
Citation: Campagnoli, L.I.M.;

Marchesi, N.; Vairetti, M.; Pascale, A.;

Ferrigno, A.; Barbieri, A. Age-Related

NAFLD: The Use of Probiotics as a

Supportive Therapeutic Intervention.

Cells 2022, 11, 2827. https://doi.org/

10.3390/cells11182827

Academic Editors:

Alessandro Attanzio, Erica Buoso

and Fabrizio Biundo

Received: 12 July 2022

Accepted: 8 September 2022

Published: 10 September 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

cells

Review

Age-Related NAFLD: The Use of Probiotics as a Supportive
Therapeutic Intervention
Lucrezia Irene Maria Campagnoli 1,†, Nicoletta Marchesi 1,† , Mariapia Vairetti 2 , Alessia Pascale 1 ,
Andrea Ferrigno 2 and Annalisa Barbieri 1,*

1 Department of Drug Sciences, Pharmacology Section, University of Pavia, 27100 Pavia, Italy
2 Unit of Cellular and Molecular Pharmacology and Toxicology, Department of Internal Medicine and

Therapeutics, University of Pavia, 27100 Pavia, Italy
* Correspondence: annalisa.barbieri@unipv.it
† These authors contributed equally to this work.

Abstract: Human aging, a natural process characterized by structural and physiological changes,
leads to alterations of homeostatic mechanisms, decline of biological functions, and subsequently,
the organism becomes vulnerable to external stress or damage. In fact, the elderly population
is prone to develop diseases due to deterioration of physiological and biological systems. With
aging, the production of reactive oxygen species (ROS) increases, and this causes lipid, protein,
and DNA damage, leading to cellular dysfunction and altered cellular processes. Indeed, oxidative
stress plays a key role in the pathogenesis of several chronic disorders, including hepatic diseases,
such as non-alcoholic fatty liver disease (NAFLD). NAFLD, the most common liver disorder in the
Western world, is characterized by intrahepatic lipid accumulation; is highly prevalent in the aging
population; and is closely associated with obesity, insulin resistance, hypertension, and dyslipidemia.
Among the risk factors involved in the pathogenesis of NAFLD, the dysbiotic gut microbiota plays
an essential role, leading to low-grade chronic inflammation, oxidative stress, and production of
various toxic metabolites. The intestinal microbiota is a dynamic ecosystem of microbes involved in
the maintenance of physiological homeostasis; the alteration of its composition and function, during
aging, is implicated in different liver diseases. Therefore, gut microbiota restoration might be a
complementary approach for treating NAFLD. The administration of probiotics, which can relieve
oxidative stress and elicit several anti-aging properties, could be a strategy to modify the composition
and restore a healthy gut microbiota. Indeed, probiotics could represent a valid supplement to
prevent and/or help treating some diseases, such as NAFLD, thus improving the already available
pharmacological intervention. Moreover, in aging, intervention of prebiotics and fecal microbiota
transplantation, as well as probiotics, will provide novel therapeutic approaches. However, the
relevant research is limited, and several scientific research works need to be done in the near future
to confirm their efficacy.
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1. Introduction

The so-called gut microbiota (GM) is constituted by numerous different populations
of microorganisms (bacteria, archaea, fungi, and viruses) that reside in the gastrointestinal
tract of mammals. In recent years, a significant interest in the intestinal microbiota has
spread, as it is considered one of the key factors contributing to the maintenance of physio-
logical intestinal homeostasis, the protection against pathogens, and the modulation of the
immune system. All these important functions make the GM a fundamental system able
to regulate the host’s health [1,2]. Many researches on GM composition, conducted both
in animals and humans, have highlighted its involvement in the onset and progression
of several disorders, including neurodegenerative; cardiovascular; gastrointestinal; and
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metabolic diseases, such as obesity, type 2 diabetes, and non-alcoholic fatty liver disease
(NAFLD) [3].

The progressive degeneration of the tissues, with consequent alteration of organs’
structure and function, and the loss of homeostasis, make the elderly people more prone to
develop diseases [4–6]. During aging, it is widely reported that the increased imbalance
between reactive oxygen species (ROS) production and antioxidant enzymes expression
leads to the onset of oxidative stress (OS), with consequent damage to proteins, DNA,
and cellular organelles [7]. Specifically, in the gut, OS, together with a sedentary lifestyle,
changes in diet, and administration of drugs, causes GM dysbiosis, which contributes to
the increase in intestinal permeability, resulting in the release of bacteria, endotoxins, and
pro-oxidants into the systemic circulation. Ultimately, all these factors contribute to the
development of hepatic diseases, such as NAFLD [8]. Currently, NAFLD is considered
the most common chronic liver disease in the Western world and it is characterized by an
excessive intrahepatic fat accumulation, and strongly associated with obesity, hypertension,
and insulin resistance [9]. The pathogenesis of NAFLD is not completely understood, but
the most accredited hypothesis is the interaction among environmental factors (such as a
hypercaloric diet), GM changes, sedentary lifestyle, and genetic predisposition [10]. Over
time, NAFLD can become non-alcoholic steatohepatitis (NASH), and eventually progress
into fibrosis, cirrhosis, and hepatocellular carcinoma [11]. In order to block the progression
of NAFLD, thus improving the elderly’s health, the prevention of the disease is important.
The use of probiotics, which are alive microorganisms with numerous health benefits, could
be a valid strategy, thanks to their ability to restore the GM and relieve oxidative stress [12].

This review aims to underline the possible factors causing GM dysbiosis and intestinal
permeability disruption in elderly people, focusing above all on OS, with particular attention
to the association between an altered GM and the development of NAFLD. We also discuss
the NAFLD-associated GM signatures and the use of probiotics as a potential therapeutic
strategy to restore GM to a healthy condition and counteract NAFLD progression.

2. Non-Alcoholic Fatty Liver Disease and Non-Alcoholic Steatohepatitis

Non-alcoholic fatty liver disease is an umbrella term including simple steatosis or non-
alcoholic fatty liver (NAFL) and its progression into non-alcoholic steatohepatitis. NAFLD
is the hepatic manifestation of the “metabolic syndrome”, which also comprises dyslipi-
demia, hypertension, insulin resistance, and diabetes [13,14]. Recently, the term NAFDL
has been proposed to be replaced by the more generic definition of metabolic-associated
fatty liver disease (MAFLD), even though, in general, the traditional nomenclature is still
preferred by the majority of experts, mainly because many clinical trials are currently
specifically targeting NASH [15]. About a quarter of the world population suffers from
NAFLD [16], with rates exceeding 43% in patients with metabolic syndrome [17]. Progres-
sion into NASH has been observed in about 10% of patients suffering from NAFLD, and
more commonly in patients suffering from diabetes (37.7%), who also present the highest
prevalence rate of NAFL (55.5%) [18]. In NASH, the hepatic fat deposition is accompa-
nied by an increased free fatty acid oxidation and mitochondrial dysfunction, leading to a
chronic inflammatory state, which in turn can lead to high risk of fibrosis, cirrhosis, and hep-
atocellular carcinoma development [11,19]. Traditionally, two main “hits” were believed to
be involved in NAFLD pathogenesis, being the first intrahepatic fat accumulation triggered
by a sedentary lifestyle, bad nutritional habits, and insulin resistance [20], and the second a
lipid-induced over-production of ROS [21]. The two-hit hypothesis, by a general consen-
sus, is now considered too simplistic and a “multiple-hit hypothesis” has been proposed
instead [11]. The multiple-hit hypothesis has been described as an “integrated response”
of the organism to the combination of hypercaloric nutrition and sedentary lifestyle in
a genetically predisposed host, leading to metabolic syndrome and obesity [22]. These
events are accompanied by insulin resistance in the muscle in response to the increased
levels of circulating free fatty acids, leading to an increase in hepatic de novo lipogenesis
(DNL) and an imbalance in adipose tissue lipolysis, resulting in higher levels of circulating
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fatty acids conveyed to the liver [22]. Insulin resistance also contributes to the release of
adipokines and inflammatory cytokines from the adipose tissue [23]. Aging affects the
process of de novo lipogenesis (DNL) mostly through changes in systemic mediators such
as insulin and leptin; in fact, aging is an insulin- and leptin-resistant state [24]. Many
factors contribute to insulin resistance in aging, including an increase in body adiposity
and visceral fat, increased adipose tissue inflammation, an increase in circulating cytokines,
sedentary life style, and changes in growth hormone/insulin-like-growth-factor I (GH-IGF)
axis [25]. Insulin resistance has been shown to induce an increase in the percent contri-
bution of DNL to hepatic lipid accumulation [26]. Transcription factors sterol regulatory
element-binding protein (SREBP)-1c and carbohydrate-responsive element-binding protein
(ChREBP)-1, driven by insulin and glucose respectively, play a crucial role in stimulating
DNL in the hepatocytes through an increase in the transcription of rate-limiting DNL
enzymes such as fatty acid synthase (FAS), stearoyl-CoA desaturase-1 (SCD1), and acyl coA
carboxylase (ACC) [27]. Similarly to insulin resistance, in aging also serum leptin levels
are increased, along with a paradoxical lack of effects due to multiple causes, including
receptor desensitization, mutations in the genes encoding leptin and its receptors as well as
proteins involved in self-regulation of leptin synthesis, and changes in blood–brain barrier
permeability [28,29]. Leptin serves as the “satiety signal”, acting primarily at the level of
the hypothalamus to decrease appetite; so, reduced leptin levels or leptin resistance result
in a higher food intake [30]. In addition to its central role, leptin may have a direct action on
DNL; receptors for leptin have also been found in peripheral tissues including liver [31], so
changes in leptin signaling may also result in direct DNL enzymes positive modulation [24].
In the liver, excessive fat accumulation leads to lipotoxicity, a condition promoting oxidative
stress and affecting mitochondrial and endoplasmic reticulum physiological functions [32].
Altogether, these processes lead to hepatic chronic inflammation accompanied by cell death,
hepatic stellate cell (HSC) activation, and fibrosis. However, the original assumption that
steatosis always precedes inflammation is not always correct; in fact, NASH can also be the
initial hepatic injury: it is the timing and the combination of insults that determine whether
steatosis or NASH will occur first [33]. Recently, a deficit of lipophagy has been identified
as a further contributor to lipid overaccumulation in NAFLD pathogenesis [34]. Lipophagy
is a highly regulated step process that consists of: (1) protein-mediated sequestration of
lipid droplets within cytosolic vesicles and formation of a phagosome; (2) transport of a
phagosome to a lysosome and formation of the autophagolysosome; and (3) lipid degra-
dation by lysosomal lipases [35]. Many proteins are involved in this process. The cargo
adapter p62 is essential as it connects the lipidic cargo with autophagosomes; elevated P62
levels usually are a marker or decreased autophagy. LC3-II, a protein that targets to the
elongated autophagosome membrane, is degraded by lysosomal proteases; therefore, the
increase in LC3-II indicates its impaired turnover [36]. Both P62 and LC3-II proteins were
found to accumulate in high-fat diet-fed C57BL/6J male mice and high-fat/high-glucose
cultured Huh7 cells [35]. In addition, in NAFLD patients, lipid droplet-loaded lysosomes
and P62/sequestosome (SQSTM)1 clusters were associated with NAFLD activity score
(NAS) and fibrosis stage, respectively, as well as expression levels of lysosomal genes and
autophagy-related genes, showing that impaired autophagy is associated with features of
advanced disease [35].

3. Gut Microbiota and Oxidative Stress

The human microbiota consists of a wide range of microorganisms that reside in
different parts of the body, including the skin and the gastrointestinal, genitourinary, and
respiratory tracts [37]. In addition to these body districts, the urethra and the mammary
glands have their own microbes [38]. The GM is a complex and dynamic ecosystem of tril-
lions of commensal microorganisms, including different communities of bacteria and some
members of archaea, fungi, and viruses, which live in the gastrointestinal tract and give rise
to a mutual relationship with the host [39,40]. The colonization of the gastrointestinal tract
by bacteria begins in utero, via the placenta and the mother’s amniotic fluid [41], while
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after birth, the mode of delivery (natural or cesarean), feeding (breastfeeding or artificial),
ingestion of antibiotics or probiotics during the early days of life, genetics, and environmen-
tal factors influence the composition of GM [39,42]. The Bifidobacterium mainly dominates
the microbiota profile of infants, which can continually change during the first 3 years of
life [43] according to a variety of factors, such as nutrition, geographic distribution [44],
genetic background, and immunological stimuli [45]. After 3 years of age, the GM acquires
a more complex adult pattern that is relatively stable throughout adulthood [37]. Namely,
the GM of healthy adults is composed of anaerobic bacteria, most of which (more than
90%) belong to the phyla of Bacteroidetes (Bacteroides, Prevotella, and Porphyromonas) and
Firmicutes (Clostridia), followed by a small percentage (1–8%) of Actinobacteria (Bifidobac-
terium), Proteobacteria, and Verrucomicrobia [46,47]. The GM is necessary for the human’s
health; indeed, it can modulate innate and adaptive immune responses, regulate cellular
growth, and preserve epithelial barrier function [48]. Furthermore, the GM is also involved
in glucose and lipid metabolism, energy balance, detoxification, vitamin K synthesis, and
production of short-chain fatty acids (SCFAs; acetate, propionate, and butyrate) [45,47].

On the whole, based on its composition, the GM is described as an organ with a high
degree of variability and heterogeneity, able to change and adapt to the needs of the host’s
human body [37]. As a result, each person’s GM has a unique composition that differs
from others [49]. Nevertheless, the GM composition changes drastically as people age due
to various factors, including lifestyle, dietary habits, stress, use of antibiotics and drugs,
and environmental stimuli [39,50] (Figure 1). This event results in damage and loss of
the intestinal homeostasis [51], and thus, in the elderly, the GM acquires specific features
such as fewer beneficial bacteria, changes in dominant gut species (reduction of Firmicutes
and increase in facultative aerobic bacteria), and proliferation of pathobionts proliferation
(streptococci, staphylococci, enterobacteria, and enterococci), which are responsible for
the onset in the gut of an inflammatory state in the gut [37,52,53]. Further, the dysbiotic
microbiota is no longer able to perform its primary beneficial functions, thus leading to the
production of toxic metabolites and to inflammation, which in turn cause the development
of a variety of metabolic diseases, such as hypercholesterolemia, diabetes, obesity, NAFLD,
and its progression into NASH [54,55].

Since elderly people have difficulties in swelling and chewing, in association with
a decreased digestive motility [56], nutrition plays a key role in changing the GM pro-
file [57]. A diet lacking in fibers and proteins, for example, as well as vitamin D and
calcium deficiency, can alter the composition of GM, [58,59]. Moreover, the consumption
of plant-based proteins, animal-based proteins, inulin, olive oil, and omega-3 polyunsat-
urated fatty acids (PUFA) can also modulate GM [60]. Besides diet, GM dysbiosis can
as well be caused by oxidative stress and treatment with drugs aimed at targeting hu-
man cells rather than microorganisms, such as antidiabetics (metformin), proton pump in-
hibitors (PPIs), nonsteroidal anti-inflammatory drugs (NSAIDs), and atypical antipsychotics
(AAPs) [61,62].

The accumulation of ROS produced by cellular metabolic and respiratory processes
is recognized as one of the causes that promotes aging [63]. Namely, ROS and reactive
nitrogen species (RNS) are essential for cellular proliferation and differentiation, cytokines
release, metabolism, and immune response. They are naturally produced by the organ-
ism’s cells at low levels [7]. Under physiological conditions, the organism has several
antioxidative defense mechanisms, including enzymes (catalase, glutathione peroxidase,
and superoxide dismutase) and antioxidants (such as vitamin C, vitamin E, uric acid,
carotenoids, and flavonoids), which can protect it against oxidant species; instead, as peo-
ple get older, there is a cellular imbalance between these defenses and ROS generation, in
favor of oxidants, resulting in OS [7,64]. OS causes molecular and cellular damage, par-
ticularly to proteins, lipids, DNA, and organelles [7,65], thus contributing to uncontrolled
proliferation, inflammation, and cell death through apoptosis [66].
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crease in LPS, resulting in gut inflammation and development of metabolic diseases. Abbreviations: 
SCFAs: shot-chain fatty acids; LPS: lipopolysaccharides. 
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Figure 1. Effects of an altered gut microbiota (GM) in elderly people. A diet low in fibers and proteins,
an increase in oxidative stress, a sedentary lifestyle, and an intake of drugs and antibiotics lead to
an alteration of the intestinal microbiota, with a reduced production of SCFAs and an increase in
LPS, resulting in gut inflammation and development of metabolic diseases. Abbreviations: SCFAs:
shot-chain fatty acids; LPS: lipopolysaccharides.

During aging, the alteration of cellular macromolecules, as well as the dysfunction at
the level of mitochondria, which represents the primary source of energy, and the subse-
quent further production of ROS, eventually lead to the onset of age-related disorders [64].

Specifically, at the intestinal level, the continuous exposure of the mucosa to oxidants
derived from diet and bacteria results in excessive production of ROS and the consequent
onset of oxidative stress [66]. OS may disrupt colonic epithelial tight junctions, subsequently
increasing the intestinal mucosa permeability, thus leading to a phenomenon known as
“leaky gut” syndrome. This condition is characterized by the translocation of pro-oxidants
and antigens, such as lipopolysaccharides (LPS), bacteria, and their endotoxins into the
systemic circulation, where they reach various target organs [40,46], resulting in several
pathological conditions, including metabolic disorders and infectious and systemic diseases
(such as cardiac, neurodegenerative, and neoplastic) [40,67].

As mentioned before, whereas the composition of GM seems to be directly associated
with ROS production in the intestine [68], other authors [60], conversely revealed that
the abundance and composition of the GM may influence the intestinal production of
ROS. In fact, the consumption of probiotic bacteria and antioxidant nutrients able to
change GM may lower ROS production by inhibiting pro-oxidant enzymes and stimulating
antioxidant enzymes and related pathways [60]. Furthermore, the GM itself can produce
antioxidant molecules (glutathione, butyrate, and folate) able to protect the gut from toxins
and ROS [69].

Finally, given that an imbalance between oxygen species generation and antioxidant
defenses causes intestinal damage, an excessive amount of ROS and RNS leads to an
elevated cellular oxidative stress, contributing to the GM dysbiosis, which favors several
gastrointestinal conditions, such as inflammation and metabolic disorders, like NAFLD [60].
In fact, the alteration of the intestinal microbiota is an important factor that contributes to
the pathogenesis of NAFLD and its progression into NASH [54]. In particular, dysbiosis and
oxidative stress lead to a dysregulation of intestinal permeability, resulting in the release
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of endotoxins, and microbiota metabolites, derived from saccharolytic and proteolytic
fermentation, at the level of the liver, with a consequent increase in the accumulation
of hepatic fat and inflammation [8], typical signs of this disease. Over time, if these
conditions persist, NAFLD progresses into NASH, the more severe form, characterized by
hepatocellular injury, chronic inflammation, and fibrosis [70] (Figure 2).
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at the intestinal level contributes to gut microbiota (GM) dysbiosis. These two conditions disrupt the
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(LPS), harmful bacteria, and ROS from the intestinal lumen into the blood circulation where they are
taken up by the liver and cause an increase in lipogenesis and inflammation, finally resulting in the
development of this hepatic disease.

4. Gut Microbiota and NAFLD Development in Animal Models

In the last decades, fecal transplantation experiments in mice have provided a growing
body of evidence about a causal role between GM alterations and NAFLD/NASH develop-
ment [71,72]. GM was studied in various animal models of NAFLD, and its alteration was
found to be associated with NAFLD genesis and progression. Adult germ-free mice fed
with a regular diet, when exposed to a microbiota harvested from conventionally raised
animals, showed a 60% increase in body fat content and the insurgence of insulin resistance,
possibly due to the increase in the absorption of monosaccharides from the gut lumen,
resulting in the induction of hepatic de novo lipogenesis [73]. Similarly, wild-type germ-free
mice fed with a Western-style, high-fat, sugar-rich diet, are less prone to develop steatosis
when compared to animals raised in conventional conditions [74,75]. On the contrary,
steatosis develops regularly in germ-free knockout (KO) mice lacking fasting-induced
adipose factor (FIAF), a circulating lipoprotein lipase inhibitor normally suppressed by GM,
suggesting that FIAF is a mediator of microbial-regulated energy storage [74]. Recognizing
the role of GM in the development of NAFLD also implies the concept that NAFLD is
potentially a transmissible process [76]. In fact, germ-free mice colonized with the cecal
content collected from donors either responders or non-responders to a high-fat diet de-
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veloped symptoms comparable to the respective donor when fed with the same diet. In
other words, germ-free mice receiving intestinal microbiota from responder mice devel-
oped macrosteatosis and hyperglycemia; differently, mice receiving intestinal microbiota
from non-responder mice do not develop NAFLD when fed with a high-fat diet [77]. A
similar effect was seen in mice colonized with human GM from healthy individuals or
NAFLD patients: mice fed with a high-fat diet developed more severe NAFLD symptoms
when receiving the microbiota from NAFLD patients and vice-versa [78]. In a more recent
work, quercetin was administered to donor mice fed with a high-fat diet to modulate the
microbiota composition; the transplantation of microbiota from quercetin-treated donors
in germ-free mice resulted in a protective phenotype against diet-induced NAFLD [79].
Further, in mice fed with a Western diet, a worsening of NASH symptoms was associated
with the depletion of G protein-coupled chemokine receptor CX3CR1; the depletion of GM
using broad-spectrum antibiotics was also found to protect mice from diet-induced NASH,
similarly to what was demonstrated in germ-free mice [80].

The methionine-choline deficient (MCD) diet is another well-established animal model
of NAFLD. In this model, choline deficiency affects triglyceride export via very low-density
lipoproteins (VLDLs), resulting in hepatic steatosis; in addition, the lack of methionine
impairs glutathione synthesis, causing a significant increase in oxidative injury [14]. The
MCD diet-induced NAFLD is characterized by hepatic ballooning, marked oxidative stress,
chronic inflammation, and fibrosis, without development of hyperglycemia, dyslipidemia,
and insulin resistance; therefore, it is more suitable for the study of inflammation and
fibrosis [81]. In mice, the administration of MCD diet induces persistent alterations in the
GM and impairment of the intestinal barrier [82]. However, unexpectedly, in MCD mice
the treatment with broad-spectrum antibiotics, aimed to deplete the microbiota, does not
produce the same effect seen in germ-free or antibiotic-treated mice fed with a Western diet,
resulting in the aggravation of steatosis, inflammation, a higher histopathological NAFLD
activity score (NAS), and a significantly higher liver-to-body weight ratio [83]. In contrast,
the microbiota modulation via probiotics has shown beneficial effects both in the high-fat
NAFLD model and in the MCD-induced NASH [84], suggesting that in the MCD model,
the microbiota preserves its protective activity, which is lost in high-fat and Western diet
models of NAFLD. These last works suggest that the microbiota should be seen as both a
potential therapeutic agent and a drug target for the treatment of NAFLD.

An alternative NAFLD model consists of the supplementation of high doses of fructose
in a regular diet [14]. Interestingly, high fructose supplementation does not necessarily
result in body weight gain, but indeed in the increase in liver weight/body weight ra-
tio [75], supporting the newly acquired notion that diet-induced liver steatosis does not
necessarily precede body weight gain [85]. Fructose at high doses has been found to be
associated with microbiota overgrowth and increased intestinal permeability, leading to
an endotoxin-dependent activation of hepatic Kupffer cells. In fact, the suppression of
endotoxin-mediated activation of Kupffer cells in toll-like receptor (TLR)-4 mutant mice
resulted in the reduction of hepatic triglyceride accumulation by approximately 40% in
comparison with fructose-fed wild-type mice [86]. Fructose-induced steatosis is also absent
in germ-free mice, confirming that bacterial products such as LPS are required to induce
liver steatosis and clearly indicating that the gut microbiota is involved in the pathogenesis
of experimental fatty liver disease [75].

Several hypotheses have been formulated as to how the GM may contribute to NAFLD
development and progression into NASH. As previously mentioned, they include increased
intestinal permeability, leading to an increased absorption by the host of microbially
produced toxins and metabolites, such as LPS, trimethylamine N-oxide (TMAO), choline,
and ethanol, which trigger inflammation and affect immunity [71]. Infiltrating immune
cells such as monocyte-derived macrophages and neutrophil granulocytes, two mediators
of the hepatic inflammation during NASH, seem to have a relevant role in the microbiota-
mediated worsening of NAFLD; in fact, chemokine receptor antagonists, by inhibiting
monocyte recruitment, reduce hepatocyte ballooning, fibrosis, and inflammation in both the
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Western diet and the MCD diet models [87]. Infiltrating immune cells express high levels of
pathogen recognition receptors (PRRs), including the NLR inflammasome family members,
designated to recognize toxins released by the microbiota that reach the liver via the portal
circulation [88]. Interestingly, in NLRP3 and NLRP6 inflammasome-deficient mice, an
unfavorable intestinal microbiota has been linked to a loss of intestinal barrier integrity
and increased translocation of toxins of microbial origin into the liver, where they activate
hepatic inflammation [89]. These data indicate that translocation of bacterial products from
the gut into the liver is part of a highly regulated series of complex interactions among the
gut, its microbiota, and the liver, often referred to as the gut–liver axis, and contributing to
liver fat accumulation and inflammation in NASH [90].

5. Changes in Gut Microbiota in Animal Models of NAFLD

Many preclinical studies have tried to associate specific alterations in GM compo-
sition, often referred to as a microbial signature, with NAFLD and NASH development.
Prolonged (80 weeks) high-fat diet feeding in mice was associated with an increase in the
relative abundance of the Firmicutes phylum with respect to the Bacterioidetes; at the genus
level, an increase in the abundance of Adercreutzia (Actinobacteria), Coprococcus (Firmicutes),
Dorea (Firmicutes), and Ruminococcus (Firmicutes) was observed in mice fed with a high-fat
diet in comparison with the low-fat diet group [91]. In germ-free mice colonized with
the microbiota from responder and non-responder mice to high-fat diet, NAFLD was
positively associated with Barnesiella and Roseburia (from the Bacteroidetes and Firmicutes
genera, respectively); after 16 weeks of high-fat diet administration, an increase in Barne-
siella and Allobaculum and a decrease in Lactobacilli were observed. In general, the Firmicutes
phylum was more represented in mice developing NAFLD [77]. Overall, the increase in
Firmicutes/Bacteroidetes has been associated with NAFLD progression, even though there is
not a complete consensus. In this last regard, in another work, Firmicutes and Verrucomi-
crobiota phyla were instead found to be more represented in mice not developing NAFLD
and, at the genus level, Bacteroidia and Flavobacteriia were increased in mice developing
NAFLD [79]. The administration of VSL#3, a high-concentration mixture of Bifidobacteria,
Lactobacilli, and Streptococcus thermophilus improved liver histology, reduced hepatic total
fatty acid content, and decreased serum alanine aminotransferase levels in mice fed with
high-fat diet. The histological and biochemical improvement were associated with lower
levels of two nuclear factors regulated by tumor necrosis factor (TNF): Jun N-terminal
kinase (JNK) and nuclear factor B (NF-B), both involved in the development of insulin
resistance [84].

In mice fed with the MCD diet for 2 and 4 weeks, the phylum of Tenericutes was more
abundant compared with that of the respective control groups, while Verrucomicrobia were
consistently less abundant. After 2 weeks of MCD diet, a significantly higher abundance
of Firmicutes and a significantly reduced content of Proteobacteria were seen; at 4 weeks, a
decrease in Actinobacteria was observed. At the family level, Rikenellaceae, Desulfovibrionaceae,
and Verrucomicrobiaceae were persistently reduced in the MCD group when compared
with the 4-week control group [82]. After 8 weeks, MCD feeding resulted in a strong
overall decrease of the microbiota diversity and in a reduction in the potentially probiotic
Lactobacillus, as well as Akkermansia, and an increase in the Ruminococus, which has been
linked to liver fibrosis [83].

6. Association between Gut Microbiota and NAFLD Development in Humans

Several large human studies have investigated a microbial signature possibly predict-
ing the risk of progression from simple steatosis toward more advanced disease stages [76];
however, a certain level of discrepancy was found among studies, with divergent results
concerning phylum, family, genus, and species. The phyla of Firmicutes and Bacteroidetes
are the most represented in the gut microbiome; consequently, many animal and human
studies focused on the relative abundance of these two groups. Similarly to what had been
found in animal studies [77,91,92], it was originally proposed that an increase in the Firmi-
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cutes-to-Bacteroidetes ratio was associated with a higher energy harvest and more severe
NAFLD manifestations in obese individuals [93]; however, this notion was challenged by
more recent findings [94–96]. Specifically, in NAFLD patients, Firmicutes were found to be
increased in studies by Del Chierico (2017) and Loomba (2017) [97,98], decreased in studies
by Wang [99] and Zhu [94], and unaltered in those by Raman (2013) and Alferink [96,100].
Bacteroidetes were more represented in NAFLD patients in the studies by Wang [99] and
Zhu [94], decreased in the studies by Del Chierico [97] and Shen [95], and unaltered in
the studies from Alferink [96]. It has been proposed that using higher phylogenetic levels
(i.e., phylum) to distinguish disease states naturally leads to discrepancies; therefore, the
studies should focus on lower levels, such as the genus [100]; however, discrepancies have
also been found when considering the genus level, with regard to Prevotella, Oscillibacter,
Bifidobacterium, Blautia, Lactobacillus, and Roseburia [72]. These discrepancies may originate
from the fact that NAFLD is heterogeneous by nature, and the studies often include patients
at different stages of disease severity, with compensated or decompensated cirrhosis [72].

Nonetheless, concordant changes were found in patients with NAFLD and NASH,
in comparison with healthy individuals. Indeed, the phylum of Proteobacteria was in-
creased [95,98,100]; at the family level, Enterobacteriaceae were increased [94,95], while
Rikenellaceae [94,97] and Ruminococcaceae [95,100] were decreased; the genera Faecalibac-
terium [94], Coprococcus [94,99], and Anaerosporobacter [99] were also decreased, while Dorea
was increased [97,100]. An increase in the genera Escherichia and Peptoniphilus was specific
to NAFLD patients without NASH [94,97], as well as a decrease in Prevotella [101].

7. Probiotics

According to the Food and Agriculture Organization of the United Nations (FAO)/World
Health Organization (WHO), probiotics are defined as “live microorganisms which, when
administered in adequate amounts, confer a health benefit on the host” [102]. To be used
as probiotics, microorganisms must have certain characteristics. They must be alive, safe,
non-pathogenic bacteria, able to cross the gut intestinal tract and survive both in acidic
(stomach) and basic (duodenum) pH, as well as be resistant to bile, hydrochloric acid, and
pancreatic juice [103]. Furthermore, they should be of human origin, isolated from the
mouth, gastrointestinal tract, or feces, and belong to a healthy GM. However, probiotic
bacteria from the Lactobacillus and Bifidobacterium genera, as well as other microorganisms,
can be also isolated from fermented milk and related products, such as cheese, and yogurt,
as well as from traditional drinks (Yosa, Bosa, Pozol, and Togwa) [104]. In addition to these
important features, it is essential that probiotics are endowed with an antimicrobial activity
against pathogenic bacteria and a reduced intestinal permeability, which allows them to
colonize the gut, as well as the ability to stimulate the immune system, by sending signals
to gut immune cells, produce lactic acid, and influence intestinal metabolism [104].

It is known that probiotics have beneficial effects for both humans and animals, as they
can promote gastrointestinal tract motility and control the intestinal microbiota, improve
lactose tolerance, and lower cholesterol levels [105]. They can also favor the proliferation
and differentiation of epithelial cells, and reinforce the intestinal barrier [106]. Furthermore,
having a therapeutic role, they can confer benefits to the immune, nervous, and gastroin-
testinal systems, and prevent some diseases, including obesity, diabetes, cardiovascular,
liver, and metabolic disorders, as well as cancer and allergies [107,108]. Additionally, they
are a helpful solution to counteract other clinical conditions, such as diarrhea, gastroenteri-
tis, Crohn’s disease, female urogenital infections, and alleviate symptoms due to lactose
intolerance [104,109] (Table 1).
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Table 1. Use of probiotics in several disorders.

Disease Probiotic Reference

Acute diarrhea Lactobacillus rhamnosus GG [110]

Allergic rhinitis Lactobacillus acidophilus L-92 [111]

Antibiotic-associated diarrhea Saccharomyces boulardii [112]

Asthma Enterococcus faecalis FK-23 [113]

Atopic dermatitis Lactobacillus paracasei, and
Lactobacillus fermentum [114]

Atopic eczema
Mixture (Bifidobacterium bifidum,

Bifidobacterium lactis, and
Lactobacillus acidophilus)

[115]

Bacterial vaginosis
Saccharomyces cerevisiae Lactobacillus

acidophilus, Lactobacillus rhamnosus GR-1, and
Lactobacillus fermentum RC-14

[116]
[117]

Cardiovascular disorder Lactobacillus rhamnosus GG [118]

Chronic diarrhea Lactobacillus plantarum CCFM1143 [119]

Colon cancer
Lactobacillus rhamnosus Lactobacillus

acidophilus, Mixture (Bifidobacteria bifidum,
and Bifidobacteria infantum)

[120]
[121]

Crohn’s disease Escherichia coli Nissle 1917
Saccharomyces boulardii

[122]
[123]

Diabetes Lactobacillus acidophilus [124]

Diarrhea Bifidobacterium bifidum FSDJN705, and
Bifidobacterium breve FHNFQ23M3 [125]

Gastroenteritis Lactobacillus F19 [126]

Hypercholesterolemia Enterococcus faecium M-74 [127]

Lactose intolerance Lactobacillus acidophilus DDS-1 [128]

Liver disorder Escherichia coli Nissle VSL#3 [129]
[130]

Metabolic disorder Bifidobacterium adolescentis Z25 [131]

Obesity Lactobacillus plantarum K50 [132]

Urinary tract infections Lactobacillus rhamnosus GR-a and Lactobacillus
reuteri RC-14 [133]

Interestingly, probiotics, by possessing anti-aging properties, could also favor longevity.
In fact, they can be used to activate antioxidant and immunomodulatory pathways, as
well as to prevent some typical signs of aging, such as hair loss and skin wrinkles, and to
improve skin elasticity [134,135]. Wen-Yang Lin (2022) [12], by administering a mixture
of probiotics (Bifidobacterium animalis subsp. infantis BLI-02, Bifidobacterium breve Bv889,
Bifidobacterium bifidum VDD088, Bifidobacterium animalis subsp. lactis CP-9, and Lactobacil-
lus plantarum PL-02) to aged mice, demonstrated their antioxidant property, resulting in
positive modulation of GM and SCFAs synthesis [12]. Moreover, several clinical trials
reported the effect of probiotics supplementation on the GM in elderly people [136–139].
For instance, two randomized, double-blind, placebo-controlled studies showed that Bifi-
dobacterium longum Bar33 and Lactobacillus helveticus Bar13 reduce opportunistic pathogens
(Clostridium cluster XI, Clostridium difficile and Clostridium perfringens, Enterococcus faecium
and Campylobacter), while supplementation with Bifidobacterium longum 46 and B. longum 2C
increases the number of Bifidobacterium catenulatum, Bifidobacterium bifidum, and Bifidobac-
terium breve [136,137].
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Probiotics exert their health benefits through different mechanisms of action: They
can compete with pathogenic bacteria for nutrients and adhesion sites on the intestinal
mucosa, inhibit the production of bacterial toxins, fortify the epithelial barrier, and possess
antimicrobial properties, such as the ability to produce antimicrobial substances (like
bacteriocins and SCFAs), through which they can inhibit the growth of pathogens and
restrict their adhesion and access across the barrier. Finally, probiotics can also act as
immunomodulators, by reducing proinflammatory cytokines secretion [such as interferon
gamma (IFNγ), TNFα, and interleukin 12 (IL-12)] and promoting the expression of anti-
inflammatory cytokines (such as IL-10), as well as epithelial cells and T lymphocytes
proliferation and differentiation [140–142].

In addition to the positive effects mentioned above, supplementation with probiotics
can also modulate the GM in humans and animals [107]. In the presence of dysbiosis,
probiotics species can restore the correct balance of the gut microbial composition and
repress pathogens, by eliciting the production of β-defensin and IgA; moreover, they can
favor the expression of anti-inflammatory molecules and improve the integrity of the
intestinal barrier, by promoting the production of mucin and preventing the disruption of
tight junctions [40,143].

The genera Lactobacillus and Bifidobacterium are the most commonly used probiotic bac-
teria, followed by Streptococcus, Escherichia, Enterococcus, and Bacillus. Some Saccharomyces
fungal strains can also be used as probiotics [103] (Table 2).

Table 2. List of probiotics strains commonly used.

Lactobacilli Bifidobacteria Saccharomyces Other species

L. acidophilus B. adolescentis S. boulardii Bacillus subtilis

L. casei B. animalis S. cerevisiae Enterococcus faecalis

L. crispatus B. bifidum Escherichia coli

L. fermentum B. breve Lactococcus lactis

L. gallinarum B. infantis Streptococcus thermophilus

L. gasseri B. longum

L. helveticus

L. johnsonii

L. lactis

L. paracasei

L. plantarum

L. reuteri

L. rhamnosus

For instance, treatment with Lactobacillus rhamnosus GG, a lactic acid bacterium, has
been shown to reduce oxidative stress and inflammation in the intestine, modulate the
altered microbiota, as well as restore the gut barrier function [144–146]; further, it has
been reported that the Lactobacillus acidophilus can prevent intestinal inflammation, by
reducing the expression of proinflammatory cytokines (IL-6, TNFα, IL-1b, and IL-17) and
promoting the production of IL-10, as well as by modulating the GM, favoring the increase
of beneficial bacteria [147,148]. Like other Lactobacilli, also the treatment with L. Plantarum
has the potential to change the composition of GM, increase SCFAs levels, and decrease
the expression of some inflammatory cytokines (such as TNFα, IL1-β, and IL-6), thus
preventing metabolic disorders and gut inflammation [149]. In addition to Lactobacilli,
bacteria of the genus Bifidobacterium (such as B. bifidum, B. breve, and B. longum) can also be
used as probiotics to modify and stabilize the composition of GM, to inhibit the growth of
pathogenic bacteria and the production of proinflammatory cytokines, and to strengthen



Cells 2022, 11, 2827 12 of 27

the gastrointestinal barrier [107]. Additionally, it has been reported that the probiotic
bacterium Escherichia coli Nissle can modulate the bacterial population of GM and restore
the intestinal homeostasis, by producing human β-defensin 2, which is useful as a barrier
against the invasion of pathogens (such as Salmonella, Shigella, and Candida) across the
intestinal barrier [150,151]. Further, some yeasts, including Saccharomyces cerevisiae and
Saccharomyces boulardii, are also employed as probiotics. They have the ability to modify the
GM microorganisms and reduce inflammation [107,152]. Interestingly, in addition to these
classic probiotics, several studies have shown the beneficial role of other bacteria, known as
“next-generation probiotics” (NGP), such as Faecalibacterium prausnitzii and A. muciniphila.
For instance, A. muciniphila, a Gram-negative anaerobic bacterium, has been demonstrated
to be able to reduce gut inflammation and strengthen the intestinal barrier, favoring the
synthesis of antimicrobial substances, the thickening of mucus, and the restoration of tight
junctions proteins expression [153,154].

As previously mentioned, the GM plays a dominant role in the pathogenesis of
NAFLD [155]. Changes in its composition (for instance, an increase in Gram-negative
bacteria belonging to Proteobacteria, Escherichia, and Enterobacteria species) increase intestinal
permeability, resulting in the translocation of endotoxins and toxic metabolites into the
liver, and leading to the production of inflammatory cytokines by Kupffer cells [156–158].
Furthermore, dysbiosis can also alter the metabolism of bile acids and choline, and increase
the production of endogenous ethanol in the intestine. All these events cause inflammation
and OS, which in turn trigger the onset of the disease and eventually its progression into
cirrhosis [54].

To date, no specific drugs have yet been approved to treat NAFLD. The current
strategies employed to control the disease and its progression include lifestyle changes (diet
modifications, exercise, and gradual weight loss), the use of hypoglycemic and antioxidant
agents, as well as drugs commonly used to treat diabetes mellitus (such as metformin and
thiazolidinediones) [159]. The employment of probiotics may provide a new therapeutic
approach for managing and treating liver diseases, like NAFLD. In fact, as previously
discussed, it is well known that they are able to restore the GM to a healthy state, by
improving the expression of occludins and blocking the invasion of pathogenic bacteria
and endotoxins into the intestine, and to reduce hepatic inflammation, by balancing the
expression of pro-and anti-inflammatory cytokines [54,160,161]. Further, they can also
favor the production of SCFAs, decrease the amount of hepatic triglycerides, and relieve
the intestinal OS, by increasing the levels of the enzymes superoxide dismutase (SOD) and
plasma glutathione peroxidase (GSH-PH) and reducing the content of malondialdehyde
(MDA) [155,162,163].

To conclude, it is widely reported that the GM is altered in elderly people, and
dysbiosis is linked to the onset of NAFLD [136,155]. Thus, since changes in GM can
contribute to the irregular synthesis of bile acids, resulting in the excessive accumulation
of fats in the liver and development of the disease, the use of probiotics to restore GM
composition could be effective to modulate bile acids production and manage NAFLD [55].

7.1. Preclinical Studies of Probiotic Supplementation in NAFLD

Several animal studies have been conducted to evaluate the possible effects of pro-
biotics on NAFLD development and progression (Table 3). It has been reported that
Lactobacillus plantarum NCU116 and Lactobacillus plantarum NA136 could be safe probiotics
for NAFLD. Notably, L. plantarum NCU116 had beneficial effects in NAFLD model rats, by
inhibiting inflammation (decrease TNFα and IL-6 expression) and hepatic oxidative stress
(increase SOD, GSH-Px, and catalase activities), and by restoring bacteria flora [164], while
Lactobacillus plantarum NA136 could alleviate NAFLD in mice, by increasing nuclear factor
erythroid 2-related factor 2 (Nrf2) and AMP-activated protein kinase (AMPK) cascades,
resulting in the activation of different antioxidant pathways and regulation of the fatty
acid metabolism [165]. Further, it has been shown that Lactobacillus johnsonii BS15 may
prevent NAFLD in obese mice, by improving mitochondrial dysfunction and reducing
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inflammation and gut permeability [166], while treatment with Lactobacillus rhamnosus
GG could protect mice and rats from NAFLD, by reducing liver fat accumulation and
inflammation (decrease TNFα, IL-1β, and IL-8R mRNA expression) [167], and stimulating
sirtuins type 1 (SIRT1)-mediated signaling pathway [168], respectively. In other studies,
supplementation with Bifidobacterium longum attenuated liver fat accumulation in NAFLD
model rats [169]; treatment with a mixture of probiotics (Bacillus animalis VKB, Bacullus
animalis VKL, Lactobacillus casei IMV B-7280) modulated the GM composition and reduced
cholesterol level, oxidative stress, and weight in obese mice [170]; and administration of
Bifidobacterium infantis, Lactobacillus acidopilus, and Bacillus cereus in rats restored the GM
structure, and decreased serum levels of gut-derived bacterial lipopolysaccharide (LPS) and
inflammatory cytokines (TNFα and IL-18), and liver toll-like receptor 4 (TLR4)-mRNA [171].
Another study in rats revealed that supplementation with Clostridium butyricum MIYAIRI
588 could improve NAFLD, by decreasing accumulation of lipids droplets [172]. Finally,
treatment with VSL#3 probiotics alleviated obesity, hepatic steatosis, and insulin resistance,
as well as reduced inflammation, downregulating the activation of TNFα/inhibitor of
nuclear factor kappa-B kinase subunit beta (IKK-β) signaling pathway in high-fat diet-fed
mice [173]. Moreover, VSL#3 probiotics may reduce alanine aminotransferase (ALT) levels
and hepatic total fatty acid in high-fat diet model mice [174].

In addition to traditional probiotics, the emerging NGP, including, A. muciniphila,
F. prausnitzii, Bacteroides spp., and the Roseburia, could represent a potential therapeutic
strategy for the treatment of NAFLD [155]. For instance, Munukka (2017). reported the
ability of F. prausnitzii probiotic to improve hepatic health, by decreasing fibrosis, aspartate
aminotransferase (AST) and ALT levels, and fat content in liver of high-fat fed mice [175].

7.2. Clinical Trials of Probiotic Supplementation in NAFLD

Some human studies have demonstrated the benefits of probiotic supplementation
in patients with NAFLD (Table 3). It has been demonstrated that administration of con-
ventional yogurt, fermented by Lactobacillus delbrueckii ssp. bulgaricus and Streptococcus
thermophiles, as well as the supplementation of a mixture of six probiotics (L. acidophilus,
L. rhamnosus, L. paracasei, Pediococcus pentosaceus, B. lactis, and B. breve) can have benefi-
cial effects on patients with NAFLD, by modifying the GM composition, and reducing
inflammation (decrease TNFα expression) and lipid metabolism (decrease total cholesterol
and triglycerides) [176,177]. A randomized, double-blind, placebo-controlled clinical trial
showed that multistrain probiotic supplementation can decrease insulin, insulin resistance,
TNFα, and IL-6 in patients with NAFLD [178]; further, in the same line, treatment with
Lactobacillus bulgaricus and Streptococcus thermophilus can decrease ALT and AST activity,
and gamma glutamyl transferase (GGT) levels in NAFLD patients [179]. Another random-
ized, double-blind, placebo-controlled clinical trial reports that administration of VSL#3
decreased triglycerides and high-sensitivity C-reactive protein levels, as well as transami-
nases and GGT activity [180]. Interestingly, Shavakhi et al. demonstrated that treatment
with Metformin plus Protexin (L. acidophilus, L. casei, L. rhamnosus, L. bulgaricus, B. breve, B.
longum, Streptococcus thermophilus) decreases ALT and AST activity, better than Metformin
alone in patients with NASH [181]. Finally, the use of a cocktail of 14 probiotic strains,
belonging to Lactobacillus + Lactococcus, Bifidobacterium, Propionibacterium, and Acetobacter
genera, could improve hepatic steatosis, by reducing AST and GGT activity, as well as
TNFα and IL-6 levels, in NAFLD patients [182].
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Table 3. Effects of probiotics treatment in animals and human experimental studies.

Probiotic Model Diet Duration Treatment Effects Reference

Lactobacillus rhamnosus GG Mice High-fructose
diet-induced NAFLD 8 weeks

1. Improvement of the accumulation of fat in the liver
2. Reduction of liver inflammation (↓TNFα, ↓IL-8R,

↓IL-1β), as well as steatosis
3. Increase in gut beneficial bacteria

4. Restoration of tight junction proteins, resulting in gut
barrier function amelioration

[167]

Lactobacillus rhamnosus
GG and Lactobacillus

plantarum WCFS1
Sprague-Dawley rats High-fat diet-induced

NAFLD 21 weeks

1. Reduction of gut endotoxemia level, as well as the
expression of inflammatory cytokines

2. Amelioration of GM and intestinal barrier function
3. Increase in CYP7A1 and LDL-R, resulting in

improvement of lipid metabolism and insulin resistance

[183]

Bifidobacterium infantis,
Lactobacillus acidopilus,

Bacillus cereus
Rats High-fat/high-sucrose

diet-induced NAFLD 12 weeks

1. Downregulation of LPS/TLR4 signaling pathway,
resulting in slowing the progression of NAFLD

2. Improvement of GM dysbiosis and the intestinal
barrier function

3. Reduction of body weight
4. Decrease in TNFα, and IL-18 expression, as well as ALT,

AST, GGT, and ALP activities

[171]

Lactobacillus plantarum
ATG-K2 and ATG-K6 Wistar rats

High-fat and
fructose-diet-induced

NAFLD
8 weeks

1. Modulation of GM
2. Downregulating of de novo lipogenesis-associated genes

3. Reduction of body weight and hepatic
lipid accumulation

4. Increasing of antioxidant enzymes (SOD, GPx, CAT), and
decreasing of ALT and AST serum levels

[184]

Bifidobacterium animalis
subsp. Lactis V9 Wistar rats High-fat diet-induced

NAFLD 9 weeks

1. Decrease in ALT, AST, TLR4, and TLR9 levels, resulting
in alleviation of hepatic steatosis and liver damage

2. Reduction of serum glucose level, as well as hepatic
triglycerides and free fatty acids accumulation

3. Restoration of hepatic phosphorylated-AMPK and
PPAR-α levels, and reduction of SREBP-1c and

FAS expression
4. Attenuation of liver inflammation, by inhibiting

inflammatory cytokines synthesis (IL-6, IL-1β, TNFα)

[185]
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Table 3. Cont.

Probiotic Model Diet Duration Treatment Effects Reference

Lactobacillus acidophilus La5,
Bifidobacterium lactis Bb12 72 NAFLD patients 8 weeks

1. Decreasing of ALT and AST activity
2. Reduction of triglycerides and low-density lipoprotein

cholesterol serum levels, as well as total cholesterol
[186]

Multiprobiotic “Lactocare” (L.
casei, L. acidophilus, L.

rhamnosus, L. bulgaricus, B. breve,
B. longum, Streptococcus

thermophilus)

42 NAFLD patients 8 weeks 1. Decrease in TNFα and IL-6 expression, as well as FBS
and insulin [178]

Probiotics mixture
(Bifidobacterium, Lactobacillus,

and Enterococcus; Bacillus
subtilis and Enterococcus)

200 NAFLD patients 1 month

1. Improvement of GM composition, by inhibiting TNFα
expression and ameliorating adiponectin level

2. Decrease in ALT and AST serum levels
3. Amelioration of lipid metabolism and fatty liver

[157]

Multiprobiotic “Symbiter”
(Bifidobacterium, Lactobacillus,
Lactococcus, Propionibacterium,

Acetobacter)

58 NAFLD patients 8 weeks

1. Reduction of liver fat (↓total cholesterol and
↓triglycerides)

2. Decreasing of AST and GGT activity, as well as TNFα
and IL-6 expression

[182]

Lactobacillus paracasei DSM
24733, Lactobacillus plantarum

DSM 24730, Lactobacillus
acidophilus DSM 24735 and

Lactobacillus delbrueckii subsp.
bulgaricus DSM 24734,

Bifidobacterium longum DSM
24736, Bifidobacterium infantis

DSM 24737, Bifidobacterium breve
DSM 24732, and Streptococcus

thermophilus DSM 24731

30 NAFLD patients 12 months

1. Improvement of liver histology
2. Reduction in steatohepatitis

3. Decrease in ALP, AST, and ALT activity, as well as
endotoxins, TNFα, IL-1β, and IL-6 levels

[187]

Abbreviations: ALP: alkaline phosphatase; ALT: alanine aminotransferase; AMPK: AMP-activated protein kinase; AST: aspartate aminotransferase; CAT: catalase; CYP7A1: cholesterol
7 α-hydroxylase; FAS: lipogenic enzyme fatty acid synthase; FBS: fasting blood sugar; GPx: glutathione peroxidase; GGT: gamma glutamyl transferase; IL-1β: interleukin 1β; IL-6:
interleukin 6; IL-8R: interleukin 8 receptor; IL-18: interleukin 18; LDL-R: low-density lipoprotein receptor; LPS/TLR4: lipopolysaccharide/toll-like receptor 4; PPAR-α: peroxisome
proliferator-activated receptor α; SOD: superoxide dismutase; SREBP-1c: sterol-regulatory element binding protein-1c; TLR9: toll-like receptor 9; TNFα: tumor necrosis factor α.
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8. Other Therapeutic Options

As widely reported, GM modulation represents a valid approach to manage many
diseases, including NAFLD. In addition to probiotics, prebiotics, symbiotics, and the
so-called fecal microbiota transplant (FMT) represent other methods used to restore dysbio-
sis [188,189].

Prebiotics are “non-digestible food ingredients that beneficially affect the host’s health,
by selectively stimulating the growth and/or activity of beneficial bacteria in the gastroin-
testinal tract” [190]. Most of them are non-digestible fibers, such as fructo-oligosaccharides
(FOS), galacto-oligosaccharides (GOS), lactulose, inulin, and pectin [191]. They can prevent
diarrhea, as well as cancer, modulate the metabolism of the intestinal flora, stimulate
mineral adsorption, and have positive effects on lipid metabolism and immunomodula-
tory properties [192]. In addition, prebiotics can modulate the composition of GM, by
promoting the growth of beneficial microorganisms and reducing the number of Gram-
negative bacteria [193–195]. Some evidence showed that prebiotic supplementation can
prevent NAFLD development and progression [196,197]. Studies report that prebiotic
fructo-oligosaccharides restored normal gastrointestinal microflora and intestinal epithelial
barrier function, and decreased steatohepatitis in NASH model mice, while lactulose im-
proved hepatic inflammation and decreased ALT and AST serum level in NASH model
rats [198,199]. Moreover, a randomized, double-blind, placebo-controlled clinical trial
reported that Chlorella vulgaris can decrease serum glucose level and improve liver func-
tion and lipid profile in NAFLD patients [200]; further, in the same line, Javadi (2017)
showed that prebiotic inulin reduces AST and ALT levels, compared to placebo. How-
ever, they found no significant changes in the grade of fatty liver [201]. Finally, admin-
istration of oligofructose decreased ALT, AST, and insulin serum level in patients with
NASH [197]. Interestingly, some studies report the effects of prebiotics on the GM in elderly
people [202–204]. Two randomized, double-blind, placebo-controlled clinical trials show
that galacto-oligosaccharides mixture (B-GOS) increased the number of beneficial bacteria,
especially Bifidobacteria [202,203], as well as GOS supplementation [204].

Symbiotics are the combination of probiotics and prebiotics, where prebiotics favor the
proliferation of healthy probiotics microorganisms, thus creating a beneficial gastrointesti-
nal system, resulting in positive effects to the host’s health [188,192]. Symbiotics should
be created by selecting an appropriate combination of probiotics and prebiotics, in order
to promote the growth and survival of probiotics in the intestinal tract. Furthermore, the
symbiotic formula should be more effective compared to the activity of the individual com-
ponents [205]. Some studies report the beneficial effects of symbiotic supplementation in
biochemical and histological features of NAFLD [206–212]. Malaguarnera et al. found that
the combination of B. longum and FOS, together with lifestyle modification, reduces AST,
TNFα, and C-reactive protein (CRP) levels, HOMA index and serum endotoxin, as well
as decreases inflammation and steatosis, in 66 NASH patients [206]; moreover, a random-
ized, double-blind, placebo-controlled clinical trial showed that supplementation of seven
probiotic strains (L. casei, L. rhamnosus, S. thermophilus, B. breve, L. acidophilus, B. longum,
and L. bulgaricus) and FOS significantly reduced liver enzymes (ALT, AST, and GGT), and
inflammatory markers (TNFα, CRP, and total nuclear factor k-B p65) in 52 patients with
NAFLD [207]. Another randomized, double-blind, placebo-controlled clinical trial reported
that the combination of dietary fiber and L. reuteri reduced fibrosis, hepatic steatosis, and
serum levels of inflammatory markers in 50 lean patients with NAFLD [208]. Finally, in
a recent clinical trial (the INSYTE study), Scorletti (2020). observed that Bifidobacterium
animalis subsp. lactis BB-12 and FOS alter fecal microbiome, but do not reduce liver fat
content and markers of liver fibrosis [209]. Symbiotics have the ability to modulate the
GM of the elderly [213–215]. Two double-blind, placebo-controlled clinical trials report
that the mixture of Bifidobacterium bifidum BB-02, Bifidobacterium lactis BL-01, and inulin,
as well as mixture of Lactobacillus acidophilus NCFM and lactitol can increase the growth
of Bifidobacteria and Lactobacilli [213,215]; in addition, another clinical trial shows that the
combination of Bifidobacterium longum and inulin increased the number of Actinobacteria and
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Firmicutes, and decreased Proteobacteria [214]. Interestingly, Marìa Juàrez-Fernàndez et al.
observed the beneficial effect of the symbiotic combination of the NGP A. muciniphila and
quercetin on NAFLD, by modulating GM composition and bile acid metabolism [216].

Fecal microbiota transplant (FMT) is the process by which fecal material from healthy
donors is inserted into the intestine of patients with an altered GM, in order to restore it to
a stable state and thus treat specific diseases related to dysbiosis [217]. At present, FMT has
been used successfully in patients with recurrent Clostridum difficile infection, metabolic
syndrome, inflammatory bowel syndrome, and obesity [218], and could become an effective
therapeutic method for the treatment of NAFLD. It has been demonstrated that restoration
of a healthy GM with FMT treatment alleviated steatohepatitis in HFD model mice [219],
and restored portal hypertension, insulin resistance, and endothelial dysfunction in NASH
model rats [220]. To date, limited human studies have been conducted, and not all have
shown beneficial effects of FMT in the treatment of NAFLD. For instance, a double blind,
randomized, controlled proof-of-principle study reported that allogenic donor FMT in
individuals with hepatic steatosis produced beneficial changes in hepatic gene expression
and in metabolites involved in inflammation and lipid metabolism [221]; in addition,
another randomized, controlled trial shows that allogenic FMT in patients with NAFLD
can reduce small intestinal permeability, but do not improve insulin resistance nor reduce
hepatic fat fraction [222].

9. Conclusions

NAFLD is a common liver disease, especially widespread among elderly people with
metabolic disorders, which is characterized by excessive fat accumulation in hepatocytes.
Several experimental studies conducted both in aged animals, (in which the pathological
symptoms of the disease are induced by high-fat and MCD diets) and in adult patients with
NAFLD, have highlighted the presence of an altered GM, compared to the one observed
in healthy people. In elderly people, the GM is characterized by a particular microbial
signature (increase in Gram-negative bacteria and pathobionts, with a consequent release
of endotoxins and LPS, and reduction in Gram-positive microorganisms), and this altered
GM seems to play a relevant role in promoting the pathogenesis of NAFLD. In fact, the
intestinal dysbiosis, together with a high level of OS, determines an increase in the intestinal
permeability with a consequent release of ROS, endotoxins, and LPS into the bloodstream.
All together, these events lead to an increased susceptibility to develop the disease and
favor its progression into NASH. Therefore, as several experimental studies and clinical
trials highlight, the restoration of the altered GM to a healthy state could be a new beneficial
weapon to manage NAFLD. Probiotics supplementation, alone or in combination with
NAFLD traditional treatments, could then represent a new therapeutic approach capable
of reinstating a balanced intestinal flora, even if their synergic action is not yet well known.
Indeed, although probiotics have been used for decades to prevent or treat some disorders,
to date, their efficacy in counteracting or alleviating NAFLD has not yet been fully explored.
In fact, although promising, both preclinical researches and randomized controlled trials
are still few to demonstrate therapeutic efficacy in NAFLD management. Moreover, more
studies are required, on one side, to better clarify the precise role of the altered GM in the
pathogenesis of this hepatic disease, and on the other, to find the most effective probiotic
strains that can be used, the dosage to be administered, and the duration of the treatment.
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