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Abstract

The human brain undergoes both morphological and functional modifications across the human lifespan. It is im-
portant to understand the aspects of brain reorganization that are critical in normal aging. To address this question,
one approach is to investigate age-related topological changes of the brain. In this study, we developed a brain
network model using graph theory methods applied to the resting-state functional magnetic resonance imaging
data acquired from two groups of normal healthy adults classified by age.We found that brain functional networks
demonstrated modular organization in both groups with modularity decreased with aging, suggesting less distinct
functional divisions across whole brain networks. Local efficiency was also decreased with aging but not with
global efficiency. Besides these brain-wide observations, we also observed consistent alterations of network prop-
erties at the regional level in the elderly, particularly in twomajor functional networks—the default mode network
(DMN) and the sensorimotor network. Specifically, we found that measures of regional strength, local and global
efficiency of functional connectivity were increased in the sensorimotor network while decreased in the DMN
with aging. These results indicate that global reorganization of brain functional networks may reflect overall to-
pological changes with aging and that aging likely alters individual brain networks differently depending on the
functional properties. Moreover, these findings highly correspond to the observation of decline in cognitive func-
tions but maintenance of primary information processing in normal healthy aging, implying an underlying com-
pensation mechanism evolving with aging to support higher-level cognitive functioning.
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Introduction

The topological aspects of human brain functional
networks have drawn much attention in recent years.

By modeling a large-scale brain network as a graph consist-
ing of nodes (i.e., cortical and subcortical brain regions) and
links (i.e., functional or anatomical connections among
brain regions) (Rubinov and Sporns, 2010), it is possible
to construct a systematic, topological examination of brain
functional or anatomical organization. This concept high-
lights the idea of understanding the complex brain system
from information about how individual voxels or brain re-
gions interact via functional or structural connections. Fur-
thermore, rather than ascribing significant group differences
or effects to particular voxels, as is historically done in
functional neuroimaging, this concept also helps us better

understand how the brain network as a whole is organized
in different populations.

Graph-theory-based complex network analysis approach
provides a powerful way of understanding the dynamic interac-
tions of different brain regions and how these interactions pro-
duce complex behaviors. Graph metrics such as modularity,
local efficiency, global efficiency, and strength measures are
often used to characterize brain network properties, especially
for group comparison. Modularity, in particular, is a ubiquitous
property of complex, large-scale functional brain networks.
Modules consist of densely intraconnected brain regions that
are sparsely inter-connected with regions in other modules
(Newman and Girvan, 2004). Modular organization may repre-
sent stable subcomponents of the brain that facilitate the con-
struction of a complex system from simple building blocks,
and can be theoretically linked to network development
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(Alexander-Bloch et al., 2010), which has provided insights
into abnormal brain development, neuropsychological condi-
tions (Alexander-Bloch et al., 2014; Peng et al., 2014; Xu
et al., 2013), and age-related neurodegenerative diseases
(Gottlich et al., 2013; Kikuchi et al., 2013). Therefore, in this
study, we hypothesize that the brain functional modular struc-
ture can be affected by aging and that age-related changes in
modularity can be revealed by graph theory analysis.

Previous studies on human brain aging have shown shrink-
age of the adult brain as it ages, with a reported nonuniform
pattern of changes in gray and white matter (WM) (Raz et al.,
2005). These structural changes provide a fundamental basis
for the hypothesized functional brain reorganization in rela-
tion to normal aging. Furthermore, previous graph theoreti-
cal analysis showed a substantial correspondence between
structural connectivity and resting-state functional connec-
tivity (RSFC) measured in the same subjects based on func-
tional magnetic resonance imaging (fMRI) and diffusion
spectrum imaging data (Hagmann et al., 2008). Here, we
test the hypothesis that the normal modular structure of func-
tional brain networks might be altered with aging along with
potential changes in functional connectivity measures such
as local efficiency, global efficiency, and strength. We fur-
ther assessed these metrics at the local regional level for
group comparison, which provides a finer-grained analysis
of changes in network properties associated with aging.

Materials and Methods

Data acquisition

Participants were 26 younger adults (age 24.6– 3.3 years, 11
women) and 24 older adults (age 58.0– 6.1 years, 12 women)
with no history of neurological or psychological disorders.
Ten-minute resting-state fMRI scans were acquired from
each subject as they rested with their eyes fixated on a cross
projected to the center of a MR-safe screen. Imaging data
were obtained on a 3.0 Tesla whole-body MRI scanner (DIS-
COVERYMR750;General ElectricMedical Systems,Wauke-
sha, WI) with an 8-channel receive-only RF head coil array.
This study was approved by the University of Wisconsin-
Madison Health Sciences Institutional Review Board. Written
informed consent was provided by each participant.

T1-weighted structural images with 1mm isotropic voxels
were acquired axially with an MPRAGE sequence (TR=

8.132ms, TE= 3.18ms, TI= 450ms, flip angle= 12�, field of
view= 256· 256mm2, matrix size= 256· 256, slice thick-
ness= 1mm, and number of slices= 156). Echo planar imaging
data were collected in the sagittal plane with the following
parameters: TR = 2.6 sec, TE = 22ms, flip angle = 60�, field
of view = 224 · 224mm2, matrix size = 64 · 64, slice thick-
ness= 3.5mm, number of slices= 40 slices, and 231 volumes.

Data processing

Resting-state fMRI data were processed in AFNI (Cox,
1996), including the following initial preprocessing steps: (1)
despiking to remove extreme outliers in the signal intensity
time courses, (2) correcting for motion and slice timing, and
(3) removing first three time points of the scan (total 231 time
points). T1-weighted structural images were warped to standard
MNI space using a 12-parameter affine transformation. This
transformation was combined with the T1-to-EPI alignment

and used to map the functional EPI scans to MNI space with
a resampling of 3mm resolution. The resulting structural images
were later skull stripped and segmented into gray matter, WM,
and cerebrospinal fluid (CSF) masks using FSL (Smith et al.,
2004). The average signal time course from the WM and
CSF masks and the six rigid body motion parameters were nor-
malized and regressed out. The residuals from the functional
data were spatially smoothed with a 4mm2 full-width half max-
imum isotropic Gaussian kernel in AFNI and then temporally
filtered with a band-pass from 0.01 to 0.1Hz.

Head motion has been shown to significantly affect the
RSFC measures (Saad et al., 2009; Satterthwaite et al.,
2012; Van Dijk et al., 2012). Therefore, a secondary motion
correction was performed to exclude certain time frames
with motion above a more stringent threshold. A score of
motion measurement corresponding to each time frame of
fMRI scan was calculated as the square root of the sum
of squares of the derivatives (SSD) of the six time courses
of the motion parameters (Birn et al., 2013; Jones et al.,
2010; Meier et al., 2012). In this study, any time frame asso-
ciated with a score of SSD greater than 0.2mm was censored
and later excluded using the censor option provided in the
AFNI program, 3dDeconvolve. This option essentially per-
formed zero-filling to maintain the same sampling rate and
the same length of time series for each subject. To further
eliminate group differences in motion contaminating func-
tional connectivity assessments, we matched subjects from
the two age groups with their average motion SSD across
all these time points. This process resulted in two subgroups
with 16 subjects in each subgroup. Several younger sub-
jects with small average motion SSD and several older sub-
jects with relatively greater average motion SSD had to be
removed in order to match the average motion for the two
subgroups. The younger subgroup had an average motion
SSD of 0.055 – 0.018mm, and the older subgroup had an
average motion SSD of 0.058– 0.019mm. There was no signif-
icant group difference in terms of the average motion SSD
(two-sample t-test, p-values=0.39). The younger subgroup
(ages 24.6– 3.5 years, five women) and older subgroup (ages
56.5–5.3 years, eight women) showed significant age differ-
ences (two-sample t-test, p-value<0.00001), but no significant
differences in gender (the chi-square test, p-value=0.47). Our
findings presented here were based on data from these two
subgroups.

Resting-state functional connectivity

The RSFC was computed from 187 different brain regions
defined within the sensorimotor, cingulo-opercular task control,
fronto-parietal task control, dorsal/ventral attention, default
mode network (DMN), salience network and subcortical/
cerebellar network (Power et al., 2011). In each of these brain
regions, signals resulting from the processed functional data
were extracted and averaged over a spherical region of interest
(ROI) with a radius of 4mm. Pearson correlation coefficient (rij)
was calculated for the ith and jth ROI. This generated a
187·187 adjacency matrix, M, for each subject, which served
as the RSFC matrix for each subject within each group.

Thresholding brain networks

Thresholding an RSFC matrix is critical for obtaining a
sparse adjacency matrix in that it should be optimal and
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contain not too little functional connections for detecting
group differences but not too many functional connections
that it may dilute group differences. The most commonly
used approach for thresholding is to globally threshold the
RSFC matrix at a fixed threshold, q, for any rij between
�1 and 1. If rij ‡ q, the corresponding element of the adja-
cency matrix, Mij, is kept for the actual value of rij for a
weighted adjacency matrix or is set to be 1 for a binary ad-
jacency matrix. If rij < q, then Mij is set to be 0 for both
weighted and binary matrices. Note: except for strength,
measures of modularity, local and global efficiency were
computed using the binary adjacency matrix. One potential
problem with this global thresholding method is that once
thresholded, the sparse matrices are not fully connected
from node to node (Alexander-Bloch et al., 2010). This dis-
connectedness of the resulting graphs may ultimately change
the properties of the original global and local functional
connectivity, which may bias the comparisons of graph-
theoretic metrics between different groups of subjects.

In this study, we anticipated that this might be a factor af-
fecting our observations in age-related differences in RSFC,
and used a minimum spanning tree (MST) method in order to
preserve fully connected brain graphs (Achard et al., 2012;
Alexander-Bloch et al., 2010). In this study, each MST per
subject is a spanning tree of a weighted subgraph that is
fully connected with all nodes having a maximum total
weight of all links. Although the MST sparsely represents
a ‘‘skeleton structure’’ of the brain graph, it does not form
clusters or loops at the regional level that keeps it from a bi-
ologically meaningful sparse representation (Alexander-
Bloch et al., 2010). To obtain a sparse, fully connected,
and biologically meaningful graph, we added extra links to
the MST from the remaining adjacency matrix. To do so,
for each final sparse adjacency matrix, we added top 2–
40% of the remaining links to the MST, respectively, to in-
clude the highest proportion of the remaining functional
connectivity. This ensured that each final graph per subject
had an equal number of links, and, thus, observations on age-
related group differences were independent of number of
functional connections. Several values of the threshold were
tested in order to examine the effect of different proportional
thresholding on aging-related group differences. Thresholds
from 2% to 40% were chosen based on the reasons that (1)
the network measures are relatively constant over this range
(Alexander-Bloch et al., 2010); (2) graphs become more ran-
dom above a threshold level of 50% (Humphries et al., 2006).
Current findings are based on thresholds from 2% to 8%
at 2% intervals; results obtained from thresholds of 10% to
40% at 10% intervals can be found in the Supplementary
Materials (Supplementary Figs. S1–S10; Supplementary
Data are available online at www.liebertpub.com/brain).

Measures of graph metrics

Graph metrics, including modularity, local and global effi-
ciency, and strength, were estimated using the Brain Connec-
tivity Toolbox (Rubinov and Sporns, 2010) with adaptation
made for nodal or regional-level calculation. Previous studies
have reported age-related changes in connectivity and network
measures on a global or brain-wide level (Alexander-Bloch
et al., 2010; Geerligs et al., 2014; Meunier et al., 2009a). In
this study, network measures were estimated at global and re-

gional level, thus enabling an examination of age-related
changes in functional connectivity at a brain-wide level and
at regional level for a finer-grained analysis. Global-level
graph metrics were estimated by averaging each measure
across all nodal regions and across all subjects in each
group; regional level measures, except for modularity, were
estimated for each node averaging across all subjects within
each group. Statistical group comparison was conducted for
each graph metric at each threshold using the Wilcoxon
rank sum test.

Modularity is a global measure of how well a network can
be decomposed into a set of sparsely interconnected but
densely intraconnected modules (Newman, 2004) and can
be a valuable tool in identifying the functional blocks within
the brain network. The optimal modular structure for a given
network is typically estimated with optimization algorithms
rather than computed exactly (Danon et al., 2005; Rubinov
and Sporns, 2010). In this study, network modularity was es-
timated via a two-step approach to achieve an optimal mod-
ule division, similar to the one applied in other studies
(Geerligs et al., 2014; Rubinov and Sporns, 2011). Modular-
ity was first estimated using the Newman–Girvan algorithm
(Newman, 2006a, 2006b). Each module is extracted as a
group of nonoverlapping nodes by maximizing the number
of within-module links and minimizing the number of
between-module links among those nodes. Since the optimal
community structure and maximized modularity may vary
from run to run due to heuristics in the algorithm (Rubinov
and Sporns, 2010), this step was repeated 500 times. In the
second step, all previously detected community structures
were refined using a fine-tuning algorithm (Rubinov and
Sporns, 2010; Sun et al., 2009) with a maximum 500
times’ iteration. Once an optimal modular structure of the
network has been identified, it is possible to assign topolog-
ical roles to each node based on its density of intra- and inter-
modular connections (Guimera et al., 2005). Therefore,
intramodular connectivity of each node was measured by
the normalized intramodular degree, that is, the within-module
degree z-score (Rubinov and Sporns, 2010). The within-
module degree z-score is large for a node that has a large
number of intramodular connections relative to other nodes
in the same module. We used the measure of within-module
degree z-score to identify those ‘‘hub’’ nodes with high intra-
modular connectivity and examined the age-related changes
in these functionally important regions.

Local efficiency is a measure of information transfer in the
immediate neighborhood of each node, indicating to what
extent connections are being segregated into subnetworks
(Achard et al., 2012), while global efficiency is a measure
of information propagating in the whole network, indicating
to what extent connections are being integrated into a whole
brain-wide network (Rubinov and Sporns, 2010). These two
measures are based on a pre-estimation of the minimum path
length. For the local efficiency, the minimum path length is
estimated as the shortest path length from node i to its nearest
neighbor node j in the subgraph they both belong to. For the
global efficiency, the minimum path length is estimated as
the shortest path length from node i to all other nodes j in
the whole graph.

The strength of functional connectivity of each node is mea-
sured as the mean value of weights (i.e., cross-correlation
coefficients) of all functional connections linking to the
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node. It provides an estimation of the functional importance
of each node.

Measures of alteration of graph metrics

Age-related topological changes are different across brain
locations and networks. These patterns of changes cannot be
truly reflected with a solely brain-wide examination. How-
ever, it might be visualized by plotting, for a given graph

metric, the mean value at each node in the younger group
versus the difference between the older and younger groups
at each node. This approach was originally reported and used
for detecting functional network changes in comatose pa-
tients, and the gradient of a straight line fitted to the data
was referred to as a hub disruption index, j (Achard et al.,
2012). In this study, the hub disruption index for a given
graph metric, for example, strength, was constructed by sub-
tracting the younger group mean nodal strength from the

FIG. 1. Adjacency matri-
ces shown at threshold of 8%
(Young—upper panel,
Older—bottom panel). Func-
tional networks are illustrated
using adjacency matrices.
Rows and columns denote the
187 nodes, and each element
of the matrix denotes a link
between the corresponding
nodes. Square blocks from the
top left to the bottom right
along the main diagonal rep-
resent the sensorimotor (red;
35 regions), cingulo-opercular
task control (orange; 14 re-
gions), fronto-parietal task
control (gold; 25 regions),
dorsal/ventral attention (ma-
genta, 20 regions), default
mode network (DMN; me-
dium blue, 58 regions), sa-
lience network (royal blue;
18 regions), and subcortical/
cerebellar (green; 17 regions)
network. Elements within
each block represent within-
network functional connec-
tions and elements outside
blocks represent between-
network connections.
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mean strength of the corresponding node in the older group
and plotting this group mean difference against the younger
group mean. This transformation improves visualization of
the age-related differences in the profile of regional network
properties.

Results

Altered modularity with aging

The functional networks representing patterns of cross-
correlations between resting-state fMRI signals are illus-
trated using their adjacency matrices (Fig. 1). Rows and col-
umns in these matrices denote the 187 nodes, while elements
of each matrix denote links or the cross-correlations between
the corresponding nodes. Major functional networks from
the younger (top panel) and older (bottom panel) groups

are represented along the main diagonal of adjacency matri-
ces. From the top left to the bottom right along the main di-
agonal in Figure 1, the square blocks represent the functional
network of the sensorimotor, cingulo-opercular task control,
fronto-parietal task control, dorsal/ventral attention, DMN,
salience network, and subcortical/cerebellar network.

At the global level, we observed that the mean modularity
was reduced in the older group compared with the younger
group over a range of different connection densities (Fig.
2a). The older group showed a higher variance of modularity
across subjects compared with the younger group. Besides
age-related differences in modularity between groups, both
groups had mean values of modularity greater than 0.3 that
were indicative of nonrandom community structure (New-
man and Girvan, 2004). This further suggested the presence
of modular structure of functional brain networks across the
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FIG. 2. (a)Modularity (Young—red; Older—blue). (b) Global efficiency (Young—red; Older—blue). (c) Local efficiency
(Young—red; Older—blue). (d) Strength (Young—red; Older—blue). The older group (blue lines) showed decreased mod-
ularity and local efficiency compared with the young group (red lines) across a range of thresholds (i.e., connection density).
Group comparison was tested using the Wilcoxon rank sum test with a p-value of significance shown at each threshold. No
significant group difference was observed in the global efficiency and the strength of functional connectivity.
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adult lifespan. For both groups, modularity declined mono-
tonically as a function of increasing connection density
(Fig. 2a).

At the nodal level, a negative hub disruption index was
consistently observed for the measure of within-module de-
gree z-score across different connection densities (Fig. 3).
Nodes that had dense intramodular connections in the youn-
ger group (i.e., left anterior cingulate cortex [ACC] and left
angular gyrus [AG]) were sparsely connected to other nodes
within the same module in the older group, whereas nodes
which had fewer intramodular connections in the younger
group (i.e., right precentral gyrus [PCG]) were densely con-
nected to other nodes within the same module in the older
group.

Altered efficiency of functional connectivity with aging

At the whole-brain level, global efficiency was not signif-
icantly different between the two groups (Fig. 2b) with hub
disruption indices close to zero (Fig. 4), while local effi-
ciency was significantly reduced in the older group over a
range of different connection densities (Fig. 2c). The older
group also showed a higher variance of local efficiency com-
pared with the younger group. Besides age-related differ-

ences in efficiency measures between the two groups, we
observed that efficiency increased monotonically as a func-
tion of increasing connection density (Fig. 2b, c) for both
groups.

At the nodal level, we observed markedly different pat-
terns of age-related changes in network efficiency depending
on the functional properties of individual brain regions. Both
global and local efficiency was decreased in the DMN but in-
creased in the sensorimotor network (Figs. 4 and 5 and Sup-
plementary Figs. S11 and S12). Our results also showed a
negative hub disruption index for the measure of local effi-
ciency (Fig. 5), suggesting a potential age-induced exchange
of a hub region with a nonhub region or vice versa.

Altered functional connectivity strength with aging

At the global level, the older group showed higher func-
tional connectivity strength but not significantly different
from the younger groups (Figs. 2d and 6). At the global
level, the hub disruption index of strength was 0.03, 0.11,
0.16, and 0.19 for thresholds of connection density at 2%,
4%, 6%, and 8%, respectively (Fig. 7). Small positive val-
ues of the hub disruption indices correspond to the slightly
higher functional connectivity strength observed in Figures

FIG. 3. Hub disruption index of within-module functional connectivity. The hub disruption index of within-module func-
tional connectivity is plotted at each threshold of connection density. Each data point is color coded representing a node be-
longing to a particular functional network (i.e., red dots represent nodes belonging to the sensorimotor network, and blue dots
represent nodes belonging to the DMN). The mean value of within-module degree z-score of each node in the younger group
<Young > (x-axis) is plotted against the difference between groups in the mean value of within-module degree z-score of
each node <Older > - <Young > (y-axis). A node with a high number of connections within a module (i.e., measured as with-
in-module degree z-score) in the younger group showed an abnormal reduction of connections in the older group, for exam-
ple, the left anterior cingulate cortex (ACC) and left angular gyrus (AG) from the DMN, whereas a node with a few within-
module connections in the young group showed an abnormal increase of connections in the older group, for example, the right
precentral gyrus (PCG) from the sensorimotor network. The solid black line represents a linear regression fitting to the data, and
the slope of the line is defined as the hub disruption index, j (Achard et al., 2012). The negative hub disruption index across
different levels of thresholding suggested an overall disruption of global modularity in the older group.
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2d and 6. At the regional level, we observed prominent
group differences in the DMN and the sensorimotor net-
work (Fig. 7). Within the DMN, we found decreased within-
network strength (Fig. 8a) and a negative hub disruption
index (Fig. 9) with aging. In contrast, we found increased
strength within the sensorimotor network (Figs. 8b and
10a) and an overall increase in functional connectivity
strength between the sensorimotor network and all other
networks (Fig. 10b), particularly between the sensorimotor
and attention networks (Fig. 10c).

Age-related reorganizational changes in functional

brain networks

Brain reorganization with aging undergoes dynamic
changes across different functional brain networks. We further
conducted a secondary analysis to quantify the changes in each
brain network using strength and degree (Supplementary Figs.
S13 and S14). Degree is a binary measure of functional con-
nectivity and is estimated as the number of functional connec-
tions that survived thresholding. These two measures provide

FIG. 4. Hub disruption
index of global efficiency. In
the figure, each black hori-
zontal line represents equiv-
alent global efficiency for the
older group versus the youn-
ger group. The hub disruption
index of global efficiency
was close to zero. However,
nodes belonging to the sen-
sorimotor network (red)
showed increased global ef-
ficiency consistently, while
nodes belonging to the DMN
(medium blue) showed de-
creased global efficiency
consistently.

FIG. 5. Hub disruption
index of local efficiency. The
hub disruption index of local
efficiency is plotted at each
threshold of connection den-
sity. The mean value of local
efficiency of each node in the
younger group <Young> (x-
axis) is plotted against the dif-
ference between groups in
mean local efficiency of each
node <Older> -<Young>
(y-axis). The hub disruption
index of local efficiency was
estimated as the gradient of
the solid black line fitted to the
scatterplots. Negative hub
disruption indices were ob-
served across different thresh-
olds, indicating an overall
disruption of local efficiency
in the older group. The senso-
rimotor network (red dots) and
the DMN (blue dots) are the
two most distinguishable net-
works showing consistent
disruption.

668 SONG ET AL.



complementary aspects of network organization. Proportional
tests were used to compare the proportions of strength and de-
gree of each network to the total strength and degree in whole-
brain networks, respectively. FDR correction was applied for
multiple comparisons (Benjamini and Hochberg, 1995).

We again observed distinct patterns of age-related reorgani-
zation in the DMN and the sensorimotor network (Supplemen-

tary Figs. S13 and S14 and Table 1). Within the DMN (i.e.,
elements within the square block of the RSFC matrices repre-
senting the DMN), both the strength (adjusted p-value=0.024;
Supplementary Fig. S13a) and degree (adjusted p-value=
0.0005; Supplementary Fig. S14a) significantly decreased
with aging. In contrast, within the sensorimotor network,
both the strength (adjusted p-value= 0.024; Supplementary

FIG. 6. Distribution of
functional connectivity
strength (Young—red;
Older—blue). The figure il-
lustrates the distribution of
functional connectivity
strength compared between
the two groups (histogram
with a gamma distribution fit;
older group—blue lines;
young group—red lines).

FIG. 7. Hub disruption
index of strength. In the fig-
ure, each black horizontal
line represents equivalent
function connectivity
strength estimated for the
older group versus the youn-
ger group. However, nodes
belonging to the sensorimotor
network (red) showed in-
creased strength consistently,
while nodes belonging to the
DMN (medium blue) showed
decreased strength.
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Fig. S13a) and degree (adjusted p-value=0.005; Supplemen-
tary Fig. S14a) significantly increased with aging. Between net-
works (i.e., the off-diagonal elements of the RSFCmatrices), no
significant age-related changes were observed in functional
strength of between-network connections. However, the num-
ber of functional connections between the sensorimotor and
all other networks significantly increased with aging (adjusted
p-value<0.00001; Supplementary Fig. S14b, c). We also ob-
served significantly increased between-network connections in
the subcortical network (adjusted p-value= 0.005) in the older
group (Supplementary Fig. S14b, c). The older group showed
a significantly decreased proportion of between-network

connections in both the frontal-parietal and salience net-
works (adjusted p-value < 0.01; Supplementary Fig. S14b, c).

Discussion

In this study, we used the correlations derived from the
resting-state fMRI BOLD signals to develop a network
model of the brain in two representative groups of healthy in-
dividuals. Graph-theory based network analysis was applied
to examine age-related brain network reorganization. We
found that similar to other studies (Bassett et al., 2010; Geer-
ligs et al., 2014; Meunier et al., 2009a; 2009b), the functional
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FIG. 8. Age-related changes in functional connectivity strength. (a) Within the DMN (Young—red; Older—blue). (b)
Within the sensorimotor network (Young—red; Older—blue). Differences of functional connectivity strength within the
DMN (a) and the sensorimotor network (b) between the older (blue lines) and younger group (red lines) are plotted across
different thresholds of connection density. Significantly decreased strength within the DMN ( p-value £ 0.0001) and increased
strength within the sensorimotor network ( p-value < 0.01) was observed in the older group (Wilcoxon rank sum test).

FIG. 9. Hub disruption
index of strength–DMN. For
all nodes belonging to the
DMN, the mean value of
strength of each of these
nodes in the younger group
<Young > (x-axis) is plot-
ted against the difference
between groups in mean
strength of each node
<Older> -<Young> (y-axis).
The hub disruption index
of strength was estimated
as the gradient of the solid
black line fitted to the scat-
terplots. The left angular
gyrus (AG), left ACC, and
the right precuneus strongly
connected to all other nodes
within the DMN in the
younger group, and showed
reduced regional strength in
the older group.
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brain networks of both groups exhibited modular organiza-
tion (Fig. 1). Graph theoretical work has shown that the
human brain consists of modular structures (Bassett et al.,
2010; Meunier et al., 2009b) which are altered in different
clinical conditions such as Schizophrenia (Alexander-
Bloch et al., 2010), Alzheimer’s disease (AD) (Brier et al.,

2014), and in normal aging (Geerligs et al., 2014; Meunier
et al., 2009a). This study was partly motivated by a recent
work exploring brain network topology in comatose patients
(Achard et al., 2012) based on graph metrics estimated from
each individual brain region in the network. We adopted a
similar approach to conduct a finer-grained analysis of

FIG. 10. Changes in func-
tional strength in the sensori-
motor network. (a) Within
the sensorimotor network.
The red horizontal line rep-
resents equivalent strength
within the sensorimotor net-
work estimated for the older
group versus the younger
group. The majority of sen-
sorimotor regions showed
increased strength in the
older group (i.e., above the
horizontal zero line) such as
the PCG, showing strength-
ened connections in the older
group. (b) Between the sen-
sorimotor network and all
other networks. Group dif-
ferences of functional con-
nectivity strength between
the sensorimotor network and
all other networks are plotted
across different thresholds of
connection density (older
group-blue line, younger
group-red line). Significantly
increased strength between
the sensorimotor and all other
networks ( p-value< 0.01)
was observed in the older
group (Wilcoxon rank sum
test). (c) Hub disruption be-
tween the sensorimotor net-
work and all other networks.
The figure shows age-related
regional changes in func-
tional connectivity strength
between the sensorimotor and
all other networks. Positive
hub disruption indices are
indicated by the slope of the
solid black line fitted to each
scatter plot. The dorsal/ven-
tral attention network (ma-
genta) showed strengthened
connections to the sensori-
motor network.
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changes in brain functional reorganization associated with
aging along with a systematic brain-wide network analysis.
These findings are summarized in Table 2.

Thresholding effect on brain network analysis

Several levels of threshold were tested in order to examine
the effect of different proportional network thresholding on
aging-related group differences. One way to control the
thresholding effect is by evaluating the modularity measure.
We observed both groups showing minimal values of modu-
larity greater than 0.3 by the threshold level of 8% with total
187 brain regions, which were indicative of nonrandom com-
munity structure (Newman and Girvan, 2004). In addition,
modularity and local efficiency were significantly different
between the two groups at a threshold level of 2% to 4%.
Therefore, in this study, with 187 brain regions and the
MST method, a threshold level of top 2% to 4% of connec-
tions with the highest functional strength provided a clear
picture of network differences between the young and old
groups.

Modularity decreases with healthy aging

The modular organization of human brain has been dis-
cussed in previous and recent studies (Eccles, 1981;
Gomez-Robles et al., 2014; Szentagothai, 1975). Several
studies have reported that the modular organization could
be affected under neuropsychological conditions and disor-
ders, including depression (Peng et al., 2014), Schizophrenia
(Alexander-Bloch et al., 2014), epilepsy (Xu et al., 2013),
and age-related neurodegenerative diseases such as Parkin-
son’s disease (Gottlich et al., 2013) and AD (Kikuchi
et al., 2013). One study also observed age-related alterations
in the modular organization using cortical thickness analysis
(Chen et al., 2011). Therefore, in our study, we hypothesized
that the brain functional modular structure can be affected by
aging. We further observed a reduced modularity in the older
group (Fig. 2a). This age-related decline in modularity indi-
cates a less differentiated functional modular structure asso-
ciated with aging. This alteration could be due to two main
factors—an increase in intermodular connections or a de-
crease in intramodular connections or a mix of the two fac-
tors. To further test this, we used the measure of hub

FIG. 10. (Continued).

Table 1. Age-Related Network Reorganization

in the Sensorimotor and Default Mode Network

Within-network Between-network
Network
measures DMN Sensorimotor DMN Sensorimotor

Strength Y [ / /
Degree Y [ / [

Arrows indicate directional changes of network measures with
aging.

DMN, default mode network.

Table 2. Age-Related Network Reorganization

Network measures Effect of aging

Modularity Y
Local efficiency Y
Global efficiency /
Strength /

Arrows indicate directional changes of network measures with
aging.
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disruption index to quantify the within-module functional
connectivity at the regional level. We found a consistent re-
gional alteration of modularity in the older group over a
range of different thresholds (Fig. 3). Brain regions, such
as left ACC and left AG as a part of the DMN, which had
dense within-module connections in the younger brain net-
works, had fewer within-module connections in the older
group, whereas regions, such as right PCG, a part of the sen-
sorimotor network, which were sparsely connected to other
regions within a module in the younger group, were densely
connected in the older group. This regional alteration can be
explained as the exchange of high-degree hub regions to low-
degree nonhub regions or vice versa due to the effect of
aging. This alteration of the order of importance of specific
cortical regions within the same module indicates that al-
though the whole-brain network could be equally well
decomposed into a set of modules in both groups, especially
at higher thresholds (i.e., modularity was not significantly
different between the two groups at threshold > 6%), func-
tional identity of individual brain regions comprising specific
modules might have markedly changed due to the effect
of aging.

Interestingly, although we observed an overall reduction
of within-module functional connections in the older
group, the total strength of functional connectivity seems in-
creased in the older group (Fig. 6), although not reaching sta-
tistical significance. To further explore this, we constructed a
group-level whole-brain network by averaging each individ-
ual network across all subjects within each group and then
calculated the strength and the number of within-network
connections and between-network connections. Results pre-
sented here are based on a threshold level of top 2%. We
found that the older group had fewer within-network connec-
tions but more between-network connections compared with
the younger group (Table 3). This suggests that whole-brain
level increased functional connectivity between networks,
which might be related to the over-activations in the elderly
caused by less efficient use of neural resources (Geerligs
et al., 2014; Morcom et al., 2007; Rypma et al., 2007). A de-
tailed group comparison of strength and degree for each in-
dividual network can be found in the Supplementary
Figures S13 and S14.

Reduced local efficiency but stable global

efficiency with aging

Local efficiency was decreased in the older group (Fig. 2c),
while global efficiency was not affected by aging (Fig. 2b).
Local efficiency is a measure of local information process-
ing. As discussed earlier, the whole brain-wide reduction of
within-module connections in the elderly might lead to an

over-recruitment of brain regions in order to process the
seemingly overwhelming incoming information, which leads
to less efficiency (Morcom et al., 2007; Rypma et al., 2007).
However, global efficiency is statistically stable between the
two groups. This might be due to the equivalent amount of
shortest path length for long-distance information processing
in both groups (aided by the counterbalance of less within-
network connections but more between-network connections
in the older group). This observation has some bearing on the
neural bases for the pervasive age-related slowing effects on
cognitive performance based on the processing-speed theory
(Salthouse, 1996). This theory suggests that cognitive perfor-
mance is degraded when processing is slow, because relevant
operations cannot be successfully executed in limited time.
This might be reflected by age-related reduction in local effi-
ciency, which constrains the efficiency or effectiveness of
specific processes of local information transfer. However,
some relevant limitations may be partially overcome by ex-
perience, as one view of expertise is that it serves to circum-
vent processing constraints or limitations (Salthouse, 1991),
which may be associated with the stable measurement of
global efficiency observed in both age groups. At the regional
level, local efficiency tends to decrease with a negative hub dis-
ruption index (Fig. 5), which is consistent with the brain-wide
decreased local efficiency. Global efficiency examined at the
regional level does not show significant group differences
(Fig. 4). However, both regional measures demonstrate dis-
tinct patterns of alteration in two important functional net-
works—the DMN and the sensorimotor network, which
highlights the importance of examining brain reorganiza-
tion at the regional level as brain regions making up the
different functional modules undergo different changes
that may not be observed at the brain-wide level. Meas-
ures of local efficiency and global efficiency are decreased
in the DMN but increased in the sensorimotor network
(Figs. 4 and 5 and Supplementary Figs. S11 and S12).

The DMN is a nonhuman-specific intrinsic functional net-
work, active all over the life from birth until aging where it
is progressively modified, sensitive to different pathologies,
including AD, multiple sclerosis, and mild cognitive impair-
ment (MCI), and is known for its role in supporting high-
level cognitive functions (Gili et al., 2011; Mevel et al.,
2010). The reduced efficiency in both local and global infor-
mation processing in the DMN in relation to aging directly
reflects a decreased functional connectivity as observed in
previous studies (Damoiseaux et al., 2008; Hafkemeijer
et al., 2012) and in our study (Fig. 8a). The decrease in func-
tional connectivity leading to a decreased local and global ef-
ficiency may lead to the commonly observed age-related
cognitive decline in patients with MCI and in the early stages
of AD, two clinical conditions in which DMN shows

Table 3. Group Comparisons of Strength and Degree from Whole-Brain Network Analysis

Strength Degree

Within network Between network Total Within network Between network Total

Young 234.34 118.07 352.41 1822 1781 3603
Older 211.58Y 146.32[ 357.90[ 1642Y 2186[ 3828[

Arrows indicate directional changes of network measures with aging.
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decreased functional connectivity (Greicius et al., 2004; Sorg
et al., 2007). The sensorimotor network, associated with pri-
mary information processing, showed increased local and
global efficiency. This finding is consistent with the hypoth-
esis that cognitive systems should compensate in aging for
the general decline in sensorimotor abilities (Li and Linden-
berger, 2002; Seidler et al., 2010) as well as decreased func-
tional connectivity and efficiency in DMN.

Altered functional connectivity in the DMN

and the sensorimotor network

The measure of strength of functional connectivity is
highly consistent with all observations we have discussed.
This is not surprising, as we also found that the regional
strength of functional connectivity was significantly de-
creased in the DMN and increased in the sensorimotor net-
work (Table 1 and Figs. 7 and 8). With the same number
of functional connections, although brain-wide strength of
RSFC seems to be higher in the older group (Fig. 6), it is
not significantly different between groups (Fig. 2d). At the
regional level, the strength of functional connectivity showed
a similar pattern of changes in the DMN and sensorimotor
networks as observed in the measures of local and global ef-
ficiency (Fig. 7). The negative hub disruption index observed
in the DMN indicates an exchange of hub to nonhub regions
(Fig. 9). This regional reorganization reveals a shift of func-
tional importance of individual regions with aging and within
the same functional module, which may not be easily observed
in a brain-wide network analysis. We observed that left ACC,
left AG, and right precuneus as a part of the DMN switched
from a hub region to a nonhub region with aging. These re-
gions are associated with cognitive function (Pardo et al.,
2007; Seghier, 2013) and have shown decreased functional
connectivity in AD patients (Hafkemeijer et al., 2012).

One previous study used the test-retest reliability approach
to examine age-related differences in RSFC and demon-
strated increased reliable functional connections within the
sensorimotor network in the older group (Song et al.,
2012). Here, we observed an overall increase in functional
connectivity across all regions belonging to the sensorimotor
network (Fig. 10a). Given that another previous study also
observed an increase in functional connectivity between
the sensorimotor and task-control networks (Meier et al.,
2012), we further examined the connections between senso-
rimotor and all other networks in this study. We found a
positive hub disruption index, indicating increased connec-
tions between the sensorimotor network and other networks
in the older group, particularly between the sensorimotor and
attention networks. This was further confirmed by the obser-
vation of an increased number of connections and strength
between these two networks (Supplementary Table S1).
This finding suggests that the attention network and the sen-
sorimotor network have become less differentiated in normal
aging, contributing to the reduced modularity, possibly due
to the greater functional interdependence of these networks
in the elderly.

This study has limitations. The number of subjects is not
large, with 16 subjects in each group. It is possible that the
lack of significance for group comparison in brain-wide net-
work analysis may be due to inadequate statistical power.
However, we were able to uncover group differences at the

regional level. As we mentioned earlier, the adult brain has
shown shrinkage as it ages. The structural changes may
have an impact on the results of functional connectivity
and network analysis. For future studies, an examination of
the regional network measures combined with local gray
matter volume and the subject’s performance in cognitive
tests may provide a better understanding of age-related
brain functional reorganization.

Conclusion

In this study we have shown that the human brain under-
goes functional reorganization with aging at a whole brain-
wide level and a regional level. The brain-wide network
analysis showed reduced modularity and local efficiency in
the older group, possibly related to decreased within-network
connections. We also conducted regional-level network anal-
ysis for a finer-grained examination of age-related brain reor-
ganization. We have shown that individual brain regions
underwent distinct patterns of reorganization in terms of
their functional properties. Brain regions in the DMN showed
reduced local and global efficiency as well as regional func-
tional connectivity, indicating a decline in high-level cog-
nitive functioning with aging, while an increase in these
measures was observed in the sensorimotor network in the
older group, possibly indicating an underlying compensation
mechanism for declined sensorimotor and cognitive abilities.
Regional alteration also revealed a switch of functional im-
portance of individual brain regions from a hub region to a
nonhub region or vice versa. Our results suggest that brain-
wide topological properties, such as modularity, are able to
provide insights of brain network reorganization, but with a
finer-grained analysis at the regional level; more specific de-
tails of how individual brain regions with different functional
properties evolve with aging are able to provide a better un-
derstanding of the aging brain.
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