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Abstract 

 

Multiple sclerosis (MS) is a chronic inflammatory demyelinating disorder of the central 

nervous system wherein, after an initial phase of transient neurological defects, slow 

neurological deterioration due to progressive neuronal loss ensues. Age is a major 

determinant of MS progression onset and disability. Over the past years, several mechanisms 

have been proposed to explain the key drivers of neurodegeneration and disability 

accumulation in MS. However, the effect of commonly encountered age-related cerebral 

vessel disease, namely small vessel disease (SVD), has been largely neglected and constitutes 

the aim of this review.  

 

SVD shares some features with MS, i.e. white matter demyelination and brain atrophy, and 

has been shown to contribute to the neuronal damage seen in vascular cognitive impairment. 

Several lines of evidence suggest that an interaction between MS and SVD may influence 

MS-related neurodegeneration. SVD may contribute to hypoperfusion, reduced vascular 

reactivity and tissue hypoxia, features seen in MS. Venule and endothelium abnormalities 

have been documented in MS but the role of arterioles and of other neurovascular unit 

structures, such as the pericyte, have not been explored.  Vascular risk factors (VRF) have 

recently been associated with faster progression in MS though the mechanisms are unclear 

since very few studies have addressed the impact of VRF and SVD on MS imaging and 

pathology outcomes. Therapeutic agents targeting the microvasculature and the neurovascular 

unit may impact both SVD and MS and may benefit patients with dual pathology.  

 

 

Word count: 235 
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INTRODUCTION 

 

Multiple Sclerosis (MS) is a chronic inflammatory demyelinating disease of the central 

nervous system with neurodegeneration contributing to long-term disability(112). After a 

phase of active inflammatory demyelination, translating into transient neurological 

worsening(37), patients enter into a progressive phase wherein accumulation of neurologic 

disability is driven by neuronal/axonal loss disproportionate to inflammatory activity(123) 

(211).  

Age is one of the stronger predictors of entry into the progressive phase and accumulation of 

severe disability (38, 207, 178). This implies that factors known to be associated with aging, 

such as hypoxia(163), mitochondrial dysfunction (43), and iron accumulation (215) may be 

important contributors to neuronal damage, and by extension, disability in MS(53, 191, 124, 

125).  

Cerebral small vessel disease (SVD) is another age-related phenomenon and affects cerebral 

small cerebral arterioles, capillaries, and venules(152),(60). SVD associates with 

microinfarcts, microbleeds and with periventricular white matter (WM) pathology. Age and 

Vascular Risk Factors (VRF), such as hypertension, are the most important predictors of SVD 

(174). SVD associates with neurodegeneration in the elderly(229) and in young adults with 

VRFs (64,32)  and may contribute to age-related neurodegenerative pathology seen in MS 

(Figure 1). 

 

(Figure 1 here) 

 

There are several reasons why the interaction between MS and age related - SVD warrants 

further study, including: 1) MS patients have a longer life expectancy (128) reaching 60 years 

of age and beyond (187) and thus susceptible to the accumulation of vascular comorbidities; 

2) Vascular comorbidities contribute to MS progression(129), reduced life 
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expectancy(73,131, 27), increase load of WM lesions and brain atrophy(97) ; 3) In MS focal 

demyelination occurs in watershed areas(78), where hypoperfusion and tissue hypoxia are 

features (124, 53, 47) suggesting an important relationship between MS pathology and 

cerebral arterial perfusion; 4) The chronic inflammatory milieu in MS may predispose to 

SVD; and, 5) Drugs targeting the microvasculature may be beneficial not only in SVD but 

also in MS (135, 33, 148). 

 

Herein we present a comprehensive review on MS and SVD pathology. Through a critical 

analysis of clinical, radiographic, and pathologic data, we explore the impact of these diseases 

on the cerebral microvasculature, their overlapping features, and the possible additive effect 

of SVD on MS clinical outcomes and neurodegeneration. In so doing, we hope to shed light 

onto the striking age-related accumulation of neurologic disability that characterises the later 

stages of MS. 

 

CEREBRAL MICROCIRCULATION  

The cerebral circulation can be classified according to vessel size into macro- and micro-

circulation(106)(94)(98) as illustrated in Figure 2. Microvessels do not provide sufficient 

collateral flow to perfuse tissue when a penetrating arteriole or venule is blocked(20). This 

contributes to deep WM vulnerability to ischaemia because its major blood supply is via long 

medullary arterioles (217)(24). Communication between the brain parenchyma and 

microvasculature, is mediated through the neurovascular unit (NVU) that includes different 

structures including the pericytes that act as capillary sphincters and control blood flow(80). 

The normal microvasculature structural features and functions have been reviewed elsewhere 

(106)(182, 113, 89, 226, 156, 11)  and are summarized in Table 1.  

 

(Figure 2 here) 
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DIFFERENTIATING MS FROM SVD 

 

Classical MS features detected by conventional MRI and its pathologic correlates 

 

MS lesions occur in different areas of the CNS and can be detected in vivo using brain 

magnetic resonance imaging (MRI) and on post-mortem examination. Typical conventional 

MRI and pathology features are summarized on Table 2.  

 

WM hyperintensities (bright) lesions (WMH) on T2/ fluid-attenuated inversion recovery 

(FLAIR) imaging sequences are key features of MS, corresponding to different degrees and 

types of pathology(114, 102, 51, 69, 142, 111). Myelin constituents are differentially affected 

in well-defined WM lesions (plaques), diffusely abnormal WM (DAWM) or areas of normal 

WM (NAWM) on conventional MRI. Global loss of all myelin constituents is a key feature of 

plaques, whereas in areas of DAWM, myelin phospholipids and certain proteins such as 

myelin associated glycoprotein (MAG) are reduced with relative preservation of other 

constituents such as proteolipid protein (PLP)(114). However, in practice, differentiating 

histological changes in NAWM from DAWM may be challenging.  Lesions also change over 

time, older patients with longer disease duration having more inactive than active lesions(69). 

 

While no area is typically spared, there are regions of predilection for WM pathology(37),(32 

111,,134). The underlying substrate for this topographic predilection is not fully understood 

but some observations suggest that the relationship between MS lesions and the cerebral 

vessels is important.  Persistent T2 lesions are more common in central areas of the brain 

relative to the peripheral regions whereas acute, transient contrast enhancing lesions are more 

evenly distributed throughout the cerebral WM(116). This suggests that additional factors, 
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such as periventricular WM susceptibility to hypoxia, may contribute to persistent tissue 

damage(66) in some areas.  Focal WM lesions occur at sites of high venous density but also 

in watershed areas of low arterial blood flow(78) further supporting a dynamic interaction 

between MS pathology and the cerebral circulation.  

 

While cortical and deep grey matter pathology are important features of progressive MS that 

associate with clinical disability, (51) sensitivity to detect lesions in these areas on 

conventional MRI is relatively poor. This is particularly true of the cerebral cortex. As grey 

matter signal change is conspicuously absent in MRI diagnostic criteria, which concentrate on 

brain WM lesions (periventricular, juxta-cortical) (15), we have focussed the current review 

on WM changes classically described radiographically in the disease. That being said, it 

should be acknowledged that non-conventional MRI techniques and recent pathology studies 

demonstrate damage in the cerebral cortex and deep grey matter including demyelination, 

inflammation and neuronal loss (51). The relationship between these lesions and cerebral 

vasculature are yet to be explored and therefore is beyond the scope of the current review. 

 

Age-related small vessel disease  

 

The ageing brain  

Brain volume and myelin loss occur during “normal ageing” (195). At a cellular level, there is 

astrocyte and microglial hyperactivity, cellular senescence, stem cell exhaustion, altered 

intercellular communication, genomic instability, mitochondrial dysfunction and free radical 

generation, loss of proteostasis, and dysregulated nutrient sensing(120, 92, 153, 34, 22) to 

name a few. These changes also affect the cerebral vessels(223) particularly arterioles but 

also veins (62, 23, 95). Cerebral vasoreactivity is impaired in aged brains and changes in the 

nitric–oxide pathways(121),  reduction of endothelin-A and beta-adrenergic receptors(181) 

have been reported. This age-related degeneration of brain vessels may impair local 

perfusion(89). With ageing, there is increased BBB permeability and BBB-pericyte injury(63, 
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150, 142). Other neuronal signalling changes, serotonin, acetylcholine and other vasoactive 

neurotransmitters, may also affect cerebral blood flow control (55). All these factors may 

predispose the ageing brain to increased vulnerability to ischemic/hypoxic injury. Structural 

age-related microvascular changes have been summarized in Table 1. 

 

Typical clinical, conventional MRI and pathology features of age-related SVD  

VRF such as hypertension, diabetes, smoking, hypercholesterolemia and obesity, associate 

with increased risk of cerebrovascular disease in general, even in younger populations (210). 

Clinical manifestations of arteriolosclerosis-related SVD are varied, including stroke, 

cognitive decline, urinary and walking dysfunction (153, 28, 186, 118, 189, 155, 9). SVD 

lesions can also be asymptomatic (217)(93). Amyloid deposition is also an important cause of 

age-related SVD (60)(122)(77)(31). Although this principally affects cortical arterioles, the 

underlying subcortical WM may be affected and show signs of damage because these 

arterioles supply blood to this area. It is generally accepted that the spinal cord is relatively 

spared in SVD, though this is based on relatively scant literature(205,67). Morphological 

vascular changes in age-related SVD are summarized in Table 1(186)(52)(16) and illustrated 

in Figure 2. Of the microvasculature, arterioles are particularly affected with vessel wall 

thickening and tortuosity. That being said, thickening of vein vessel walls and perivenous 

collagenosis have also been described (23, 95). Key imaging-pathology features SVD are 

leukoaraiosis(64,66,74), defined as WMH on FLAIR/T2 brain MRI images without 

prominent hypo-intensity on the T1 images, lacunes(217)(28)(56), microbleeds(74)(90)(41) 

and enlarged perivascular spaces(217)(119) as summarized in Table 2. Leukoaraiosis occurs 

in 5-10 % of patients aged 20-40 years(32) and in up to one third of people aged 65-84 

years(22). Lesion distribution patterns differ according to the different VRF(174). A selective 

loss of MAG and relative preservation of PLP, is a feature of SVD WM abnormalities(12). 

The role of energy failure in SVD-related disease is highlighted by the observation that there 

is a decrease in the number of mitochondria in leukoaraiosis (193). 
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VRF and SVD also associate with generalised and focal brain atrophy(143, 147, 18, 82, 206, 

115)  and reduced perfusion in NAWM (213) (200). 

 

 

Imaging discriminators between MS from SVD 

 

Several WM lesion locations and characteristics segregate more clearly with MS (21)(14), 

while others more with SVD (16,21,44,166,107,13,199,71,4,15) (Table 2). The distinction 

between these two disease processes on imaging can be difficult in longstanding and late 

onset MS(184) where both conditions are more likely to coexist. Comparative quantitative 

measures have shown more heterogeneous lesions in MS (199)(138). Medial lemniscus T2 

hyperintensity in the dorsal pons has been reported more frequently in SVD than in MS 

patients(79). SWI (100)(109) improves differentiation between MS and vascular lesions 

based on lesion location, perivascular orientation and the presence of hypointense (rims 

around) lesions as well as detection of central veins(136). The exact specificity of central 

veins needs to be assessed in larger studies, particularly taking into account vascular 

comorbidities. Differentiating MS lesions without a central vein from ischemic lesions still 

remains difficult, particularly in diffuse WM lesions. Annual rate of SVD-related lesion 

volume increase was similar to the rate of MS-related lesion burden increase in secondary 

progressive MS observed in natural history studies or the placebo arms of treatment trials 

(179, 180, 140) and thus not very useful in distinguishing the two disorders. Only small 

studies using nonconventional imaging techniques have compared MS with SVD(39)(164).  

In magnetization transfer studies, normal appearing WM seems to be spared in SVD(164) in 

contrast to MS. Diffusion coefficient measurements(150), as well as magnetic resonance 

spectroscopy (96)may be useful in the differential diagnosis. 
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MS AND SVD: EVIDENCE FOR A POSSIBLE INTERACTION 

 

Most of the current literature has concentrated on differentiating MS white matter change 

from that associated with SVD (Supplemental Figure 1).  In the previous section, we  

compared the two disorders and identified distinctive clinical and imaging features. 

Nevertheless, DAWM changes and brain atrophy are common in both disorders, particularly 

in older patients. SVD may coexist in longstanding MS and be responsible for additional 

brain damage and clinical disability. In this section, we will summarise the direct and indirect 

evidence of a possible interaction between MS and SVD. MS predominantly affects the veins 

and venules while SVD predominantly affects the arterioles. Despite this, factors such as 

ageing, VRFs and chronic inflammation could predispose to microvasculature damage, 

including in arterioles, that leads to hypoperfusion and tissue hypoxia that contributes to the 

extent and distribution of MS-related pathology.  

 

“MS Vascular theory” and microcirculation morphological changes in MS 

  

Several vascular changes in the MS brain have been described over the years and a 

comprehensive review of the history of these observations has recently been published (160). 

Early pathology studies traced MS lesions to draining CNS veins and capillaries, surrounded 

by perivascular inflammatory cell infiltrates (170,2,48). Structural microvasculature changes 

reported in MS are summarized in Table 1 and include thickening of vessel walls, and 

sometimes vessel thrombosis (212,158,1,26,70). The latter findings led to disappointing trials 

using anticoagulants and hyperbaric oxygen as a treatment for the disease(159), that were 

followed by reduced interest in the role of vessels in MS pathology(160). During the last 

decade, the hypothesis of venous insufficiency in MS patients was raised given the claim that 

venous blood flow alterations were more prevalent in MS patients (224), an observation not 

replicated in larger, more controlled studies(204). Recently using new MRI techniques, many 

MS lesions have been demonstrated in vivo to centre around veins of RR and 

Page 9 of 38

Brain Pathology Editorial Office, Blackwell Publishing, Oxford, UK

Brain Pathology

This article is protected by copyright. All rights reserved.



 10

PPMS(101,196,105) further supporting post-mortem observations that the inflammatory 

process dominantly involves the veins and venules in MS. However, it is somehow surprising 

that the arterioles remain intact in longstanding MS and the current published literature does 

not rule out that structural or functional arteriole changes play a role in MS pathology.  

 

In MS, enlargement of the PVS, particularly at the brain convexity, associates with brain 

atrophy(99) and perivascular protein changes(70,139,208) further pointing to a possible 

relationship between vascular pathology and MS disease severity. Structural abnormalities of 

PVS adjacent to venules have been mentioned above but it is not clear if PVS adjacent to pial 

and penetrating arterioles are spared. Meningeal inflammation spreads into convexity 

PVS(85) but it is not always clear if this PVS inflammation occurs exclusively around veins 

or also surrounds penetrating arterioles, since this information is not always specified. The 

temporal profile of these structural vascular and perivascular changes in MS, in the context of 

age-related changes, requires further study. Even if not directly related to MS, arteriole 

changes are predictable as part of aging and increased VRF though they have not been 

systematically quantified so far. 

 

NVU disintegration is increasingly recognised as a contributor to neurodegeneration (229) 

and  has been described in MS not only in active demyelinating lesions but also in NAWM 

(101,3,154) (Table 1). NVU dysfunction can lead to clotting and fibrinolytic pathway 

abnormalities (11), may impair repair mechanisms such as angiogenesis in chronic MS(72, 

83) and potentially affect CBF regulation.  

 

Indirect evidence of vascular dysfunction in MS 

 

Hemodynamic changes in MS 

Several studies have found that patients with MS have reduced cerebral perfusion (162, 45, 

76). Cerebral blood flow is reduced in non-enhancing WM lesions(188), cortical and 
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subcortical grey matter(108) associating with higher disability scores and T2 lesion load(151). 

Chronic MS plaques are more prevalent in WM regions with lower relative perfusion(84) and 

hypoperfusion associates with T1 hypointensities (146).  The observed hypoperfusion in MS 

appears to be a primary phenomenon and not merely a consequence of neuronal death (176), 

taking into account the fact that reduced cortical and deep grey matter cerebral blood flow is 

present in all disease course subtypes(59) even in the absence of corresponding volume loss 

(151)(50). However, large longitudinal studies are still needed to confirm that hypoperfusion 

precedes neurodegeneration. Reduced cerebrovascular reactivity has also been reported in MS 

and impaired dilator capacity of cerebral arterioles to vasomotor stimulation has been 

proposed as a possible contributor to MS hemodynamic changes (132).  

 

Hypoxia in MS  

MS inflammation and associated NVU dysfunction(3) may lead to tissue hypoxia(45)(110). 

In the animal model, experimental autoimmune encephalitis (EAE), acute tissue hypoxia 

develops rapidly in response to inflammation, triggers enlargement of vessel lumen and 

increased vessel number, and is related to neurological deficits(47). Reducing tissue hypoxia 

may be an underestimated therapeutic target since it may reduce demyelination in animal 

models(53). There has been an increased interest in the relationship between angiogenesis and 

MS (72,117,177) but few studies have investigated the relationship between tissue hypoxia 

and structural microvasculature abnormalities in MS(47). MS WM lesions and classic 

ischaemic WM disease share some histopathological changes (110)(49). Using vascular 

distance maps, larger MS lesions tend to be further from vessels (104). Recently, it has been 

shown that MS lesions tend to accumulate not only in areas of high venule density but also in 

watershed areas(78) where hypoxia due to low arterial perfusion may contribute to and/or 

amplify mitochondrial dysfunction, previously documented in MS(125). It is not clear if only 

arteriolar and venule damage could explain these findings or if they relate to downstream 

changes at the capillary level, including pericyte and astrocyte dysfunction(49)(80). Indeed, 

pericytes when exposed to hypoxia and ischemia constrict and die (80).  However 
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abnormalities at the capillary level, particularly pericyte injury, have been relatively neglected 

in MS and warrant investigation.  Additionally, the link between vessel fibrin deposition and 

tissue hypoxia/ ischemia needs to be clarified.  Differences between acute focal 

demyelinating lesions and diffuse WM changes may associate to different vascular changes, 

the former to perivenular inflammation and the later with arteriolar changes.       

 

MS and VRF  

 

Epidemiological studies 

Studies have shown that MS patients have a greater prevalence of VRF, such as smoking and 

increased body mass index, compared to the general population while other VRF, such as 

hypertension, diabetes and hyperlipidaemia do not differ significantly between groups (130). 

However, the presence of vascular comorbidity (diabetes, hypertension, 

hypercholesterolemia, heart disease, and peripheral vascular disease)(198) associates with 

increased risk of more severe MS-related disability(129)(131)(46). Tobacco smoking has also 

been associated with increased disability and faster progression of clinical disability in MS in 

some(81) but not all studies (144). Studies on other non-classical VRF have been less 

explored(192). Higher homocysteine, also associated with SVD(91), has been found in MS 

when compared to healthy controls in most studies (198) and this could be due to Vitamin 

B12 deficiency (168)(167) . The presence of VRF also affects disability (e.g. gait impairment) 

and increases mortality in people without MS. It is not clear if the effect on MS outcome is 

due to the additive effect of non-MS pathology or due to worse MS pathology.  

 

MRI studies on the effect of VRF in MS  

Few MS imaging studies have taken into account the effect of VRF on lesion distribution and 

size and brain atrophy (Supplementary Table 1) (81,228)(219). North American MS patients 

with one or more vascular risk factor(s) have an increased lesion burden and more brain 

atrophy (97) compared to MS patients without VRF. However, how SVD contributes to these 
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more severe imaging features is not clear. It is possible that increased T2 lesion load in MS 

patients with VRF is due to additive periventricular WM vascular lesions, lacunes and 

microbleeds, as a mere association of two disorders (Figure 2). Similarly, vascular risk factor 

associated atrophy could simply be additive to that in MS patients (115) . 

 

MS and cerebrovascular disease 

 

Epidemiological studies 

MS patients have reduced life expectancy that is estimated to be between 7-14 years 

compared to individuals without the disease (178). Though increased mortality can be directly 

related to MS, cardiovascular diseases are also important contributors (73). MS is associated 

with an increased rate of ischemic stroke, myocardial infarction and heart failure in the first 

years after diagnosis(34,35). The reported cardiovascular disease excessive risk early after 

MS diagnosis might be due to surveillance bias and later in the disease course may relate to 

venous disorders in progressive MS, suggesting that immobilization may be a predisposing 

factor(173). The heterogeneity among studies on the incidence and prevalence of 

cardiovascular disorders in MS makes it difficult to fully understand the epidemiology of 

vascular comorbidity in MS(127). There is scarce information of global atherosclerosis 

burden in MS patients assessed clinically or with vascular imaging, though an increase of 

subclinical markers of atherosclerosis has been reported in a small group of MS patients 

particularly in those with reduced physical activity(161). 

 

SVD imaging and pathology correlates in MS 

As previously mentioned, MS is associated with haemodynamic changes. These could be 

related to MS but the contribution of additional factors, such as concomitant SVD, have not 

been evaluated. Though this may not be a significant concern in young MS patients with no 

VRF, it is somehow surprising that the potential presence of SVD has not been considered in 

older patients since SVD dramatically increases with age. Most of the imaging studies have 
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excluded patients with previous symptomatic cerebrovascular disease (e.g. stroke or ischemic 

heart disease) and recording of VRF has not been documented systematically.  

After an extensive search (Supplemental Figure 1) for publications assessing SVD imaging 

characteristics in MS only two MRI studies with conflicting results assessed the prevalence of 

microbleeds in MS patients (227)(58). An imaging-pathological study aiming to track iron in 

2 MS brains disclosed iron precipitation in aggregates typical of microbleeds. Indeed, both 

cases were older than 60 and one had significant VRF and evidence of severe atherosclerosis 

at autopsy(10). An older pathology study also reported perivenular hemosiderin deposition 

related to MS plaques in 21 out of 70 MS cases, of which 4 had coexistent cardiovascular 

disease(1). There are no publications quantifying concomitant arteriolar SVD in MS. 

Differentiating venous collagenosis associated with leukoaraiosis from MS-associated venous 

abnormalities may be challenging due to the lack of specific markers. In longstanding MS, 

basal ganglia T1 hypointensities along with diffuse WM changes have been reported but no 

information regarding vascular comorbidities was provided(165). Since no imaging-

pathological correlation had been performed, the findings could be related to MS and/or SVD 

pathology. 

 

The chronic inflammatory milieu in MS could contribute to cerebral small vessel 

damage and vascular damage may impact brain inflammatory response  

 

Of interest is whether there is an interaction between MS and SVD pathology, and if there is 

in what direction this lies, since the chronic inflammatory milieu of MS could exacerbate 

SVD (207) and VRF could exacerbate MS pathology. Rheumatoid Arthritis, a systemic 

inflammatory disorder, is associated with increased risk of cardiovascular disease(8) and 

accelerated atherosclerosis(225). Inflammation can per se be deleterious to the vessel wall 

and is thought to be an important risk for systemic atherosclerosis (75)(216). The relationship 

between inflammation and SVD has not been sufficiently explored but the following data 

suggest that it deserves more attention: 1) systemic inflammation measured by interleukin-6 is 
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associated with SVD(137); 2) genes associated with inflammatory pathways are upregulated 

in SVD brains(171, 209) ; and 3) prominent inflammatory infiltrates are found in some 

amyloid angiopathy subtypes (7). In MS, perivascular inflammation may increase cerebral 

vessel vulnerability to vascular risk factor-related damage, thus contributing to increase of 

SVD. 

 

MS and SVD may share common genetic and/or environmental factors 

 

It is possible that common genetic factors simultaneously affect MS and vascular disease 

phenotypes(214). Apolipoprotein E, an important atherosclerosis risk factor (218) does not 

seem to affect MS clinical course in humans(25) though it may impact the inflammatory 

response in MS animal models(185).  Mitochondrial genetic variants have been implicated in 

both MS and leukoaraiosis(194). Underlying variants of fibrinolytic systems can also produce 

an effect on MS inflammation(57) and also on cerebral ischemia(221).  

Environmental factors may also potentially trigger and/or contribute to both MS and 

atherosclerosis pathology. Chlamydia pneumoniae infection has been associated with both 

disorders(40) but its role in their pathogenesis has not been demonstrated. Sodium chloride 

intake strongly correlates with hypertension(190) and has been associated with increased 

clinical and radiological MS activity (61) possibly secondary to the induction of Th17 

lymphocytes as demonstrated in EAE (103).  Smoking, another risk factor shared by both 

disorders (19,133), associates with endothelial and BBB disruption (133)(145) and may cause 

brain damage through multiple pathways (30). The deleterious effect of smoking in cerebral 

vessels could explain increased lesion load in MS smokers when compared to non-smokers 

(supplemental table 1) but this not been investigated.   
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Potential interaction between MS and Arteriosclerosis therapies 

 

Current MS treatments, such as fingolimod (148) may have an antiatherogenic effect. Also 

alpha-beta1 integrin (VLA-4) blockade has been shown to be effective in reducing CNS 

inflammation in MS(169) but may also reduce neointimal growth following vascular 

damage(17), since this integrin is involved in vascular remodelling and atherosclerosis(87). 

Fumarates may have a cardioprotective effect (6) and may improve CNS response to hypoxia 

(220). On the other hand statins, known to delay atheroma plaque progression and prevent 

ischemic cardiovascular events, may delay MS progression(33). The potential benefit and 

risks of aspirin in MS have been recently reviewed(203). Interestingly, a 1961 publication a 

trial comparing prednisolone, placebo and calcium aspirin, reported no deterioration in 

patients on aspirin whereas there was clear clinical worsening in the other two groups(135).   

Moreover, antihypertensive drugs with a protective effect on cerebrovascular disease, such as 

amiloride (183), may exert a neuroprotective effect in progressive MS(5). Finally, biotin, an 

important co-factor for many mitochondrial enzymes that protects against hypoxia associated 

energy failure, may reverse disability in progressive MS (201). These effects may relate to a 

pluripotent mechanism of these drugs that interfere with different pathophysiological 

cascades but could reduce the effect of one pathology on the other. Either way, to develop 

individualised treatments, comorbidities, such as SVD, should be taken into account and the 

influence of therapeutic interventions in these comorbidities should not be overlooked.  

 

SVD AS A POSSIBLE CONTRIBUTOR TO NEURODEGENERATION IN MS 

 

Older MS patients: less inflammation, more age-related disorders 

Although the pathological hallmark of MS is the presence of multifocal areas of 

demyelination with relative axonal preservation, imaging and pathological studies have 

shown that neuronal/axonal injury can occur early and associate with active inflammation and 

demyelination(65,202) However, age and disease duration affect the inflammatory response 
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in MS lesional and non-lesional WM and GM, all of which seem to decrease in older patients 

with a longer disease duration(68)(67). In these patients, neurodegeneration is related, in part, 

to not only on-going low-grade inflammation but also several mechanisms including 

increased energy deficiency, oxidative injury, hypoxia and exhaustion of functional reserve 

capacity (124). Age-related pathology, such as Alzheimer’s or vascular disease may amplify 

all of these mechanisms and thus contribute to increased neuronal damage (67).  

 

 “Second hit” hypothesis: could SVD contribute to hypoperfusion and brain atrophy in 

progressive MS? 

 

As previously mentioned, VRF(18)(29) and SVD (206) associate with brain atrophy and 

cognitive impairment. The exact relationship between SVD and brain damage is incompletely 

understood(152,217,172) but factors such as hypoperfusion/ischemia due to reduced vessel 

lumen size, impairment of perivascular lymphatic drainage, BBB dysfunction(215) and 

subclinical inflammation may lead to oligodendrocyte damage and loss of myelin causing 

WM lesions and neuronal loss(152,217,172,86). NVU dysfunction leading to neuronal-

vascular uncoupling, has been implicated in perpetuating tissue damage in ischemia(80).The 

presence of SVD in MS patients may represent the extra hit that hinders compensatory 

mechanisms. In this case, vascular dysfunction and hypoperfusion with consequent chronic 

hypoxia could contribute to neuronal death leading to slow neurological deterioration 

independent of relapses.  Cerebrovascular disease has been shown to contribute to neuronal 

damage in neurodegenerative diseases such as Alzheimer disease(229)(54)  and vascular 

cognitive impairment (157) promoting cycles of chronic hypoperfusion, pericyte and 

astrocyte dysfunction with BBB permeability changes, oxidative stress, inflammation and 

mitochondrial impairment(43)(124)(193). This “vasculo-neuronal-inflammatory” model of 

neurodegenerative diseases, centred in NVU dysfunction, could be applied to MS(229). In 

MS energy deficiency and tissue hypoxia due to mitochondrial dysfunction leads to ionic 

imbalance and axonal degeneration and this could be potentiated by concomitant SVD, in 
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particular in watershed areas, where MS lesions tend to accumulate (124). Not only detailed 

mapping of MS lesions related to arterial and venous blood supply needs to be investigated 

(124) but characterization and quantification of SVD, including scoring of arterial vessel wall 

changes, microbleeds, microinfarcts, and its relationship to energy failure in MS is warranted.   

 

Oligodendrocyte regeneration mechanisms can also be impaired due to dual pathology 

affecting ventricular-subventricular zone-derived progenitor cells(126), since this area is 

frequently affected by SVD and MS. These mechanisms may particularly cause or potentiate 

hypoperfusion and brain damage in MS (49), not only affecting focal lesion topography(78) 

but also diffuse abnormal WM lesions where there are imaging and pathologic similarities to 

SVD. Additionally, chronic inflammation in MS may also predispose to microvasculature and 

NVU damage leading to abnormalities in fibrinolytic pathways(11,57), impairing 

angiogenesis(117), and repair after ischemic injury and thus perpetuating neuronal injury.  

 

Could SVD potentiate tissue damage related to acute inflammation in MS? 

The effect of the interaction between SVD and MS on acute inflammation and subsequent 

neuronal damage has not been sufficiently explored but may contribute to the age-related 

decline of recovery after a relapse(42). Vessel integrity is essential for many steps of the 

immune response, including leukocyte priming, activation and migration(222). The effect of 

cerebral age-related SVD on each of these steps is not well characterized. Taking into account 

the previously described structural vascular changes, it is expected that the immune responses 

will be compromised to some extent. Cerebral SVD-related BBB dysfunction has been shown 

to associate with endothelial cell and monocyte/macrophage activation(175), which could 

contribute to inflammation-related neuronal damage in MS. As previously mentioned, there is 

tissue hypoxia associated with inflammation in MS (45,110,53,117) and it is plausible that, if 

present in MS patients, SVD impairs compensatory mechanisms to acute inflammation-

related hypoxia, potentiating tissue damage. 
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CONCLUSIONS AND DIRECTIONS FOR FUTURE RESEARCH 

 

Understanding the contribution of SVD to brain damage in MS patients and in particular to its 

role in the neurodegenerative process is a high priority. Some common imaging and 

pathological features may be markers of SVD and MS interaction: diffuse periventricular 

WM lesions and enlargement of perivascular spaces. The challenge lies in identifying specific 

biomarkers that differentiate these two pathologies and ensuring that identified MS-specific 

features have arisen from cohorts where VRF have been excluded. VRF and comorbidities are 

associated with faster MS progression and increased lesion load through unclear mechanisms. 

Future imaging research on brain volumetrics and WM lesions should take into account VRF 

and comorbidities in MS patients.   

 

In MS, there is hypoperfusion and reduced vascular reactivity. Venule and endothelium 

abnormalities have been described but the contribution of arterioles and the NVU to these 

hemodynamic changes is still to be explored. Human imaging-pathological studies would 

allow to better dissecting of the interplay between MS and age related vascular changes/SVD, 

MS animal models should be set up to look at the direct effect of vascular comorbidities on 

MS pathology and at potential common MS and SVD pathogenic pathways.  Understanding 

the impact of SVD in MS is important in planning treatment trials, particularly in older 

progressive patients and may lead to better neuroprotective therapies in the future.  
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Figure legends 

 
 

 

 

Figure 1. Aging with Multiple Sclerosis (MS): review outline.  

BBB – blood brain barrier, RR – relapsing – remitting MS, P progressive MS, ECM extracellular matrix changes 

 

Figure 2.   

A – Cerebral circulation is divided in macrocirculation (a) that includes the internal carotid and vertebral arterial systems and in 

microcirculation. The microcirculation is composed of pial and perforating arterioles, capillaries and venules. Pial arterioles 

give rise to superficial perforating arterioles that course centripetally entering the brain at right angles to its surface, branching 

and terminating as end arteries. Perforating arterioles also arise from the main arteries branches and irrigate the basal ganglia, 

deep WM and brainstem. Perforating arterioles lie within the Perivascular Spaces (PVS), where vessel wall components are in 

close contact with the astrocyte endfeet, and terminate as end arteries (i.e. without shunts) in capillary beds. The capillary plexus 

drains into venules (not shown). 

 

B - Potential interaction between Small Vessel Disease (SVD) and Multiple Sclerosis (MS). 

Longstanding MS Brain MRI (FLAIR coronal section), showing focal and diffuse periventricular white matter hyperintensities 

adjacent to the lateral ventricles. A perforating artery affected by SVD is illustrated where enlargement of the perivascular space, 

thickening of the vessel wall with significant reduction of the vessel lumen is present. These vessel changes are associated with 

subsequent vessel occlusion leading to lacunes, vessel rupture causing microbleeds, hypoperfusion, blood brain barrier damage 

and subsequent myelin break down. This could cause additional white matter damage and neuronal loss in MS. 
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Supplemental Figure 1. SVD and MS interaction review 

Search strategy: arterioscleros*, basal, basal ganglia hemorrhage, bleed*, brain*, cereb*, cerebral small vessel diseases, 
crani*disease*,disseminated, ganglia, haemorrhag*, hemorrhag*, intra-crani*, intracrani*, intracranial, intracranial 
arteriosclerosis, intracranial hemorrhage, hypertensive, lacun*, leukoaraios*, leukoaraiosis, micro-bleed*, microangiopath*, 
microbleed, ms, multiple, multiple sclerosis, multiple sclerosis, chronic progressive, multiple sclerosis, relapsing-remitting, 
scleros*, small, stroke*, stroke, lacunar, vessel 

 

 

 

 

 

 

Page 31 of 38

Brain Pathology Editorial Office, Blackwell Publishing, Oxford, UK

Brain Pathology

This article is protected by copyright. All rights reserved.



  

 

 

Figure 1. Aging with Multiple Sclerosis (MS): review outline.  

BBB – blood brain barrier, RR – relapsing – remitting MS, P progressive MS, ECM extracellular matrix 

changes  
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Figure 2.    
A – Cerebral circulation is divided in macrocirculation that includes the internal carotid and vertebral arterial 
systems (a). The microcirculation is composed of pial and perforating arterioles, capillaries and venules Pial 

arterioles give rise to superficial perforating arterioles that course centripetally entering the brain at right 
angles to its surface, branching and terminating as end arteries. Perforating arterioles also arise from the 
main arteries branches and irrigate the basal ganglia, deep WM and brainstem. Perforating arterioles lie 

within the Perivascular Spaces (PVS), where vessel wall components are in close contact with the astrocyte 
endfeet, and terminate as end arteries (i.e. without shunts) in capillary beds. A density gradient of brain 

capillaries, from high to low, is observed between grey and white matter, respectively. The capillary plexus 
drains into venules (not shown).  

 
B - Potential interaction between Small Vessel Disease (SVD) and Multiple Sclerosis (MS).  

Longstanding MS Brain MRI (FLAIR coronal section), showing focal and diffuse periventricular white matter 
hyperintensities adjacent to the lateral ventricles. A perforating artery affected by SVD is illustrated where 

enlargement of the perivascular space, thickening of the vessel wall with significant reduction of the vessel 
lumen is present. These vessel changes are associated with subsequent vessel occlusion leading to lacunes, 
vessel rupture causing microbleeds, hypoperfusion, blood brain barrier damage and subsequent myelin 

break down. This could cause additional white matter damage and neuronal loss in MS.  
 

Figure 2  
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Microcirculation Structure  Function  Aging  SVD  MS  

Pial arteries 

 

 

 

 

Perforating  

arteries 

Surrounded by CSF and pia-arachnoid and 
glia limitans. Three vessel wall layers:  1. 

tunica adventitia (mostly collagen and 

fibroblasts) 
2. a tunica media (smooth muscle) 

3. a tunica intima (single layer of endothelial 

cells and internal elastic lamina) 

1.Nutrition  
2.Cerebral blood flow 

regulation  

3.Vasophylic neuroblast 
migration 

 

 

1.Tortuousity 
2.Thickened walls  

 3.Loss of elastin and smooth 

muscle 
4. Reduced coverage by pericytes 

and perivascular nerve plexus  

 

1.Severe thickening vessel wall  
2.Arteriosclerosis/ fibrinoid necrosis  

3. Enlarged PVS 

4. Vascular ectasia 
5.Amyloid wall infiltration  

6.PVS Hemosiderin deposition  

1.Enlarged PVS  

 

 

Scarce information  

Capillary Single layer of endothelial cells  1.Nutrition 

2.Cerebral blood flow 

regulation  

3. Immune response  
 

1.Increased diameter  

2. Basal membrane thickening, 

reduplication and vacuolization  

3. Increased vessel wall hyalinosis 
and fibrosis 

4. Reduced coverage by pericytes  

1.Perivascular rarefaction 

2. Increased endothelial permeability 

1. Increase endothelial 

permeability, with protein 

leakage, red blood cell 

extravasation  

2. Perivascular 

inflammation  

 

Venules Thin-walled vessels:  

1. tunica adventitia (mostly collagen and 

fibroblasts) 
2. a tunica media ( thin layer of smooth 

muscle) 

3. a tunica intima (single layer of endothelial 
cells) 

No valves.  

1. Metabolite clearance  

2.Cerebral blood flow 

regulation  
 

1.PVS collagenosis  

 

1. Vessel wall and PVS collagenosis 1.Thickening of vessel wall, 

vessel tortuosity 

2.Intramural fibrinoid 
deposition, wall 

reduplication 

3. Iron deposition  
4. Enlarged PVS  

5. PVS collagenosis 

6. Perivascular inflamation  

7. Thrombosis 

 

Neurovascular Unit 

 

 

1.Endothelial cells  

2.Pericytes 

3.Vascular smooth muscle cells 

4.Astrocytes  

5. Basal membrane  
6.Neurons 

7. Perivascular macrophages 

 

1.Immune response 

regulation (adaptive and 

innate immune responses 

regulation of leukocyte 

transfer)  
2. Transport of substances  

3.Blood flow  

4.Angiogenesis regulation  

5. Coagulation and 

fibrinolysis  

 1.Endothelial cell increased 

permeability  

2. Reduced pericytes  

1. Endothelial cell increased 

permeability  

1.Changes in endothelial 

cell tight and adherens 

junction expression 

(occludine, claudins, 

caderins, zonula-ocludens),  
with increase permeability  

2.BM/extracellular matrix 

abnormalities  

 

Table 1. Microcirculation: normal structure and changes with aging, Small Vessel Disease (SVD) and in Multiple Sclerosis (MS) 

 

Page 34 of 38

Brain Pathology Editorial Office, Blackwell Publishing, Oxford, UK

Brain Pathology

This article is protected by copyright. All rights reserved.



SVD   

Conventional Brain MRI  Histopathology  Conventional Brain MRI  Histopathology  

Focal lesions

Sharply defined  

! U or S-shaped juxtacortical  

!perpendicular  to the lateral ventricles (Dawson 

fingers) 

! corpus callosum 

nerve

!spinal cord 

!pons periphery 

Diffuse WM lesions periventricular  

Myelin loss (all constituents) 

Different degrees of axonal loss 

At high venule density and arterial watershed areas  

Active - rich in macrophages and lymphocytes  

 

Inactive - minimal macrophage infiltration  

 

Myelin loss with selective reduction of phospholipids  

 

Focal lesions 

Watershed regions 

!central pons 

! sparing of the spinal cord  

! less frequent in the corpus callosum 

! sparing U fibres  

 

 

Diffuse WM lesions: 

Symmetrical* 

Mild periventricular WM 

 

 

 

Irregular periventricular WM 

 

 

 

Punctate deep WM 

 

 

 

Deep partial confluent/confluent WM 

 

Myelin loss 

Axonal loss 

 

 

 

 

 

 

 

Selective loss of  phospholipids and MAG with PLP 

preservation 

Loosening of the fibre network around “tortuo

Minor arteriosclerotic vessel changes 

 

Severe myelin loss and reactive gliosis Incomplete infarcts

Fibrohyalinotic and arteriosclerotic vessels 

 

Mild tissue changes surrounding dilated PVS 

Myelin loss and atrophic neuropil around fibrohyalinot

arterioles 

 

Axonal loss and astrogliosis. Myelin, axon and 

oligodendrocyte loss, focal transitions to complete 

infarcts. 

Transient hypointensities 

Widespread WM  

Persistent  hypointensities 

Periventricular >juxtacortical 

Increase extracellular space due to oedema 

 

Tissue loss  

 Areas >2 mm and <15 mm in the perforating arteries 

territory more in BG, pons (central), internal capsule and 

corona radiate  

Irregular cavitations with scattered fat-laden macrophages, 

reactive gliosis and myelin loss  

Diffuse hyposignal  

 

Perivascular iron deposition 

R* signal changes do not always correspond to  iron 

deposition  

Iron in activated macrophages/microglia at the edges of 

WM lesions 

Iron precipitation in aggregates typical of microbleeds  

Small rounded hypointensities visualized on brain MRI, 2-

10mm not well visualized on T2.  

Artheriosclerosis SVD - Deep WM, BG and brainstem in 

arteriosclerosis-related SVD 

 

Cerebral Amyloid SVD – cortex, convexity/sulcus 

hypointensities  

 

 

Microscopic bleeds, small lacunes or to hemosiderin 

containing macrophages in PVS  

Microscopic and macroscopic bleeds; �-amyloid vessel 

wall deposition  

 

Along convexity perforating medullary arteries  Perivascular collagenosis and inflammatory cuffs within 

these enlarged spaces  

Arteriosclerosis SVD - lenticulostriate arteries entering the 

BG through the anterior perforated substance   

Cerebral Amyloid SVD – pial and superficial perforating 

arteries  

Enlarged PVS  

Perivascular collagenosis 

 

Enlarged PVS  

   

Widespread in WM 

Different patterns: nodular, punctate, ring or 

ring 

Macrophage/microglia,lymphocytic infiltrates 

BBB disruption  

Only in the context of acute stroke  Acute ischemic changes – red hypoxic neurons, 

inflammatory infiltrate  

Table 2. Summary of core brain MRI and Pathology features in MS and SVD ! Differentiating features between Multiple Sclerosis and Small Vessel Disease, WMH- White Matter Hyperintensities, FLAIR 

attenuated inversion recovery, PVS – perivascular spaces, SWI – susceptibility weighted imaging,  CEL – contrast enhancing lesions; MAG –myelin associated glycoprotein, PLP –proteolipid protein 
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    Supplemental Table 1. Brain MRI studies on the impact of vascular risk factors on MS brain lesions  

    BPF - Brain parenchymal fraction; BMI – body mass index; LV – lesion volume; CEL – contrast enhancing lesions, GM – grey matter, WM – white matter, HT – hypertension, DM- diabetes mellitus 

 

Author. year Study information Number of  clinical 

definite MS 

patients/controls 

Vascular Risk factor MRI outcomes Main MRI findings 

Healy BC et al. 2009 Single centre, cross sectional 

survey and longitudinal follow 

up (3.2 years) 

1045 (first MRI)/0 Tobacco Smoking Whole brain volume 

T2 LV  

BPF  

Current smokers had a lower BPF 

compared with never-smokers. 

T2 LV was higher in current smokers than 

in never smokers. 
No differences between Ex-smokers and 

never smokers. 

Zivadinov R. (2009) Single centre cross-sectional 368/0 Tobacco Smoking T1  LV 

T2   LV 
CEL number and volume 

-BPF 

Ever Smokers with higher number of CEL, 

T1 and T2 LV when compared with non 
smokers 

Lower BPF in smokers 

Weinstock-Guttman 
B (2011) 

Single centre, retrospective, 
cohort 

210/0 Fasting lipid profile (HDL, LDL, 
triglycerides, total cholesterol, 

cholesterol/HDL ratio) 

BMI 

CEL 
T2 LV 

T1 LV 

BPF 

Higher HDL associated with a low CEL 
LV 

Higher triglyceride levels associated to 

higher CEL LV 

No associations with T2-LV and T1-LV 

with any of the lipid profile variables 

Farez M et al. Single centre cohort 
(prospective) 

First group – 70 
Replication  - 52 

Sodium intake (low, medium, 
high) 

T2 LV Patients with higher sodium intake had a 
greater chance of developing a new T2 

lesions and had increased T2 LV 

 

Kappus et al. (2015) Single centre cohort 

(prospective) 

326 RR 

163 Progressive /175 HC 

HT, heart disease, smoking, 

overweigh/obesity, type 1 DM 

T1 and T2 LV 

- Normalised brain parenchyma volume, 

GM, WM and lateral ventricle volume 

In MS patients HT and heart disease 

associated with decrease GM and cortical 

volumes 
Overweight/obesity associated with 

increase T1-LV and smoking with decrease 

whole brain volume. 
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