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Abstract

Background

Encouraging progress has been seen with reductions in Plasmodium falciparummalaria

transmission in some parts of Africa. Reduced transmission might lead to increasing sus-

ceptibility to malaria among older children due to lower acquired immunity, and this has

implications for ongoing control strategies.

Methods and Findings

We conducted a longitudinal observational study of children admitted to Kilifi County Hospi-

tal in Kenya and linked it to data on residence and insecticide-treated net (ITN) use. This

included data from 69,104 children aged from 3 mo to 13 y admitted to Kilifi County Hospital

between 1 January 1990 and 31 December 2014. The variation in malaria slide positivity

among admissions was examined in logistic regression models using the following predic-

tors: location of the residence, calendar time, the child’s age, ITN use, and the enhanced

vegetation index (a proxy for soil moisture). The proportion of malaria slide-positive admis-

sions declined from 0.56 (95% confidence interval [CI] 0.54–0.58) in 1998 to 0.07 (95% CI

0.06–0.08) in 2009 but then increased again through to 0.24 (95% CI 0.22–0.25) in 2014.

Older children accounted for most of the increase after 2009 (0.035 [95% CI 0.030–0.040]

among young children compared to 0.22 [95% CI 0.21–0.23] in older children). There was a

nonlinear relationship between malaria risk and prevalence of ITN use within a 2 km radius

of an admitted child’s residence such that the predicted malaria positive fraction varied from

~0.4 to <0.1 as the prevalence of ITN use varied from 20% to 80%. In this observational
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analysis, we were unable to determine the cause of the decline in malaria between 1998

and 2009, which pre-dated the dramatic scale-up in ITN distribution and use.

Conclusion

Following a period of reduced transmission, a cohort of older children emerged who have

increased susceptibility to malaria. Further reductions in malaria transmission are needed

to mitigate the increasing burden among older children, and universal ITN coverage is a

promising strategy to achieve this goal.

Author Summary

WhyWas This Study Done?

• The past decade has seen a marked decline in malaria transmission in some parts of

Africa alongside substantial investments to control malaria. However, malaria remains a

public health emergency in sub-Saharan Africa.

• As malaria declines in some parts of Africa, older children may become more susceptible

to clinical malaria because reduced exposure earlier in life decreases opportunities for

acquired immunity.

• Insecticide-treated net (ITN) use in randomized controlled trials and observational stud-

ies of effectiveness has been associated with reduced malaria morbidity and mortality.

• Given the ongoing global campaign to increase coverage, there is need for continuous

assessment of ITN effectiveness in field conditions.

What Did the Researchers Do and Find?

• We analyzed 25 y of longitudinal surveillance data of hospital admissions to Kilifi

County Hospital in the Kenyan Coast between 1990 and 2014. We included 69,104 chil-

dren between 3 mo and 13 y of age in the analysis.

• We observed a decline in the proportion of admitted children with malaria parasites on

blood testing from 1998 to 2009. However, there was a steady and marked increase in

the proportion of admitted children with malaria parasites in their blood from 2009 to

2014. This coincided with a shift of malaria burden from younger to older children. For-

tunately, there was no increase in malaria-related mortality.

• The proportion of children with malaria parasites was consistently higher in the southern

region of Kilifi County compared to the north, thereby providing an opportunity for tar-

geted interventions. However, within the northern and southern regions there was substan-

tial geographical variability from year to year, which would complicate targeted control.

• Community ITN use around the admitted child’s residence was highly effective—i.e.,

children presenting for admission surrounded by high ITN usage at the community

level were less likely to present with malaria parasites compared with those surrounded

by low ITN usage.
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What Do These Findings Mean?

• These findings suggest that further reductions of malaria transmission are needed to

mitigate the increasing burden among older children and that universal ITN coverage is

a promising strategy to achieve this goal.

Introduction

Some parts of Africa have seen marked reductions in malaria transmission [1–3] with associ-

ated reductions in malaria-related morbidity and mortality. Children acquire immunity to

malaria following repeated infections, and hence, there is an inverse relationship between the

intensity of malaria transmission and age of susceptibility to malaria [4]. Reduced transmis-

sion intensity of infectious diseases has been associated with increasing age of susceptibility

[5]. This trend has been reported in malaria in both field conditions [6–8] and simulation

studies incorporating acquired immunity [9]. For instance, reductions in malaria transmis-

sion led to more marked improvements in outcomes for children under 5 y than in the older

age groups in Rwanda [7]. In Senegal, a rebound in malaria attacks was observed among

adults and older children following a period of declining transmission [8]. These observa-

tions may be attributed to reduced population-levels of immunity due to reduced exposure. It

is therefore essential to monitor outcomes following initial reductions in malaria

transmission.

The objective of the analysis was to describe trends of malaria admissions by age group and

examine the efficacy of community insecticide-treated net (ITN) use. We report here an analy-

sis of 69,104 hospital admissions over 25 y from 1990 to 2014. Data for the last 6 y were linked

to detailed data on ITN use collected through a demographic surveillance of ~260,000 resi-

dents. We also examined the enhanced vegetation index (EVI) as a proxy for soil moisture con-

tent, which may correlate with the presence of mosquito breeding sites [10].

Methods

Approval for human participation in the hospital surveillance and the cohorts was given by the

Kenya Medical Research Institute (KEMRI) Scientific Steering Committee and the Ethical

Review Committee of KEMRI. Written informed consent was obtained from the parents/

guardians of the children admitted to hospital. If participants could not write, a thumb-print

was obtained, with a witness countersigning that the contents of the information sheet had

been explained. The studies were conducted according to the principles of the Declaration of

Helsinki.

Study Area

The study was conducted at Kilifi County Hospital, which is situated at the center of the Kilifi

Health and Demographic Surveillance System (KHDSS) area on the Kenyan Coast. The

KHDSS covers a population of ~260,000 people living in an area of ~891 km2, as described pre-

viously [11]. Screening for malaria parasites has been continuous for 25 y since the establish-

ment of a pediatric admission ward surveillance system in 1989.
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Data Collection

Children below 13 y of age were admitted to the pediatric service, where demographic details

and clinical history were recorded and blood was examined for malaria parasites by micros-

copy. These assessments were conducted on all emergency admissions, irrespective of pre-

sumptive diagnosis, with the exception of those admitted for elective surgery.

Children with signs of severe disease such as impaired consciousness or deep breathing

were admitted to the high-dependency ward, and children without such signs were admitted to

the pediatric ward. Research clinicians provided 24-h clinical cover of both the high-depen-

dency unit and the general pediatric ward.

Thick and thin blood smears were stained with 10% Giemsa and examined at 1,000x magni-

fication for malaria parasites. One hundred microscopy fields were examined before slides

could be considered negative. Microscopy standards were monitored through a quality assur-

ance scheme. The scheme included a comprehensive microscopy training done as part of the

induction and at regular intervals during the study period. The training also included the use

of external quality control slides.

Data Analysis

Our prespecified protocol was to describe the variation in malaria positive fraction in space

and time within Kilifi County. Here, we present a data-driven analysis of the trends observed

towards increasing malaria in older children over time. The analysis included children aged

from 3 mo to 13 y who were admitted to Kilifi County Hospital between 1990 and 2014 and

were residents of the KHDSS area. Key metrics were the malaria positive fraction (MPF) (i.e.,

the fraction of slide positives among all admitted children) and the mean age of the children

admitted with positive malaria slides (i.e., without applying a threshold parasitemia). Thus,

“Malaria” included all acute admissions with positive slides. We examined the correlation

between the MPFs from passive surveillance at the hospital with incidence data from active sur-

veillance of two cohorts in the community, conducted as previously described [12,13].

Unpaired t-test or the Wilcoxon rank-sum test was used where appropriate to compare aver-

age/median age between groups. Multiple fractional polynomials were used to assess nonlinear

associations in regression models. A sensitivity analysis was carried out with “malaria case”

defined using a cut-off parasitemia of>2,500 parasites per μl.

Spatiotemporal Models

The spatiotemporal heterogeneity of malaria transmission in Kilifi County was assessed using

a multivariable logistic regression model with the presence or absence of malaria parasites by

microscopy among medical admissions (excluding trauma and elective surgery) as the outcome

variable and time (continuous variable to capture the secular trends), year (categorical to cap-

ture year-to-year variability), region (referring to north versus south of the creek), location

(referring to administrative areas within region), and space–time interactions as the indepen-

dent covariates. We used the Pseudo R2 to assess the contribution of the various components

of the model. As a measure for the background community prevalence of parasitemia, age-

standardized parasite prevalence estimates among trauma cases were determined using stan-

dard methods [14], but only when children were afebrile on admission and clinical assessment

did not reveal any other acute cause for admission.
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Covariate Data

EVI data available between 2000 and 2014 were used as a proxy for soil moisture [10]. They were

derived from the National Aeronautics and Space Administration’s (NASA’s) remote-sensing

Moderate-Resolution Imaging Spectroradiometer (MODIS) instrument on board the Terra satel-

lites [15]. EVI data were downloaded at a pixel resolution of 250 x 250 m2 for 16-d intervals and

then averaged by year. Data on ITN use were obtained from yearly KHDSS surveys of all resi-

dents conducted from 2009 through 2014. We used data from responses to the question “Did

you sleep under an ITN last night?” or “Did your child sleep under an ITN last night?”

We imposed regular geographical grids on the study area and concentric circles around

each admitted child’s residence using longitude and latitude coordinates. The prevalence of

ITN use within each concentric circle and the mean EVI within each grid space were used in

multivariable models. We selected a parsimonious model from the set of EVI and ITN covari-

ates created through a stepwise model selection criterion. We tested for the superiority of non-

linear models over linear models by plotting residuals against covariates and testing the

significance of multiple fractional polynomials over linear fits where asymmetrical distribu-

tions of residuals were identified. Observations with missing locations, ages, and slide results

were excluded prior to the analysis. We used multiple imputation with chained equations in

STATA software with 50 imputations to impute missing data on personal ITN use. To impute

personal ITN use, the outcome variable (malaria slide result) and the covariates (EVI, age, and

community ITN use) were included in the multiple imputation model. Multiple fractional

polynomial transformation was applied to allow for nonlinearity in continuous variable effects

(EVI, age, and community ITN use) in the imputation model. The multivariable logistic regres-

sion model results for the imputed datasets (combined using Rubin’s rules) were then com-

pared to model results from the complete case analysis. Age-standardized parasite prevalence

was calculated in R (version 3.0.2) [16], and all other analyses were done using Stata 12.0

(Stata, College Station, Texas, United States).

Results

Geographical Distribution and Trends in MPF

Over 25 y, there were 107,218 pediatric admissions recorded, of whom 87,909 were known resi-

dents of the KHDSS and 71,438 were�3 mo or<13 y of age. Malaria slide data were missing

for 2,334, leaving 69,104 for our analysis (Fig 1). The characteristics of the study population are

presented in Table 1. The fraction of acute admissions that were positive for malaria (i.e., the

MPF) for the full dataset was 0.389 (95% CI 0.385–0.393). MPF was subject to marked spatial

and temporal heterogeneity (S1 Video and Fig 2A).

The average age of children admitted with malaria-positive slides and acute illness increased

gradually from 20.2 mo (95% CI 18.9–21.6) in 1990 to 45.3 mo (95% CI 42.5–48.3) in 2014

(p< 0.001). During the same period, the mean age for children with malaria-negative slides

and acute illness increased only slightly from 19.8 mo (95% CI 18.6–21.1) in 1990 to 26.1 mo

(95% CI 24.9–27.5, p< 0.001) in 2014 (Fig 2B). Furthermore, the mean age of children with

asymptomatic parasitemia among trauma admissions did not increase significantly, ranging

from a geometric mean of 52.1 mo (95% CI 49.5–54.9) in the 1990–2002 predecline period to

64.6 mo of age (95% CI 49.5–84.2) in the 2009–2014 postdecline period (p = 0.0543; the latter

wide CI reflects the reduced prevalence of asymptomatic infection).

The absolute number of malaria slide-positive deaths recorded in the hospital surveillance

fell over time, although the absolute number of malaria slide-negative deaths did not show a

clear trend (Fig 2C). The case fatality rate (i.e., the proportion of children admitted who died)
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among malaria slide-positive children was static, although among slide negative-children, the

case fatality rate showed a gradual decline (Fig 2D).

There was a decline in MPF over the years, with the lowest MPF (i.e., 0.07 [198/2,858])

being recorded in 2009, and a subsequent increase in MPF (up to 0.24 [511/2,169]) in 2014

(Fig 2A). We therefore refer to the 1990–2002, 2003–2008, and 2009–2014 as “predecline,”

“decline,” and “postdecline” periods, respectively. Models accounted for variation in MPF

poorly in the predecline period; however, the decline period was dominated by temporal varia-

tion, and the postdecline period was dominated by spatial variation (Fig 3A, 3B and 3C,

respectively).

There was an inverse relationship between MPF and the average age of children with posi-

tive slides when averaged by location: areas with a higher average age of malaria tended to have

lower MPF and vice versa (Fig 3A compared to 3D, 3B compared to 3E, and 3C compared to

3E). This was significant before the decline (r = −0.36, p< 0.001), but not after (r = −0.05,

p = 0.66). There was a shift in the burden of disease from younger age groups to older age

groups after the decline (S1 Fig).

Fig 1. Flow diagram of participant numbers. Participant numbers and reasons for exclusion at each stage are shown.

doi:10.1371/journal.pmed.1002047.g001
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Access to Care

In order to assess the effect of access to care, we examined the data for trends in MPF over the

euclidean distance between children’s residence and the hospital (S2 Fig). Best-fit lines showed

greater heterogeneity in MPF over distance than linear trend in MPF over distance (a nonsig-

nificant gradient of –0.003 per km, [95% CI −0.006–0.0003, p = 0.08]), suggesting that geo-

graphical heterogeneity had a greater effect than any bias that may have been introduced by

distance from the hospital. Furthermore, we found that the incidence of malaria on active case

detection from two cohorts monitored over 10 y [12,13] correlated closely with MPF measured

at the hospital (r = 0.84, p< 0.001, S3 Fig).

Is the Postdecline Increase in Malaria Due to Increasing Transmission or
Falling Immunity?

In order to disentangle the effects of loss of immunity from transmission intensity, we hypothe-

sized that MPF for children�1 y old (MPF<1yr) would indicate transmission intensity without

the offsetting of acquired immunity (as has been done previously [17,18]). We examined the

trends in MPF<1yr by region (i.e., using the creek in the center of the county as the point of

division into northern versus southern regions) in view of the significant effect of region on

variability of MPF (Fig 3C). MPF<1yr showed a clear decline from the mid-1990s, down to

almost zero in the northern region by 2008 and to low levels in the southern region from 2008

onwards, with a very slight increase after 2009 in the North and a slightly more marked but

variable increase in the South after 2009 (Fig 4A). By comparison, MPF>1yr showed a greater

increase in both regions in the postdecline period, which was particularly marked in the South

Table 1. Characteristics of the study population.

Period in Which Data Were
Available

Analysis Type Characteristics Malaria Slide
Positive

Malaria Slide
Negative

1990 to 2014 Descriptive Analysis Admissions n (%) 26,883 (38.9) 42,221 (61.1)

Age median (IQR) 25.9 (13.2–44.9) 19.2 (9.7–42.7)

Male, n (%) 14,217 (53.0) 23,862 (56.6)

Locations

Chonyi n (%) 2,774 (10.3) 3,955 (9.4)

Gede n (%) 695 (2.6) 1,856 (4.4)

Jaribuni n (%) 2,018 (7.5) 2,383 (5.7)

Junju n (%) 2,018 (7.5) 3,038 (7.2)

Mtwapa n (%) 1,182 (4.4) 3,160 (7.5)

Ngerenya n (%) 1,246 (4.6) 1,941 (4.6)

Roka n (%) 1,964 (7.3) 2,960 (7.0)

Sokoke n (%) 1,470 (5.5) 1,861 (4.4)

Takaungu n (%) 5,071 (18.9) 4,590 (10.9)

Tezo n (%) 8,404 (31.3) 16,437 (39.0)

2009 to 2014 Logistic Regression
Model

Admissions n (%) 1,294 (17.2) 6,211(82.8)

Age Median (IQR) 48.1 (30.1–73.1) 24.2 (11.8–54.3)

Missing Personal ITN Use n (%) 47(3.6) 103(1.7)

Missing Data on ITN Use during Community
Surveys n (%)

190,417 (12.8%)

IQR, interquartile range.

doi:10.1371/journal.pmed.1002047.t001
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(Fig 4B). Within geographical locations, malaria positivity showed substantial variability from

year to year (Fig 4C).

We also examined the age-corrected parasite prevalence (PfPR2-10) among the 5.8% (3,971/

69,104) that were trauma admissions (excluding trauma cases with fever) as a proxy of commu-

nity parasite prevalence (Fig 4D). PfPR2-10 declined from 43% (30/72) and 56% (35/62) in the

northern and southern regions, respectively, in 1999, to<1% (i.e., 0/151 in the North and 1/

100 in the South) in both regions in 2009 but subsequently rose, reaching 2% (2/102) and 4%

(3/83) in the northern and southern regions, respectively, in 2014.

Factors Predicting Malaria-Positive Slides among Admissions

Over the full monitoring period from 1990–2014, there was significant variation in MPF over

space and time, and the spatial variation was most marked in the postdecline period (Fig 3C).

The variation accounted for by an interaction between space and time was also more marked

during this period, suggesting substantial temporal instability of the subregional spatial pattern

Fig 2. Temporal trends of malaria positive fraction (MPF), age of slide positivity, andmortality among acute admissions. Panel A shows the
temporal trend of MPF. Panel B shows the trends of mean age over time for the slide-positive and slide-negative admissions. Panel C shows the temporal
trends of absolute number of deaths, and Panel D shows case fatality rates. Shaded areas in panels A, B, and D represent 95% CIs.

doi:10.1371/journal.pmed.1002047.g002
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during this period (Fig 4D). The interaction between space and time was strongly significant

(p< 0.001) and accounted for ~1% of the variability in MPF. However, the regional differences

(i.e., with lower MPFs in the north versus the south of the creek) remained temporally consis-

tent despite the subregional instability.

The prevalence of ITN use among residents in the northern region was estimated at 32%,

16%, and 26% in the years 2000, 2003, and 2005, respectively (malaria indicator surveys, S1

Table), and then at 55.9% (95% CI 55.7–56.1) in 2009, rising to a high of 82.6% (95% CI 82.5–

82.8) in 2013 in the surveys we conducted. Detailed spatial data were available between 2009

and 2014, including EVI and ITN use for each of the 250,000 residents in the study area (S4

and S5 Figs). We identified four independent predictors of malaria slide positivity: (a) ITN cov-

erage in the 2 km radius around the child’s residence, (b) age of the child, (c) EVI in the 0.25 x

0.25 km square around the child (i.e., the finest resolution at which EVI was available), and (d)

time (Fig 5B, S2 Table). Personal ITN use was a predictor in univariable analysis (odds ratio

[OR] = 0.73, 95% CI 0.65–0.83, p< 0.001), but not after adjusting for ITN use in the 2 km

Fig 3. Geographical distribution of MPF and age of slide-positive acute admissions over time. Panels A, B, and C show spatial distributions of MPF
for the predecline, decline, and postdecline periods respectively, and their associated pie charts show the proportion of the variability in MPF explained by
the predictors: region (i.e., north versus south), location, time trend (i.e., as a continuous variable), an interaction between time and location, year to year
variation (i.e., year as a stratified variable), and the unexplained variations. Panels D, E, and F show spatial distributions of age in months for the slide-
positive admissions during the predecline, decline, and postdecline periods.

doi:10.1371/journal.pmed.1002047.g003
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radius around the admitted children’s residences (S2 Table). There were no marked differences

in characteristics of missing ITN data compared to nonmissing data by age, EVI, gender, and

location of residence (S3 Table). Results from multiple imputation were not significantly differ-

ent from complete case analysis (S2 Table).

There was a strongly significant (p< 0.001) nonlinear relationship between community

ITN use in the 2 km radius area around a child’s residence and a slide-positive result, such that

MPF reduced substantially with increasing ITN use (Fig 5A). Similar results were obtained

using a model that included clustering at 250 m2 (S4 Table).

Discussion

We analyzed 69,104 hospital admissions at Kilifi County Hospital over 25 y to describe trends

of malaria admissions by age group and examined the effectiveness of community ITN use.

The proportion of acutely unwell children admitted to hospital with malaria-positive slides

compared to all acute admissions (i.e., the MPF, also termed the “slide-positive rate”) declined

from 2002 until 2009 as reported previously [19]. However, after 2009 there was an increase in

MPF that continued through to 2014. This increase was mostly seen in older children: there

Fig 4. Temporal trends of MPF by age and parasite prevalence. Panels A and B show the temporal trends of MPF in admitted children aged� 1 y old
and children aged > 1 y old, respectively; the red line represents the southern region, while the blue line represents the northern region of the creek. Panel
C shows all age MPF for randomly selected locations from the southern and northern regions. Panel D shows the age-standardized parasite prevalence
(i.e., Plasmodium falciparum parasite rate [PfPR2-10]) among the trauma cases. Shaded areas in panels A, B, and D represent 95% CIs.

doi:10.1371/journal.pmed.1002047.g004
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were relatively modest increases among children less than 1 y of age (MPF<1yr) but much

greater increases among children above 1 y of age (MPF>1yr). This combination of findings

suggests that the increase in malaria is due to increasing susceptibility to disease among older

children, exacerbated by a slight increase in underlying transmission intensity since 2009.

Additional evidence for increasing transmission after 2009 can be seen in the increasing preva-

lence of asymptomatic parasitemia (PfPR) among children admitted for trauma and work

showing increasing parasite prevalence throughout the Kenyan Coast [20].

Not all children admitted to hospital meet the criteria for severe malaria [21]. However, chil-

dren admitted to hospital have higher parasite counts than children treated in the community

by primary health care facilities, which likely reflects increased illness severity compared with

cases treated in the community [12,22]. Previous analyses suggest that the presence of comor-

bidity does not necessarily indicate that the parasitemia is co-incident and not the proximate

cause of admission [12,22], and we have therefore included all slide-positive admissions apart

from those for trauma and elective surgery in our analysis. This analysis inevitably includes

Fig 5. Regression model prediction and variability explained by the predictors of the model. Panel A shows the predicted probability of a positive
slide result (y-axis) against the prevalence of ITN use in a 2 km radius around each admitted child’s residence (shaded area represents 95% CI). Panel B
shows the pseudo R2 of the various variables assessed in the extended model (ITN use around a child’s residence, EVI, age, age–time interaction, time,
region, and location). We repeated our analysis using a cut-off of >2,500 parasites per μl. The same patterns were seen—i.e., a pattern of a postdecline
increase in MPF among older children (S6 Fig), and an inverse relationship between MPF and age of malaria (r = −0.63, p < 0.001) and a pattern of
protection by community-level ITN use (S7 Fig). These patterns remained statistically significant.

doi:10.1371/journal.pmed.1002047.g005
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some cases of co-incidental asymptomatic parasitemia. Since asymptomatic parasitemia tends

to be lower in density than the parasitemia associated with acute illness, we included a sensitiv-

ity analysis with a threshold parasite density of>2,500 parasites per μl to examine the impact

of excluding asymptomatic parasitemia on our results.

It has been shown previously that at high transmission intensities, children acquire immu-

nity rapidly and so are not susceptible to disease when they are older [6]. On the other hand, at

low transmission there is less disease among younger children, and consequently, older chil-

dren acquire less immunity and remain susceptible [6]. Therefore, we predict that the lowest

malaria rates will occur just after a recent reduction in transmission: at this point, current expo-

sure is low, but older children are immune because of their previous exposure when transmis-

sion was high. As time goes by after a reduction in transmission, a cohort of older children will

emerge who are susceptible to the disease, and the rates of malaria will increase again.

Taking together our finding of (a) trends of increasing age of children admitted with posi-

tive malaria slides in parallel with falling PfPR2-10 in the community and falling MPF<1 among

hospital admissions, (b) a geographical association in which areas with high MPF have a low

average age of children admitted with malaria, and (c) previous analyses [23] and geographical

analyses [4] showing the importance of the relationship between prior exposure and immunity

to malaria, the most likely conclusion is that reduced exposure led to increasing susceptibility

among older children and hence the subsequent increase in MPF.

Other potential explanations for increasing malaria admissions among older children could

include increased prevalence of preferential ITN use among younger children rather than loss

of immunity. However, multivariable models (complete case and imputed data analysis) that

accounted for personal ITN use showed that age, and the interaction between age and year,

were independent predictors of malaria, indicating that the increasing MPF among older chil-

dren was independent of variation in ITN use by age (S2 Table). Furthermore, the difference in

ITN use by age was modest (87% of children less than 1 y of age used ITNs compared with

78% of children between 1 and 5 y of age). Other interventions to prevent malaria targeted at

younger children that increased over time could produce a similar pattern, but we are unaware

of any interventions meeting these criteria. An increasing prevalence of outdoor biting might

also preferentially affect older children. However, this would not explain the clear inverse cor-

relations seen between MPF and average age over time and by geographical region, which sug-

gests that immunity is an important component of the variation in MPF. In the absence of host

immunity, older children may be at higher risk than younger children since mosquito biting

may be proportional to surface area [24]. However, MPFs do not necessarily reflect incidence.

For instance, the risk of nonmalarial fever falls as children get older, which would lead to an

apparent increase in MPF.

The scale-up in ITN use occurred in 2006 and therefore is not related to the reductions in

transmission seen from 2000 onwards: changing antimalarial drug use and rainfall may be rele-

vant [20]. Regardless of the cause of the prior decline, we found clear evidence of ITN efficacy

during the period in which they were used. Personal ITN use was associated with reduced MPF

among children admitted to hospital. However, when multivariable models were examined, it

was the prevalence of ITN use in the 2 km radius area around a child that independently

reduced the probability of a malaria-positive slide, regardless of personal use. Hence, it is likely

that the resurgence in malaria seen since 2009 would have been even more marked in the

absence of ITNs.

The WHO and Kenyan national policy recommend universal ITN coverage to control

malaria. However, operational constraints often do not allow this, and thus, many distribu-

tion strategies instead target younger children and pregnant women as high-risk groups.

Our data suggest that universal coverage should be a high priority since (a) older children
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are increasingly in need of protection as transmission falls and (b) the mass-protective effect

would achieve substantial gains in malaria control above those achieved by personal ITN

use.

Fortunately, we did not identify strong evidence of an increasing case fatality rate as trans-

mission fell (Fig 2D). The risk of mortality from severe malaria increases in older age groups

across the range from children to adults [25], but this increase may be less evident within the

age range of children below 10 y of age [21,26]. Furthermore, many other factors influence

mortality over time, including variation in hospital use over time, access to care (and therefore

earlier presentations), better care [27,28], and socioeconomic conditions. Our data do not sug-

gest that increasing mortality is an immediate concern of the postdecline period despite the

increasing rates of malaria in older children.

Study limitations include the use of MPF among acute admissions, which may be biased by

varying access to care. In support of the use of MPF, we found a close correlation between loca-

tion-matched MPFs with the incidence rates from active case detection data from two cohort

studies conducted within the same study area. Furthermore, we showed that geographic het-

erogeneity was larger than any consistent bias in MPF with regards to distance to the hospital

(S2 Fig), agreeing with previous work [17].

We based our analysis on the proportion of children with positive malaria slides. This case

definition includes children with chronic asymptomatic parasitemia and coincident fever. To

exclude a bias resulting from including these children, we repeated the analysis after applying a

threshold of>2,500 parasites per μl, which excludes the majority of children with asymptom-

atic parasitemia (S6 Fig) [12].

Our ITN surveys were conducted annually and based on reported rather than observed use.

The potential misclassification could lead to an underestimate of the protective effect of ITNs.

During the study period, there were no other widespread interventions such as antimalarial

prophylaxis or presumptive treatment that were targeted on younger children. ITN use has not

been randomly assigned, and therefore, confounding could be present. If present, this would

most likely dilute the effect size (i.e., ITN use would be better taken up in areas of higher

malaria risk). Furthermore, observational studies of ITN use have consistently shown findings

similar to those of randomized controlled trials (RCTs), suggesting that within specific com-

munities confounding is not pronounced [29].

Our data were taken from a single geographical setting. However, there is evidence that

immunity to malaria is dependent on exposure in a wide range of geographical settings [6],

and therefore, our findings may be relevant more widely across Africa in settings where trans-

mission is falling [2].

In conclusion, we show that despite substantial reductions in malaria transmission in Kilifi,

residual malaria transmission has continued and older children are increasingly vulnerable to

disease. As countries and regions make progress in malaria control [3], maintaining control

measures will be essential: in fact, further progress will be required to offset the increasing rates

of malaria in older children. Achieving ITN coverage close to 100% shows promise as a strategy

but will require novel strategies, particularly among groups that seem less keen to use ITNs,

such as adolescent males and young adults [30].
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S1 Fig. Trends of malaria positivity by age group (years) and transmission period. The
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3–5 (3 to 4 y old),>5 (children over 5 y old).
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S2 Fig. Association and trends of MPF with distance from hospital. The figure shows the

association of MPF with distance from hospital, the green line presents the predicted linear

regression line, the red line presents the predicted line from the multiple fractional polynomial

model, and the blue line presents the fitted lowess function.

(TIFF)

S3 Fig. Malaria incidence in active case detection compared with MPF. The figure shows the

association between malaria incidence from active case detection in the Junju and Ngerenya

areas and that of MPF among patients admitted to the hospital from these sites (Rho = 0.84,

p< 0.001).
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S4 Fig. Finer-scale geographical distribution of MPF (Row I), ITN use (Row II), and EVI

(Row III) over time and the average admissions per year (Row IVa) and population density

(Row IVb). Panels IVc, IVd, and IVe are the legends for Row I, Row II, and Row III, respec-

tively.
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S5 Fig. Trends in ITN use and EVI. Panel A shows the trends of EVI from year 2000 through

to 2014. Panel B shows the trend of ITN use for a 6-y period (2009–2014).
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S6 Fig. Trends of MPF, over time and region using a case definition for malaria of>2,500

parasites/μl. Panels A and B show the temporal trends of MPF in admitted children aged� 1 y

old and children aged> 1 y old, respectively; the red line represents the southern region, while

the blue line represents the northern region of the hospital.

(TIFF)

S7 Fig. Regression model prediction using a case definition for malaria of>2,500 para-

sites/μl. The figure shows the predicted probability of a positive slide result (y-axis) against the

prevalence of ITN use in a 2 km radius around each admitted child’s residence.
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S1 Table. Data from malaria indicator surveys conducted in the northern region of the

Kilifi demographic surveillance area.
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S2 Table. Multiple logistic regression model of malaria on personal ITN use, ITN use prev-

alence around the child’s residence, and EVI (complete case analysis compared to multiple

imputation analysis).
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S3 Table. Characteristic of individuals with missing ITN data during community ITN use

surveys.
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S4 Table. Multiple logistic regression model of malaria on personal ITN use, ITN use prev-

alence around the child’s residence, and EVI (allowing clustering at 250 m2).
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S1 Video. Shows the spatiotemporal variations of MPF in Kilifi County.
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