic nature of these cells
(Crespo-Garcia et al., 2015; Zhou et al., 2017). As a consequence
of microglial recruitment to the retina, there is enhanced
phagocytosis and production of pro-inflammatory factors. This,
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FIGURE 2 | Consequences of stress exposure on retinal cells. Age, light exposure, smoking, high fat diet and unknown factors contribute to elevated reactive

oxygen species, decreased intracellular anti-oxidant levels and toxin clearance mechanisms of retinal cells including the ganglion cells (yellow), microglial cells

(green), photoreceptors (aqua/orange or light purple/red), retinal pigment epithelial cells (burgundy) and choriocapillaris/endothelial cells (light blue). Select

consequences have been listed next to each cell.

in turn, can impact the integrity of the neural retina resulting
in thinning of the outer nuclear layer (Karlstetter et al., 2015;
Zhao et al., 2015).

The effect of oxidative stress on retinal microglia in AMD
is still a relatively new area of research, the mechanism of
which is unknown. Though much may be extrapolated regarding
microglial cells from other retinal diseases such as glaucoma, in
which the effect of adenosine blockade, a neuromodulator which
works through its receptor A2AR present on microglial cells, has
been investigated (Santiago et al., 2014). Blockade of the receptor
has been associated with decreased reactive oxygen species
levels and morphological changes in microglial cells associated
with pressure changes including retinal degeneration. Studies
using minocycline in light-induced retinal damage models and
their impact on microglial cells have varied showing both a
decrease in immunolabeling of CD11b of microglial cells, which
may protect against loss of photoreceptors through inhibition
of retinal microglia activation, and a delay in photoreceptor

cell death, which was independent of a reduction in retinal

microglial cells, following depletion of microglia cells using
liposomal chlodronate (Yang et al., 2009; Peng et al., 2014;
Ferrer-Martin et al., 2015). In vitro studies also support this
hypothesis, in which conditioned media from activated microglia
cells induce apoptosis in the 661W transformed photoreceptor
cell line (Roque et al., 1999). Hypoxia can cause retinal microglial

cells to produce IL-1 beta and TNF alpha, and this has been
associated with retinal microvascular degeneration by inducing
semaphorin 3A in neurons (Rivera et al., 2013). Finally, in an
ex vivo retinal culture model for oxidative injury induced by
hydrogen peroxide, a dose-dependent increase in microglia and
elevation of CD11b expression was observed followed oxidative
stress induction, with a time-dependent increase in IL-1 beta,
iNOS, HSP70 at day 3 and TNF alpha and IL-1 beta at day 8
(Hurst et al., 2017). Therapeutically, hypothermia used to counter
hypoxia as a potential therapy for retinal degenerations has been
shown to protect microglia numbers as well as CD11b expression
(Maliha et al., 2019). Finally, in a mouse model of retinitis
pigmentosa, MutY homolog-mediated (MUYTH-mediated) base
excision repair (BER) in oxidative microglial activation has been
proposed to be a novel target to dampen disease progression, able
to suppress microglial activation and photoreceptor cell death
(Nakatake et al., 2016).

Photoreceptors
The major light-sensing neurons in the retina are the rod
and cone photoreceptors, vulnerable in AMD in part due to
their high metabolic demand. As mentioned earlier given the
degree of photo-oxidative stress photoreceptors are exposed
to, including light pollution by artificial light originating from
commonly used technologies, a sundry of studies have been
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devoted to understanding the pathways impacted by oxidative
stress. Using hypoxia as an inducer of stress, mice carrying
the retinal degeneration 8 mutation, presented with accelerated
photoreceptor degeneration and rosette formation, thinning of
the central retina, and increased NADPH oxidase 4 in the outer
nuclear layer (Lajko et al., 2017). Cool white light exposure
(200 lux light-emitting diode) in mice has been shown to
lead to photoreceptor cell death and alterations in fatty acid
composition, specifically a decrease in docosahexanoic acid
levels concomitant with an increase in stearic acid (Benedetto
and Contin, 2019). In 661W cells, murine photoreceptor-like
cells, knockdown of Nrf2 resulted in an increase in reactive
oxygen species levels suggesting Nrf2 is again a key endogenous
protective factor (Chen W. J. et al., 2017). Therapeutically,
edaravone, a free radical scavenger, has been tested in a mouse
model exposed to N-methyl-N-nitrosourea and found to inhibit
outer nuclear layer thinning, cell death and oxidative stress
markers (Tsuruma et al., 2012). Other treatments that have
been tested include celastrol, a naturally occurring quinone
methide triterpene, which demonstrated photoreceptor cell death
suppression in BALB/c mice exposed to bright white light
(Bian et al., 2016) and overexpression of cytochrome b5 in
the Drosophila melanogaster, which resulted in suppression of
blue light-induced retinal degeneration and lipid peroxidation
(Chen X. et al., 2017). Importantly, it should be noted that
age-related macular degeneration does not affect one cell type
and when considering therapy the complex tissue should be
studied. Indeed overexpression of catalase, an antioxidant, in
RPE cells has been shown to protect its neighboring cells,
the photoreceptors, from light damage, resulting in reduced
4 hydroxynonenal and nitrotyrosine levels, two markers of
oxidative stress (Rex et al., 2004).

Retinal Pigment Epithelium (RPE)
The retinal pigment epithelium (RPE) cells are hexagonal,
polarized epithelial cells in close contact with photoreceptor
outer segments at their apical side and Bruch’s membrane
along their basal side. These highly specialized cells have
many vital functions essential to retinal health, including daily
phagocytosis and degradation of photoreceptor outer segments,
light absorption, vitamin A metabolism, and heat exchange
(Strauss, 2016). Additionally, RPE cells maintain the outer
blood-retinal barrier and provide selective entry and removal of
oxygen, nutrients, and metabolites (Strauss, 2005). With these
multiple and diverse functions, RPE cells help maintain the
photoreceptors and choriocapillaris’ health and function, thus
playing a significant part in AMD’s pathogenesis.

Prolific investigations in AMD have proposed that oxidative
stress is a common consequence of multiple risk factors
involved in its pathogenesis. Macular high oxygen demand
makes this part of the retina particularly susceptible to disturbed
oxygen homeostasis. Various aerobic metabolism pathways
produce reactive oxygen species; however, the primary source
of their production is the mitochondria (Mao et al., 2014). For
example, the identification of polymorphisms in mitochondrial
MTND2∗LHON4917G, NADH dehydrogenase subunits, and
mitochondrial superoxide dismutase 2, suggests a role for

oxidative stress in AMD’s pathogenesis (Kraja et al., 2019). The
LOC387715 polymorphism additionally supports this statement
(Tong et al., 2010; Yang et al., 2010). The sources of oxidative
stress in RPE cells range from high oxygen tension attributed
to its close proximity to the outer retinal blood supply, the
choriocapillaris, to the accumulation of autofluorescent lipid-
protein aggregates that occur with aging, called lipofuscin
(Sparrow and Yamamoto, 2012). Upon exposure to oxidative
stress, intracellularly, not only are RPE proteins, lipids and DNA
damaged, but also the mitochondria. Similar to photoreceptors,
the post-mitotic nature of RPE cells preclude the rapid clearance
of damaged mitochondria through cell division (Cai et al., 2000;
Plafker et al., 2012). Like photoreceptors and ganglion cells, the
role of Nrf2 for protection against phototoxic stress in RPE
cells has been examined with in vitro studies demonstrating
that sulforaphane, an Nrf2 activator can protect RPE cells
from blue light-induced damage (Gao and Talalay, 2004). Other
antioxidants tested in RPE cells range from glutathione, which
in its reduced form has been shown to be protective against
tert-butylhydroperoxide induced injury of RPE cells, potentially
directly reacting with photooxidized components of lipofuscin
(Sternberg et al., 1993; Yoon et al., 2011); to vitamins and
their analogs including alpha-tocopherol (vitamin E), ascorbic
acid (vitamin C) and beta-carotene, a precursor of vitamin A
(Kagan et al., 2012).

Choriocapillaris
The choriocapillaris is the complex fenestrated capillary
layer of the choroid providing oxygen and nutrients to the
RPE/neural retina. It is located immediately adjacent to Bruch’s
membrane. Recently, the importance of the integrity of the
choriocapillaris in all three clinical sub-types of AMD has
been brought to the light with seminal studies demonstrating
its vulnerability in non-neovascular or dry AMD (Chirco
et al., 2017). Studies of human donor tissue from dry AMD
patients revealed a loss in the density of the choriocapillaries
(choriocapillary dropout), represented as an increase in non-
perfused capillary segments also known as ‘ghost vessels’ (Mullins
et al., 2011), while OCTA studies indicate thinning of the choroid,
concomitant with increased average choriocapillaris signal void
size, compared to eyes without neovascular AMD (Choi et al.,
2015). Interestingly, in flatmount analyses of the choroidal
tissue from geographic atrophy patients, the choriocapillaris
appears intact in some regions adjacent to RPE loss, suggesting
vulnerability in these patients is initially at the level of the
RPE and perhaps secondarily effecting the choriocapillaris
(McLeod et al., 2009). Extensive choriocapillary loss is seen in
neovascular AMD, even in regions where the RPE appears to be
intact (Moreira-Neto et al., 2018).

The impact of stress on the choriocapillaris is a burgeoning
area of research with few studies so far, some in which photo-
oxidative stress has served as the measurable endpoint. Most
have involved the use of in vitro cultures exposed to blue-light
or oxidative stress inducers such as hydrogen peroxide. Others
include light-induced lipid peroxides localized to the choroid
in the choroidal endothelial cells and melanocytes of albino
(BALB/cJ) mice. An additional in vivo study tested the effect of
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overexposure to green light induced oxidative stress in choroidal
endothelial cells in albino mice, observing oxidative damage to
DNA impacting melanotyes and pericytes. Interestingly light-
induced photo-oxidative stress resulted in activation of the NF-
κB signaling pathway, which has been shown to be in response
to oxidative stress (Wu et al., 2005). These studies primarily use
albino mice as photo-oxidative stress induction in pigmented
mice has been difficult. Therapeutically, sirt 1 (silent information
regulator 1), which is activated when changes in cellular redox
state occur, has been proposed as a potential target. In vitro
studies using a monkey choroidal endothelial cell line (RF6A)
exposed to sirtuin inhibitors points to a significant increase
in reactive oxygen species production (Balaiya et al., 2017).
Translocator protein (TSPO), a cholesterol-binding protein
involved in mitochondrial cholesterol transport has been found
to be expressed in the mitochondria of choroidal endothelial
cells (Biswas et al., 2018). When exposed to TSPO ligands,
production of reactive oxygen species by choroidal endothelial
cells are reduced and there is an increase in antioxidant
capacity, and reduction of pro-inflammatory cytokines induced
by oxidized low-density lipoproteins, suggesting TSPO may
be a potential therapeutic means to reduce oxidative stress in
the choroidal endothelial cells. Finally, tert-butylhydroperoxide
(tBH) mediated oxidative stress reduces survival of choroidal
endothelial cells in vitro, and RPE cells exposed to tBH-
mediated oxidative stress secrete increasing amounts of bFGF but
not vascular endothelial growth factor (VEGF) in culture and
support proliferation of choroidal endothelial cells, suggesting
a mechanism leading to neovascularization as seen in wet
AMD (Eichler et al., 2008). In conditions in which there is
elevated VEGF, choroidal endothelial cells produce increased
levels of reactive oxygen species, which can be prevented by
NADPH oxidase inhibitors, as confirmed in the laser-induced
choroidal neovascularization model (Monaghan-Benson et al.,
2010). Finally, a mouse model lacking the anti-oxidant enzyme
CuZn superoxide disumutase have been reported to develop
neovascular lesions (Imamura et al., 2006).

Pigment epithelial-derived factor (PEDF) expression has also
been shown to impact the oxidative state of choroidal endothelial
cells. PEDF is an endogenous inhibitor of angiogenesis.
Choroidal endothelial cells isolated from PEDF knockout
mice demonstrated heightened sensitivity to hydrogen peroxide
challenge with an increase in apoptotic cells, oxidative stress,
and pro-inflammatory cytokine profile, along with increased
cellular proliferation, decreased adhesion and migration (Park
et al., 2011). Polypoidal choroidal vasculopathy, a late stage
of neovascular AMD, is characterized by abnormal branching
in the vascular networks and the presence of polypoidal or
aneurysmal dilations, with the choroidal vessels displaying
hyalinization. These dilations have been suggested to be the result
of alternations in elastin, homocysteine-associated oxidative
stress, and endothelial dysfunction. Interestingly, pretreatment
of RF/6A cells subjected to paraquat to induce oxidative stress,
with fenofibrate, a peroxisome proliferator activated receptor
(PPAR) alpha agonist, resulted in decreased cellular apoptosis,
diminished changes in mitochondrial membrane potential,

increased expression of peroxiredoxin, thioredoxin, Bcl-2 and
Bcl-xl and reduced BAX, pointing to fenofibrates anti-oxidant
properties, as a potential adjunct therapy (Hsu et al., 2020). The
receptor TNF alpha R2 is expressed in choroidal vascular cells,
RPE, and Mueller cells and it has been shown that TNF alpha
contributes to choroidal neovascularization by upregulating
VEGF through reactive oxygen species activation of the beta-
catenin signaling pathway (Wang et al., 2016). The expression
of thrombospondin-1, which is another endogenous inhibitor
of angiogenesis and inflammation, has been shown to regulate
choroidal endothelial cells. Interestingly thrombospondin 1
knock out in choroidal endothelial cells results in increased levels
of thrombospondin 2, phosphorylated endothelial and inducible
nitric oxide synthase, which are associated with significantly high
levels of nitric oxide and oxidative stress (Fei et al., 2014). In
addition to supplementation with carotenoids such as zeaxanthin
and lutein, potential therapies targeting reactive oxygen species
production in the choroid tested in vitro and in vivo, have been
the use of resveratrol, which showed to inhibit proliferation
of hypoxic choroidal endothelial cells in association with an
increase in caspase 3, and may serve as a therapeutic option to
be considered for targeting stress in choroidal neovascularization
(Balaiya et al., 2013; Nagai et al., 2014).

SUCCESSES AND FAILURES OF AMD
THERAPIES AND THE PIPELINE

Over two decades ago, a diagnosis of wet AMD was a dreadful
one as no treatment options were available to patients. However,
a breakthrough came when the Food and Drug Administration
(FDA) approved the first anti-angiogenic drug, Macugen
(Pegaptanib sodium injection, Eye Tech Pharmaceuticals,
currently OSI Pharmaceuticals, Long Island, NY, United States),
to be used in the treatment of wet AMD. Since then, the
field has blossomed with an AMD disease prognosis changing
to one in which therapeutic options leave more than 90% of
patients maintaining their vision [losing <15 ETDRS (Early
Treatment Diabetic Retinopathy Study) letters] after 1 year of
treatment (Heier et al., 2012). In recent years, though Macugen
showed promise in slowing down vision loss in patients with
wet AMD it has quickly been replaced by more effective
medications. Currently, the three most widely used drugs provide
an anti-angiogenesis effect by blocking VEGF. Two are FDA
approved, and one is being used off-label. The FDA approved
ranibizumab (Lucentis, Genentech) in 2006, a recombinant
humanized antibody fragment (Fab) that binds and inhibits
all active forms of VEGF-A and their functional degradation
products (Brown et al., 2006; Rosenfeld et al., 2006). Aflibercept
(Regeneron) was approved by the FDA shortly after in 2011. It is a
soluble protein that acts as a VEGF receptor decoy by combining
ligand-binding elements of the extracellular domains of VEGFR1
and two fused to the constant region (Fc) of the immunoglobulin
G (IgG). Because of its greater half-life, the drug can be used
in a bimonthly regimen, significantly reducing the number of
necessary intravitreal injections (Schmidt-Erfurth et al., 2014).
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Finally, an off-label drug for AMD treatment, Bevacizumab
(Genentech), is a full-length humanized monoclonal antibody
against VEGF, with a longer systemic half-life than other anti-
VEGF agents (e.g., about 21 days for bevacizumab, vs. 2.2 h for
ranibmizumab) (Ferrara et al., 2004; Wang et al., 2004; Yang
and Wang, 2004; Heier et al., 2012; Bakall et al., 2013; Busbee
et al., 2013; Rofagha et al., 2013; Ferrone et al., 2014; Grewal
et al., 2014; Schmidt-Erfurth et al., 2014; Bhisitkul et al., 2015;
Avery et al., 2017). It is important to note that increased oxidative
stress plays an important role in AMD, triggering the expression
of VEGF-A, in this case, believed to serve as a survival factor.
It follows that anti-VEGF therapy may negatively impact cell
survival under oxidant injury conditions, the extent to which can
only be determined through a systematic study examining the
impact of anti-VEGF on reactive oxygen species levels following
oxidative stress.

Despite the availability of treatments for wet AMD patients,
about a third of patients have visual decline by 15 letters or more
(Moutray and Chakravarthy, 2011; Rofagha et al., 2013; Bhisitkul
et al., 2015). Importantly, repeated intravitreal injections lead
to significant socioeconomic burden (Brown et al., 2005).
Although available therapies are grossly successful, wet AMD
still remains the center of interest of leading pharmaceutical
companies. Numerous new injectable medications are coming
down the pipeline, only some of which we have space
to review here (see also Table 1). Already approved by
the FDA (October of 2019) is brolucizumab, developed
by Novartis and Alcon Labs. This humanized single-chain
antibody fragment that inhibits all isoforms of VEGF-A has
already proven to achieve the clinical endpoint on the 12-
week dosing interval following the induction (Dugel et al.,
2020). The real-world experience to follow the clinical trial
results is still mandated to make this medication more
competitive. In 2019, a new anti-VEGF agent, conbercept by
Lumitin (China), was approved locally to treat wet AMD and
reported to be safe and efficient (Cãlugãru and Cãlugãru,
2019; Liu et al., 2019). From Roche/Genentech currently
under investigation is a drug that simultaneously inhibits
VEGF-A and angiopoietin-2, faricimab (Hussain et al., 2019).
Aerpio is developing ARP-1536, a humanized monoclonal
antibody that targets the extracellular domain of vascular
endothelial protein tyrosine phosphatase (Al-Khersan et al.,
2019). Opthea is developing OPT-302, a soluble form of
human VEGF receptor-3 that blocks VEGF-C and VEGF-
D to be used combined with an anti-VEGF-A agent (Al-
Khersan et al., 2019). Kodiak Sciences is working on a
novel, anti-VEGF antibody biopolymer conjugate to treat wet
AMD (KSI-301). The first results on treatment naïve eyes
with neovascular AMD are expected in 2020 (Al-Khersan
et al., 2019). Regenxbio is developing a gene therapy, RGX-
314, as a one-time subretinal injection. It consists of the
NAV AAV8 vector encoding a VEGF inhibiting antibody
fragment (Al-Khersan et al., 2019). Allergan is in Phase 3,
successfully exploring a novel agent with designed ankyrin repeat

proteins (DARPin) technology to be used as an intravitreal
injection to inhibit all isoforms of anti-VEGF-A. Thus far,
in in vitro experiments, the VEGF-A binding affinity of
abicipar pegol was found to be similar to that of aflibercept
and greater than that of ranibizumab and bevacizumab
(Callanan et al., 2018; Rodrigues et al., 2018; Moisseiev and
Loewenstein, 2020; Sharma et al., 2020). Regenxbio and Adverum
Biotechnologies are developing gene therapies, RGX-314 and
ADVM-022, respectively, as one-time subretinal injections.
Regenxbio’s approach utilizes the NAV AAV8 vector encoding
a VEGF inhibiting antibody fragment (Al-Khersan et al., 2019),
while ADVM-022 is an AAV.7m8-aflibercept gene therapy
product. PanOptica is going with a less invasive, topical
application option (once-a-day drop) of pazopanib (PAN-
90806), a molecule that blocks VEGF receptor 2 via tyrosine
kinase inhibition (Hussain and Ciulla, 2017; Patra et al., 2018;
Al-Khersan et al., 2019).

Unlike for wet AMD, to date, there are no approved
treatments for dry AMD. The groundbreaking Age-Related Eye
Disease Study (AREDS) initially conducted from 1992 to 2001
concluded that daily supplementation with high antioxidants
levels and zinc might reduce the risk of progression in about
25% of patients. Recently conducted supplemental studies have
revealed that some patients may experience up to 85% risk
reduction, while others may encounter a threefold increased
risk of progression while on supplementation, depending on
their genetic make-up (Seddon et al., 2016; Vavvas et al.,
2018). Significant effort has been made in dry AMD treatment
research, and currently, there are ongoing, promising clinical
trials (see also Table 2). There is an ongoing effort in
China to transplant human embryonic stem cells derived from
RPE into the subretinal space of patients with advanced dry
AMD (NCT03046407). Additionally, the Bionic Vision system
PRIMA (retinal prosthesis) is being developed by Pixium
Vision (NCT03392324). Hemera Biosciences is investigating
AAVCAGsCD59, an ocular gene therapy product that causes
normal retinal cells to increase their expression of a soluble
form of CD59. Conveniently, the compound can be injected
in the physician’s office. This soluble recombinant version of
CD59 is designed to inhibit the formation of the membrane
attack complex, the terminal step of complement-mediated
cell lysis, to protect retinal cells (NCT03144999). Allegro
Ophthalmics is planning a phase III trial to evaluate the
safety and exploratory efficacy of risuteganib (Luminate) on
dry AMD (NCT03626636). Risuteganib regulates mitochondrial
dysfunction and downregulates oxidative stress response in
order to restore retinal homeostasis. Opthotech is evaluating
avacincaptad pegol (Zimura, a novel complement C5 inhibitor)
when intravitreally administered in subjects with geographic
atrophy (NCT02686658). Regenerative Patch Technologies has
initiated a clinical trial to assess the feasibility of delivery
and safety of human embryonic stem cell-derived retinal
pigment epithelial cells on a parylene membrane (CPCB-
RPE1) in patients with advanced, dry AMD (NCT02590692).
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TABLE 1 | Approved or advanced in trials Wet AMD treatments.

Generic Brand name Manufacturer Target FDA approved/year Phase in trials

Pegabtanib Macugen OSI Pharmaceuticals
165 isoforms VEGF-A/Pegylated

RNA aptamer
Yes/2004 Concluded

Ranimizumab Lucentis Genentech
All isoforms VEGF-A/Monoclonal

anti-VEGF (Fab) fragment
Yes/2006 Concluded

Bevaclzumab Avastin Genentech All isoforms VEGF-A/Monoclonal Ab No Concluded/used off-label

Aflibercept Eylea Regeneron

All isoforms of VEGF-A, VEGF-B, and

PIGF15/Fusion protein: VEGFR-1,2

fused with lgG1 Fc
Yes/2011 Concluded

Brolucizumab Beovu Novartis/Alcon
VEGF-A.B, PIGF/Single-chain

anti-VEGF Ab/fragments (scFv)
Yes/2019 Concluded

Conbercapl Lumitin

All isoforms of VEGF-A, VEGF-B,

VEGF-C, and PIGF32/Fusion protein:

VEGFR-1,2 fused with lgG1 Fc
No/approved in China Phase 3/NCT03577899

Faricimab Genentech/Roch
All isoforms VEGF-A and

Ang-2/Bispecific monoclonal Ab
No Phase3/NCT03823287

ARP-1536 Aerpio

All isoforms of VEGF-A (inactivate), Tie2

(activate)/reactivating monoclonal

antibody
No Predinical development

OPT-302 Opthea
VEGF-C and VEGF-D/Trap’ molecule

(VEGF-C and VEGF-D)
No Phase2/NCT03345082

KSI-301 Kodiak Science
All isoforms of VEGF-A/anti-VEGF

antibody biopolymer conjugate
No Phase 1/NCT04049266

Abicipar pegol Allergan
Ankyrin repeat proteins (DARPin)Zall

isoforms of anti-VEGF A
No Phase3/NCT02462928

RGX-314 Regenxbio

All isoforms of VEGF-A/NAV AAV8

vector containing a gene encoding for a

monoclonal antibody fragment
No Phase2/NCT03066258

ADVM-022 Adverum Biotechnologies, Inc.
All isoforms of

VEGF-A/AAVJmS-aflibercept
No Phase 1/NCT03748784

PAN-90S06 Panoptica
VEGFR2/small-molecule tyrosine kinase

inhibitor
No Phase2/NCT03479372

Some additional potential treatments for dry AMD, advanced
in clinical trials, are listed below. Alkeus Pharmaceuticals,
Inc. propose visual cycle modifications as a treatment option
(ALK001-P3001, NCT03845582), via the use of a modified
form of vitamin A that replaces natural vitamin A in the
body, thus slowing the production of damaging vitamin A
dimers, postulated to slow the accumulation of toxic end
products and therefore slow the progression of AMD (2019d).
Soliris (Alexon), Genentech, and Apellis Pharmaceuticals are
successfully investigating the role of complement inhibition in
slowing down the progression of dry AMD. Their products,
Eculizumab, Lampalizumab, and Pegcetacopan (respectfully), are
currently undergoing Phase 2 and 3 clinical trials (NCT00935883,
NCT03972709, NCT02247531, and NCT0350054) (Yehoshua
et al., 2014; Yaspan et al., 2017; Holz et al., 2018). Additionally,

anti-inflammatory agents have also been proposed to slow
down dry AMD advancement. Genentech/Roche proposes
the use of FHTR2163 (Genentech/Roche), a new antibody
delivered by intravitreal injection that inhibits HTRA1, a
serine protease gene HTRA1 as a major risk factor for wet
AMD [Phase 2/NCT03972709 (Dewan et al., 2006)]. A Phase
2 clinical trial conducted by Allergen (NCT02087085) is
investigating the neuroprotective role of intravitreal brimonidine
for geographic atrophy, administered by a delayed-delivery
system implant (2020a). Finally, Jenssen Pharmaceuticals is
assessing non-stem cell-based therapy with Palucorcel (CNTO-
2476), which uses human umbilical cord tissue-derived cells
(hUTC), while Astellas Pharma is assessing a stem cell-based
approach using human embryonic stem cells (hESC) as cell-
based approach therapies to treat advanced dry stages of AMD
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TABLE 2 | Advanced in trials Dry AMD treatments.

Generic Brand name Manufacturer Target FDA approved/year Phase in trials

PRIM A FS-US Pixium Vision Bionic Vision No N/A/NCT03046407

Risuteganib Luminate Allegro Ophthalmic
Mitochondrial dysfunction (oxidative

stress)/integrin inhibitor
No Phase 2/NCT03626636

ALK001-P3001 Alkeus Pharmaceuticals, Inc.
Modified vitamin A decreases rate of toxic

dimer formation
No Phase 3/NCT038455B2

AAVCAGsCDSS Hamera Biosciences MAC inhibition via CD59/gene therapy No Phase1/NCT03144999

Eculizumab Soliris, Alexon
A humanized monoclonal antibody derived from

the murine anti-human C5 antibody
No Phase2/NCT00935883

Lampalizumab Genentech

Antigen-binding fragment (Fab) of a humanized

monoclonal antibody that acts as a selective

inhibitor of complement factor D
No Phase 2/MCT03972709

Pegcetacoplan (APL-2) Apellis Pharmaceuticals

Synthetic molecule that selectively inhibits C3,

effectively downregulating all three complement

pathways
No Phase 2/NCT03500549

Avacincaptad pegol Zirnura Ophthotech/lveric Complement factor- C5 inhibitor No Phase 3/NCT02686658

CPCB-RPE1 Regenerative Patch Tech.
Human Embryonic Stem RPEs/RPE

transplantation
No Phase 2/NCT02590692

Brimo DDS Allergan Brimonidine implant/neuroprotection No Phase 2/NCT0208708S

CNTO-2476 Janssen Pharmaceuticals

Biological/non-stem cell-based therapy with

palucorcel (CNTO-2476), which uses human

umbilical cord tissue-derived cells (hUTC)
No Phase 2/NCT01226628

hESC MA09-hRPE Astellas Pharma Inc.
biological/sub-retinal Transplantation of hESC

Derived RPE (MA09-hRPE)
No Phase 2/NCT01344993

Chinese Academy of

Sciences

Human Embryonic Stem RPEs/RPE

transplantation
No Phase 2/NCT03046407

FHTR2163 Genentech/Roche
Antibody delivered by intravitreal injection that

inhibits a serine protease gene (HTRAI)
No Phase 2/NCT03972709

[Phase 2/NCT01226628 and NCT03046407 (Lund et al., 2007;
Schwartz et al., 2015)].

CONCLUSION

As presented above, significant research is being done to
investigate new therapeutics for both dry and wet AMD. The
most successful therapies so far address aspects of wet AMD,
leaving a large gap to be filled with therapies for dry AMD.
Unfortunately, a large number of potential medications have been
tested for dry AMD and have failed. Currently more candidates
are undergoing clinical trials, some targeting the impact of
stress on mitochondria as well as inflammation, emphasizing
the importance of these pathways in the pathogenesis of AMD.
Nevertheless, the very nature of the complex etiology of AMD
dictates that future therapeutic protocols, will require treatments
directed to more than one aspect of the pathobiology of AMD,

thus advocating for additional effort to be invested in a multi-
targeted approach to AMD treatment.
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