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Age-specific differences in the dynamics
of protective immunity to influenza
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Influenza A viruses evolve rapidly to escape host immunity, causing reinfection. The form and

duration of protection after each influenza virus infection are poorly understood. We quantify

the dynamics of protective immunity by fitting individual-level mechanistic models to long-

itudinal serology from children and adults. We find that most protection in children but not

adults correlates with antibody titers to the hemagglutinin surface protein. Protection against

circulating strains wanes to half of peak levels 3.5–7 years after infection in both age groups,

and wanes faster against influenza A(H3N2) than A(H1N1)pdm09. Protection against H3N2

lasts longer in adults than in children. Our results suggest that influenza antibody responses

shift focus with age from the mutable hemagglutinin head to other epitopes, consistent with

the theory of original antigenic sin, and might affect protection. Imprinting, or primary

infection with a subtype, has modest to no effect on the risk of non-medically attended

infections in adults.
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L
ike many antigenically variable pathogens, influenza viruses
continuously evolve to escape host immunity. As a con-
sequence, they cause frequent epidemics and infect people

repeatedly during their lives. The details of these processes—
which are vital to influenza epidemiology, evolution, and the
design of effective vaccines—have nonetheless remained sur-
prisingly difficult to pin down despite nearly 70 years of study.

A major challenge is uncertainty about the nature of acquired
immunity. Antibodies are the primary means of protection
against influenza and impose strong selection on its surface
proteins1,2. Antibody responses to influenza are highly cross-
reactive, in that antibodies induced by infection or vaccination
with one strain often protect against infections with related
strains3,4. The hierarchical nature of this cross-reactivity, in
which memory responses to conserved antigens tend to dominate
over responses to new epitopes, is known as original antigenic
sin5–7. It might underlie the phenomenon of imprinting, in which
primary infection with one influenza subtype protects against
severe disease and death with other subtypes that are closely
related phylogenetically8. But the specificity and duration of
protection after seasonal influenza infection have been difficult to
estimate, partly because the relationship between antibody titer
and protection appears complex, and also because longitudinal
observations of antibody titers and infections are rare. The most
common measure of anti-influenza antibody is the hemaggluti-
nation inhibition (HI) assay, and HI antibody titers are an
established correlate of protection9. The HI titer corresponding to
50% protection against infection, commonly cited as 4010,11, may
vary by influenza A subtype and host age12,13, although mea-
surement error, long intervals between titer measurements, and
variable titer changes after infection complicate inferences. Recent
models have made progress by incorporating measurement
error14,15, representing infections as latent states14,16,17, and
using titers to historic strains to measure the intervals between
infections14, attack rates15,16, and the breadth of the response over
time14,17. But the relatively short periods of observation in these
studies have made it difficult to estimate some basic quantities in
the response to infection, namely, how long protection lasts, and
whether antibody titers adequately reflect the strength of protec-
tion against infection in individuals over time.

Longitudinal cohorts provide relatively unobscured observa-
tions of the dynamics of infection and protection, and mechan-
istic models allow hypotheses about these dynamics to be tested.
We fit stochastic mechanistic models to influenza antibody titers
collected over five years from a large household cohort study
including children and adults. These models account for pre-
existing immunity, variation in the response to infection, and the
possibility that the HI titer is not a good correlate of protection
from infection. Their flexibility allows many previous assump-
tions to be relaxed. For both influenza A subtypes, we estimate
the duration of within-subtype and cross-subtype protection, the
relationship between HI titer and protection, and the effect of
early childhood influenza exposures on infection risk later in life.
The dynamics inferred from these individual-level models are
remarkably consistent with the epidemiological dynamics of the
larger population, and they also support immunological theory of
how the antibody response to influenza changes with age.

Results
Homosubtypic protection: correlation with anti-HA anti-
bodies. We fitted models to data from a cohort of 592 adults
(>15 y) and 114 children (≤15 y) followed from 2009 to 2014 in
Hong Kong. Members of this cohort were part of a larger
household study18,19 and were selected because they were not
vaccinated for the study and reported no vaccination during the

five years of follow-up. The cohort included 337 households with
a median size of 2 members. Sera were obtained every six months
and tested for antibodies to circulating strains of influenza A
(H3N2) and A(H1N1)pdm09 via the HI assay.

Antibodies measured by the HI assay are an established correlate
of protection for influenza virus infection10,20,21. Neutralizing
antibodies against the dominant surface proteins, hemagglutinin
(HA) and neuraminidase (NA), can target different sites on them,
and the specificity of the antibody response appears to change with
immune history and age22–26. HI assays measure antibodies to HA
but not NA, and they disproportionately measure anti-HA
antibodies that attach near the receptor binding site toward the
top of the HA globular domain.

To characterize the role of these antibodies in protection, we
tested a simple hypothesis about the dynamics of susceptibility
after infection: protection from infection could be associated with
HI titer, the time since last infection (a potential correlate of other
antibody and broader immune responses), or a mixture of the
two. We define an individual’s susceptibility to a subtype as the
probability of infection given exposure. Rewriting the hypotheses
mathematically, we propose the susceptibility of an individual i to
subtype s at time t, qi,s(t), is a function of HI-correlated factors
and non-HI-correlated factors.

HI-correlated factors: An individual’s susceptibility can be
measured by the HI titer to a representative circulating strain. We
assume that HI-correlated susceptibility, q1i;sðtÞ, is a logistic

function of the current titer10,11,with the shape of the curve set by
the titer at which 50% of subjects are protected from infection
(Fig. 1b). This 50% protective titer is defined for each age group a
∈ {child, adult}, TP50ai;s (Eq. 9),

qi;sðtÞ ¼ q1i;sðtÞ: ð1Þ

Non-HI-correlated factors: Susceptibility can be explained by
the time since last infection with that subtype (Fig. 1b).
Susceptibility determined by non-HI-correlated protection,
q2i;sðtÞ, is a function that starts at 0 (no susceptibility)

immediately after infection. The susceptibility increases as
protection wanes exponentially at rate wnonspecific;ai ;s

(Eq. 10),

qi;sðtÞ ¼ q2i;sðtÞ: ð2Þ

Titers in this model are still informative as indicators of
infections, but they do not affect infection risk.

We evaluate the contribution of each component by fitting a
weighted susceptibility model,

qi;sðtÞ ¼ q1i;sðtÞψai;s
þ q2i;sðtÞð1� ψai;s

Þ; ð3Þ

where ψai;s
measures the contribution of HI-correlated protection to

susceptibility in children (ai= children) and adults (ai= adults).
The value of ψai;s

therefore distinguishes between models in which

protection is completely HI-correlated ðψai;s
¼ 1Þ, models in which

protection is completely non-HI-correlated ðψai;s
¼ 0Þ, and models

in which protection is predicted by a combination of the two
components ð0<ψai;s

<1Þ. To estimate the contribution of HA-head-

directed antibodies to protection from influenza infection in
children and adults, Eq. 3 was incorporated into a partially
observed Markov model that simulates individuals’ latent (unob-
served) HI titers and susceptibility to infection over time while
simultaneously accounting for measurement error (Fig. 1b; “Meth-
ods” section). The model assumes that infection can change the
antibody titer, which allows infection events and thereby latent
susceptibility (qi,s(t)) to be inferred from longitudinal sera.

In the model, infection acutely boosts an individual’s titer,
which then wanes slowly over one year, potentially leaving a long-
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term boost that does not wane. To increase accuracy in modeling
these acute boosts, we took advantage of 112 PCR-confirmed
infections and pre- and post-infection titers from this study to fit
the mean and standard deviation of the titer rises (Fig. 1a;
Supplementary Discussion). The acute boost was higher for
H3N2 than for H1N1pdm09 in both children and adults, but
there was no significant difference in boost sizes by age in either
subtype (Supplementary Table 5). We found evidence of an
antibody ceiling effect, whereby individuals with higher pre-
infection titers have smaller boosts (see Supplementary Discus-
sion). After fitting this sub-model to describe the relationship
between infection and short-term titer changes, we then fixed its
parameters to fit the full model of titer dynamics to all 706
individuals. For children and adults, the full model estimates the
contribution of HI-correlated and non-HI-correlated factors to

protection (Eq. 3), the magnitude of the long-term titer boost, the
50% protective titers (for Eqs. 1 and 3), and the rate of waning of
non-HI-correlated protection (for Eqs. 2 and 3) (Fig. 1b).
Additionally, because some subjects in the study belong to the
same household, we estimate the contribution of infected
household members to an individual’s force of infection, relative
to that of the community. Simulating from the maximum
likelihood estimates of the best model yields additional informa-
tion, including the typical duration of protection after infection,
attack rates in different epidemics, and the odds ratios of
infection from one epidemic to the next (Fig. 1c). These
simulations are also useful for checking how well the model
reproduces different features of the data (Fig. 1d).

For both subtypes, protection in children is HI-correlated
(ψchildren,H3N2 = 1.0, 95% CI: (0.8, 1.0); ψchildren,H1N1pdm09 = 1.0,

Table 1 Maximum likelihood estimates and 95% confidence intervals (CI)

Subtype Parameter MLE [95% CI]

H3N2 Long-term boost ζadults,s 0.0 [0.0, 0.03]

ζchildren,s 0.04 [0.02, 0.07]

Weight of HI-correlated immunity ψadults,s 0.0 [0.0, 0.2]

ψchildren,s 1.0 [0.8, 1.0]

50% protective titer TP50children,s 44 [29,74]

Half-life non-HI-correlated immunity from wnonspecific, adults,s 4.1y [3.2, 5.5]

Daily within-household transmission rate ωs 0.05 [0.02, 0.11]

H1N1pdm09 Long-term boost ζadults,s 0.06 [0.05, 0.07]

ζchildren,s 0.04 [0.02, 0.07]

Weight of HI-correlated immunity ψadults,s 0.10 [0.07, 0.12]

ψchildren,s 1.0 [0.8, 1.0]

50% protective titer TP50adults,s 8 [1,12]

TP50children,s 15 [8,25]

Half-life non-HI-correlated immunity From wnonspecific, adults,s 4.0y [3.1, 5.2]

Daily within-household transmission rate ωs 0.06 [0.03, 0.09]
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Fig. 1 Schematic of modeling approach. Steps 1 and 2 are performed for each subtype. Step 1: Model fitting. a First, the sub-model of short-term post-

infection titer dynamics is fitted to a subset of the data. This subset includes the time of PCR-confirmed infection and the immediate pre- and post-infection

titers. The mean and standard deviation of the acute titer boost and the mean’s dependence on pre-infection titer (the antibody ceiling effect) are fitted.

b Next, fixing the parameters associated with short-term titer dynamics (a), the full model is fitted to titers from the entire cohort. The contribution of HI-

correlated and non-HI-correlated protection, the titer waning rate, the 50% protective titer, and the long-term boost after infection are estimated. Step 2:

Model predictions and validation. c The duration of protection and inter-epidemic protection are estimated from simulating population-level dynamics from

the best-fit model in b. From the latent infections and susceptibility for each individual, we track the loss of protection after infection. We also estimate the

cumulative epidemic incidence and the odds ratios (OR) of protection between epidemics. d Simulation enables additional checks of the model. We

compare the simulated and observed distributions of n-fold titer rises and coefficients of titer variation among individuals
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95% CI: (0.8, 1.0); Table 1), whereas in adults, time since infection
better predicts protection (ψadults,H3N2 = 0.0, 95% CI (0.0, 0.2);
ψadults,H1N1pdm09 = 0.1, 95% CI (0.07, 0.12)). This result suggests
that early in life, protection against influenza virus infection is
dominated by immune responses that correlate well with HI titer,
such as antibodies to the top of the HA head. However, over time,
other immune responses dominate, such that time since infection
becomes a better predictor of protection than HI titer. This result
is consistent with the observation that more children than adults
in this study have detectable baseline HI titers, and children have
higher mean baseline HI titers, to circulating strains (Supple-
mentary Fig. 1; “Methods” section).

Duration of age- and subtype-specific protection. Using the
best-fit models for each subtype, we next quantified the duration
of protection against infection with the same subtype in adults
and children.

To estimate the duration of protection in adults, we simulated
from the fitted models for each subtype. Using 1000 replicate
simulations, we tracked the latent susceptibility after infection.
For each individual at any time, this susceptibility is given by the
weighted average of two components, one set by the titer and the
other by the time since infection (Eq. 3). In adults, the model
favors non-HI-correlated protection against H3N2, with a half-
life of 4.1 y (95% CI (3.2, 5.5)) (Table 1).

In contrast to H3N2, however, HI-correlated protection
contributes slightly to adults’ protection against H1N1pdm09
(ψadults,H1N1pdm09= 0.1 (95% CI (0.07, 0.12)). The associated low
50% protective titer (TP50adults,H1N1pdm09= 8 (95% CI (1,12),
Supplementary Fig. 2) implies that most individuals (i.e., even
individuals with titer <10, the lower limit of detection by HI
assays) benefit from minor additional protection after infection.
When we plot the latent susceptibility after each infection with
each subtype, we see that the individual trajectories in Fig. 2a, b
follow the curve describing the change in non-HI-correlated
protection (Eq. 10). The contribution of HI-correlated protection
to the post-infection protection dynamics of H1N1pdm09 creates
mild individual-level variability arising from differences in pre-

infection titers. In aggregate, adults’ susceptibility to H1N1pdm09
thus wanes with a half-life of approximately 6.4 y (95% quantile:
(4.8, 6.7)), reflecting a significantly slower loss of protection than
for H3N2. Infection in adults produces only a small durable titer
boost to H1N1pdm09 (ζadults,H1N1pdm09= 0.06 (95% CI: 0.05,
0.07)) and a negligible durable boost to H3N2 (ζadults,H3N2= 0.0,
(95% CI: 0.0, 0.03); Table 1). Compared to adults, children have a
more variable duration of protection. Because susceptibility in
children depends only on HI titer, the dynamics of individual
protection are sensitive to pre-infection titers and differences in
the magnitude of the acute boost post-infection. For both
H1N1pdm09 and H3N2, we estimated substantial variation in
the short-term titer dynamics after PCR-confirmed infection (see
Supplementary Discussion). The variability arises both from
stochastic variation in the magnitude of the short-term titer boost
and from the antibody ceiling effect (Supplementary Tables 1 and
5). Protection in children wanes with a median half-life of ~7.1 y
(95% quantile: (2.8, 8.8)) for H1N1pdm09 and 3.5 y (95%
quantile: (1.4, 5.2)) for H3N2 (Fig. 2c, d); thus, the duration of
protection in children is similar to adults’ against H1N1pdm09,
but shorter against H3N2.

We find that unlike in adults, infection with H1N1pdm09
generates a long-term boost in titer that is 30% the size of the
acute boost (ζchildren,s= 0.3 (95% CI: 0.2, 0.5), Table 1), allowing
children to gain long-term protection as their baseline titer
eventually rises above the TP50children through repeated expo-
sures. In H3N2, by contrast, we estimate only a small long-term
boost (ζchildren,s= 0.04 (95% CI: 0.02, 0.07), Table 1), which could
reflect the antigenic evolution of circulating strains and the
change in the strain used in the HI assay during the study.

Population-level estimates of incidence and protection. Despite
being fitted to individuals’ titers, the models recover reasonable
population-level patterns of infection for both subtypes. From the
simulated latent infections, we inferred the annual incidence and
the cumulative epidemic incidence in children and adults (Fig. 3,
Supplementary Table 2). Because the models assume that the
community-level, subtype-specific influenza intensity affects an
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individual’s infection risk (Methods, Eq. 7), it is unsurprising that
periods of high monthly incidence in the simulated study
population match those in the community (Fig. 3). However, the
absolute monthly incidence in the study population is effectively
unconstrained, emerging from the estimated subtype-specific
scaled transmission rate, βscaled,s (Supplementary Table 7, Sup-
plementary Fig. 21), and protection parameters (Table 1). The
results nonetheless match estimates from other populations. The
cumulative incidences of individual H1N1pdm09 epidemics
range from 7 to 12% in adults and 10–17% in children (Supple-
mentary Table 2). For H3N2, the cumulative epidemic incidences
range from 4–12% in adults and 6–23% in children. Estimates of
cumulative seasonal influenza incidence in the United States are
5–20% based on combined serology and viral infection (of
influenza A and B)27 and 3–11% based on symptomatic PCR-
confirmed infections of influenza A28. Converted to annual rates,
the simulated annual incidences are similar, ranging from 5–17%
in adults and 7–29% in children. We estimate that for both
subtypes, the daily within-household intensity (the increased risk
of transmission given that at least one member in the household

is infected) is roughly 5%, or ~25% over an average five-day
infectious period (ωs, Table 1). This is consistent with published
estimates of secondary household attack rates for influenza A
virus ranging from 10 to 30%29–34. For example, for a young child
at the peak of a H1N1pdm09 epidemic, the daily risk of trans-
mission from the community is approximately 2.1% per day.
Therefore, our results suggest that the within-household trans-
mission rate is at least twice as high as the maximum community-
level risk. The same is true for H3N2.

The simulated infections reproduce other estimates of protec-
tion over time. We estimated the odds ratios of protection
between epidemics (Table 2). We find evidence of inter-epidemic
H1N1pdm09 protection for children between 2009 and 2011,
consistent with a previous analysis of this trial that used ≥4-fold
titer rises to indicate infection19, and between 2011 and 2013. We
also find evidence of protection for adults for the same two inter-
epidemic periods. Protection against H3N2 in both children and
adults occurred between 2010 and 2012 and between 2012 and
2013. The point estimates of the odds ratios inferred from ≥4-fold
titer rises in children are lower than those inferred from latent
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Table 2 Inter-epidemic odds ratios of infection

Subtype OR [95% quantiles] Estimate from [19]

H1N1pdm09 Adults OR1,2 0.55 [0.51, 0.70] 0.27 [0.10, 0.76]

OR2,3 0.72 [0.69, 0.80]

OR1,3 0.86 [0.74, 1.16]

Children OR1,2 0.39 [0.12, 0.85]

OR2,3 0.29 [0.08, 0.65]

OR1,3 0.48 [0.09, 1.10]

H3N2 Adults OR1,2 0.37 [0.19, 0.56] 0.39 [0.18, 0.83]

OR2,3 0.55 [0.38, 0.76]

OR1,3 0.81 [0.53, 1.03]

Children OR1,2 0.48 [0.10, 0.89]

OR2,3 0.28 [0.06, 0.79]

OR1,3 0.85 [0.82, 1.09]

Odds ratios are predicted from 1000 replicate simulations of the models for H1N1pdm09 and H3N2 at the MLEs. Epidemics are numbered as in Fig. 3. The rightmost column shows odds ratios estimated

using ≥4-fold changes in titer as an indicator of infection
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infections in this model, suggesting that past infection may
protect more against large titer rises than infection per se.

Group-level HA imprinting and heterosubtypic protection.
Previous work has suggested that primary infection with a sub-
type reduces susceptibility to severe disease and death with
related subtypes, a phenomenon known as imprinting8,35. Influ-
enza A HAs fall into two phylogenetic groups, with H1 and H2
belonging to Group 1 and H3 to Group 2. We estimated the
protective effect αimp,s of primary infection with a subtype of one
HA group on the rate of infection with subtype s of the same HA
group by

λimp;i;sðtÞ ¼ λi;sðtÞðαimp;sÞðpimp;i;sÞ þ λi;sðtÞð1� pimp;i;sÞ; ð4Þ

where λimp,i,s(t) is the force of infection on individual i with
subtype s at time t considering imprinting, and λi,s(t) is the
baseline infection rate for an individual not imprinted with that
subtype’s HA group (Eq. 6). The probability of having had a
primary infection with the same group as subtype s is pimp,i,s, and
αimp,s is thus the change in that baseline force of infection from
imprinting. Imprinting implies αimp,s < 1. We calculate pimp,i,s

based on the individual’s birth date, the current date, and his-
torical incidence data (“Methods” section, Supplementary Fig.
3A). Birth-year effects and age-specific effects are often con-
founded, but are potentially distinguishable in longitudinal data
from individuals of similar ages but different primary exposures.
We therefore fit the imprinting models for H1N1pdm09 and
H3N2 to data from middle-aged adults (35–50 y), whose first
exposures were to Group 1 (mainly H2N2) or Group 2 (H3N2)
viruses (Supplementary Fig. 3B). For H3N2, we thus estimate the
effect of homosubtypic imprinting, and for H1N1pdm09, we
estimate group-level imprinting from primary infection with
either H1N1 or H2N2 (Supplementary Table 3). The 95% con-
fidence intervals for the maximum likelihood estimates of the
imprinting effect (Supplementary Fig. 3C) show the model is
consistent with Group 1 protection ranging from 0.6 to 1.0, i.e.,
0–40% reduction in susceptibility, and with Group 2 protection
between 0.9 and 1.2, suggesting no protection.

Epidemiological and immunological studies have suggested
that infection with one subtype might protect in the short term
against another36–38. To estimate the duration of heterosubtypic
protection, we fitted a two-subtype model of H1N1pdm09 and
H3N2, fixing the parameters that govern homosubtypic immu-
nity at the MLEs of the best-fit single-subtype models (Table 1).
Let qhomosubtypic,i,s denote susceptibility to subtype s determined
only by homosubtypic protection. Heterosubtypic protection
after infection with subtype m ≠ s contributes to the
susceptibility against subtype s such that the net susceptibility
to subtype s, qi,s(t), is

qi;sðtÞ ¼ minðqhetero;i;sðtÞ; qhomosubtypic;i;sðtÞÞ; ð5Þ

where qhetero,i,s(t) is determined by the time since infection with
subtype m (Eq. 17). We assumed the rate of waning of
heterosubtypic protection, wnonspecific,m, is identical for both
subtypes. In these data, the model estimates that any hetero-
subtypic protection is fleeting (Supplementary Fig. 4; half-life
from wnonspecific,m= 0.002 y; 95% CI: 0.0, 0.07).

Model validation and sensitivity analysis. In addition to com-
paring the models’ results to other estimates of population-level
incidence and protection between epidemics, we investigated the
model’s ability to match other features of the data. The best-fit
models reproduce the observed distributions of 1−, 2−, and 4-
fold titer rises, considering all individuals’ trajectories together
(Supplementary Discussion; Supplementary Figs. 6 and 7).

However, the models tend to overestimate how much an indivi-
dual’s titer varies over time (Supplementary Discussion; Supple-
mentary Figs. 8 and 9). This suggests the model might not be fully
capturing individual heterogeneity in infection risk and/or the
response to infection, although individuals’ trajectories appear
reasonable by eye (Supplementary Figs. 10, 11). Beyond esti-
mating the factors that correlate with protection, we examined the
robustness of our model to other assumptions. Our results are
robust to changes in the initial conditions, namely, how recently
individuals are assumed to have been infected (see Supplementary
Discussion). Results also do not change with an alternate scaling
of the community influenza intensity to account for increased
surveillance during the 2009 H1N1pdm09 pandemic (see Sup-
plementary Discussion, Supplementary Figs. 12 and 19). Addi-
tionally, our assumptions about the m]easurement error are
consistent not only with values estimated by others17,39 but also
with the error estimated from replicate titer measurements in the
data (see Supplementary Discussion, Supplementary Fig. 20).

Discussion
Our results suggest that protection against influenza A has dif-
ferent origins in adults and children. In children, the HI titer is a
good correlate of protection, and infection durably boosts titers
against H1N1pdm09. In adults, time since infection is more
strongly correlated with protection than the HI titer, and infec-
tion is associated with small to no long-term changes in titer. HI
assays primarily measure antibodies to epitopes on the top of HA,
and not epitopes on the sides of HA or on the stalk. Thus, these
results suggest that children tend to produce antibodies that
target the head of the HA, which could mediate protection,
whereas adults rely on antibody responses to other sites or
potentially other forms of immunity for protection. This model is
consistent with the concepts of antigenic seniority and original
antigenic sin. Antigenic seniority refers to the phenomenon that
individuals’ highest antibody titers to influenza are to strains that
circulated in childhood22, and original antigenic sin is the process
by which antibody responses to familiar sites are preferentially
reactivated on exposure to new strains5–7. With time, these
familiar sites may be the ones that are most conserved. On HA,
these sites would tend to be away from the fast-evolving epitopes
near the receptor binding domain, and would not be readily
detected by HI assays. Consistent with this view, epidemiological
studies have shown that levels of stalk-directed antibodies
increase with age40,41, and that vaccination with a partially
antigenically novel influenza virus boosts responses to conserved
sites, including the stalk42–45. Our model shows that these dif-
ferences are persistent and relate to protection. In adults, the time
since last infection better correlates with protection than HI titer
because their antibodies to the top of the HA head tend to be
antigenically mismatched. Compared to children, more of their
protection derives from other responses.

We estimated that protection in both children and adults
wanes with an average half-life of 3.5–7 years, lasts longer against
H1N1pdm09 than H3N2, and lasts slightly longer in adults
compared to children against H3N2. These timescales are con-
sistent with the estimated decay of immunity over 2–10 years due
to antigenic evolution in population-level models46,47. Responses
may be more durable to H1N1pdm09 compared to H3N2, and in
adults compared to children for H3N2, because the epitopes that
are targeted are relatively more conserved. In contrast to adults,
the dependence of protection on HI titer in children leads to
substantial variation in susceptibility over time (Fig. 2). This
heterogeneity may well extend to adults but is difficult to identify
without much longer time series or other immune assays. The
models’ tendency to overestimate individuals’ titer variation over
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time suggests that important differences between individual
responses could be missing (Supplementary Figs. 8 and 9). Longer
observation periods and more complete observations of the
immune response can help separate these factors from behavioral
or environmental differences in infection risk.

We find minimal evidence that HA imprinting and hetero-
subtypic immunity affect susceptibility to infection. Previous ana-
lyses of HA group-level imprinting have suggested that imprinting
reduces the rate of severe disease and death8. Serological testing in
this study occurred independent of symptoms (see Supplementary
Discussion, Supplementary Table 6, Supplementary Fig. 16). If the
model were estimating protection from symptomatic, medically
attended infections instead, a stronger effect might have been
supported. In the same vein, heterosubtypic immunity, for which
there is good evidence36, might reduce the severity of illness rather
than prevent infection48,49. Another possibility is that the dis-
cordance of H1N1pdm09 and H3N2 epidemic peaks in this study
(Fig. 3 and Supplementary Fig. 5) reduced the model’s power to
detect short-term cross-protection (Supplementary Fig. 4).

This work has several limitations. We return again to the
concept of heterogeneity. Though our models support substantial
variability in the short-term titer boost after infection, our data
lack multiple PCR-confirmed infections from the same people.
Thus, we cannot distinguish the nonspecific variability at each
infection ðσai;sÞ from consistent differences between individuals,
which might be expected if people persistently target different
sites on HA, NA, and other proteins. However, the statistically
indistinguishable acute titer boosts in children and adults indicate
that despite adults’ low baseline HI titers, we were not system-
atically underestimating their rate of infection. Although our
results provide insight into differences between children and

adults, we have obviously not modeled the evolving response in
individuals over a lifetime, spanning infancy to old age. We thus
cannot resolve how age-related phenomena interact with immune
history to affect the response to infection.

Broadly, our results estimate several years of protection after
infection with influenza A in children and adults, and suggest that
this protection is associated with different immune responses,
which are consistent original antigenic sin. These results under-
score the need for a deeper understanding of the factors that
determine the variable response to infection among individuals,
and for better correlates of immune protection. They also
underscore the utility of longitudinal cohorts and mechanistic
models to investigate the dynamics of influenza.

Methods
Study description. The data are part of a community-based study of influenza
virus infections in households that was conducted in Hong Kong between 2009 and
2014 (clinical trial NCT00792051).19. The study tracked individuals in 796
households, each of which included at least 1 child aged 6–17 y that had no
contraindications against the trivalent inactivated influenza vaccine (TIV). One
eligible child 6–17 y of age per household was randomized to receive either a single
dose of TIV or saline placebo, regardless of influenza vaccination history. In vac-
cinated individuals, sera was collected at baseline prior to vaccination (August 2009
—February 2010) and 1 month after vaccination. In all individuals, sera was col-
lected after enrollment in the autumn of 2009 and again each subsequent autumn,
and each spring for at least 25% of participants. Participants were invited annually
to continue enrollment. Individuals reported receipt of the influenza vaccine out-
side of the trial annually.

Participants and household contacts were encouraged to record systemic and
respiratory symptoms daily in diaries. Acute respiratory infections (ARIs) were
surveilled by telephone calls every 2 weeks, and households were encouraged to
report ARIs promptly to the study hotline. Home visits were triggered by the
presence of any 2 the following: fever (≥ 37.8 °C), chills, headache, sore throat,
cough, presence of phlegm, coryza, or myalgia in any household member.
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Fig. 4 Features of the data. a Community intensity of H3N2 and H1N1pdm09 (ILI ×% influenza-positive) over the study. b Distribution of household sizes

in the study cohort. c Number of titer samples for H3N2 and H1N1pdm09 in children and adults over the study. d Number of PCR-confirmed infections with
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Combined nasal and throat swabs were collected from all household members
during home visits, regardless of illness.

Ethical approval. The study protocol was approved by the Institutional Review
Board of the University of Hong Kong. All adults provided written consent. Parents
or legal guardians provided proxy written consent for participants ≤17 y old, with
additional written assent from those 8–17 y.

Laboratory testing. Serum specimens were tested by HI assays in serial doubling
dilutions from an initial dilution of 1:1018,19. The antibody titer was taken as the
reciprocal of the greatest dilution that gave a positive result. Sera from year 1
(2009–2010) and year 2 (2010–2011) were tested against A/California/7/2009
(H1N1) and A/Perth/16/2009-like (H3N2). In years 3–5 (2011–2012, 2012–2013,
and 2013–2014), sera were tested against the same H1N1pdm09 strain and against
A/Victoria/361/2011-like (H3N2). Sera from consecutive years were tested in
parallel, such that duplicate titer measurements exist for sera sampled during the
middle of the study. For this analysis, we used the first titer measurement obtained
for any serum sample. Nose and throat swabs were tested by reverse transcription
polymerase chain reaction (PCR) for influenza A and B viruses using standard
methods, as described previously50.

Data included in this analysis. We fitted models to HI titers from 706 individuals
(including 114 children ≤15 y old at enrollment) from 337 different households
that were not vaccinated as part of the study and reported no vaccination at any
season during follow-up. We excluded individuals with any missing vaccination
information. Individuals in this subset were sampled at a median of 6.6 months
over a median 5.0 years of follow-up. Households ranged in size from 1 to 5
members (median= 2 members). Figure 4c gives the number of samples over the
study among children and adults. Among children, the median age at enrollment
was 11 y, and the age range was 3–15 y. Among adults, the median age of
enrollment was 43 y, the age range was 16–77 y, and 89% of adults were between 25
and 55 y. We fitted sub-models to data from 50 individuals (including 29 children
≤15 y old at enrollment) with PCR-confirmed H3N2 infection and 78 individuals
(including 42 children ≤15 y old at enrollment) with PCR-confirmed H1N1pdm09
infection (see Supplementary Discussion). No individuals had multiple PCR-
confirmed infections. The data for this analysis are the date of the subtype-specific
PCR-positive nasal swab and the closest titer measurements surrounding the
positive swab. For H3N2, the median time between the pre-infection titer mea-
surement and the PCR-positive swab was 5.3 months, and the median time
between the PCR-positive swab and the post-infection titer measurement was
2.6 months. For H1N1pdm09, the median time between the pre-infection titer
measurement and the PCR-positive swab was 2.4 months, and the median time
between the PCR-positive swab and the post-infection titer measurement was
6.6 months. Figure 4d shows the number of PCR-confirmed infections by subtype
in adults and children over time.

Complete model description. The model simulates the titer and infection
dynamics for each individual. Briefly, an individual’s instantaneous infection
rate or force of infection, λi,s(t), is determined by the rate of exposure to
infectious contacts in the community and household and by the individual’s
susceptibility, defined as the probability of infection per infectious contact.
Infections occur stochastically and can change the latent titers. Simulating the
model generates a latent titer for each individual at each observation. The
measurement model then calculates the likelihood of each observed titer given
the contemporaneous latent titer. The log likelihood of the model under any set
of parameters is then the sum of the log likelihoods across individuals, which are
the sums of the log likelihoods across observations. The titer and infection
dynamics are described in this section.

Exposure to infection:

The instantaneous per capita infection rate for individual i with subtype s is
denoted λi,s(t). An individual’s overall rate of infection with subtype s comprises a
rate of infection from the community, λcommunity,i,s, and another from the
household, λhousehold,i,s,

λi;sðtÞ ¼ λcommunity;i;sðtÞ þ λhousehold;i;sðtÞ: ð6Þ

The rate of exposure to infection in the community is influenced by age-specific
contact rates12,20, the age distribution of infectious contacts51, and a proxy for the
prevalence of the subtype in the community. The community-driven rate of
infection is the rate of exposure modified by the individual’s susceptibility to that
subtype,

λcommunity;i;sðtÞ ¼ qi;sðtÞβscaled;sLsðtÞΣ
n¼Ncat

n¼1 βc;cati ;catnpcatn ð7Þ

where qi,s(t) is the individual’s susceptibility to that subtype (or per-infectious-
contact probability of infection), βc;cati ;catn is the fixed contact rate for an individual

of age category cati with individuals of age category catn (Supplementary Table 4,
Supplementary Discussion), Ncat is the number of contact age categories (5 in total,
Supplementary Table 4), Ls(t) is a proxy of influenza activity for subtype s, and pcatn

is the fraction of influenza infections attributable to age class catn. The parameter
βscaled,s scales the flu intensity to determine the per-infectious-contact transmission
rate at time t. We calculate Ls(t) from weekly community surveillance data as
(ILI/total general practitioner consultations)(% specimens positive for subtype s)
(Fig. 4)52. We impose a minimum threshold min(Ls(t)) = 10−5.

Individual i also experiences infection risk from household members,

λhousehold;i;sðtÞ ¼ qi;sðtÞωsIother;sðtÞ; ð8Þ

where qi,s(t) is the individual’s susceptibility, and Iother,s(t) is an indicator variable
that equals 1 if any other household member is infected with subtype s at time t and
0 if not. Because we do not track households in their entirety (we sample only
individuals that were not vaccinated during the study), we do not model density-
dependent within-household transmission. Rather, ωs describes the daily influenza
exposure rate that individual i experiences with the presence of any infected family
member.

Susceptibility to infection based on HI titer to the infecting strain, non-HI-
correlated protection, or both:

Individual i’s susceptibility to subtype s at time t, qi,s(t), is defined as the
probability of infection given contact with an infected. Complete protection
corresponds to qi,s(t)= 0, complete susceptibility to qi,s(t)= 1, and 0 < qi,s(t) < 1 to
partial protection. We use two base functions to model susceptibility. One function
assumes susceptibility depends on the HI titer against the infecting strain (the HI-
correlated component), and the other on the time since infection with that subtype
(the non-HI-correlated-component). The HI-correlated component of
susceptibility, q1i;s ðtÞ, is a logistic function of the HI titer11,53 (Fig. 1b). Because

previous studies suggest that the relationship between titer and susceptibility
changes with age13, we estimate the relationship separately for children and adults.
The HI-correlated susceptibility of individual i to subtype s at time t, q1i;s ðtÞ, is

given by the logistic function,

q1i;s ðtÞ ¼ 1�
1

1þ eϕðlogðhi;sðtÞÞ�logðTP50ai ;sÞÞ
; ð9Þ

where hi,s(t) is the latent titer and TP50ai ;s is the subtype- and age-specific 50%

protective titer. The scaling parameter ϕ, which determines the shape of the logistic
curve, is fixed (Supplementary Table 4). The non-HI-correlated component of
susceptibility, q2i;s ðtÞ, assumes initially complete protection that wanes at a constant

rate after infection,

q2i;s ðtÞ ¼ 1� e�wnonspecific;ai ;s
t�tXi;sð Þ

; ð10Þ

where wnonspecific;ai ;s
is the rate of waning, fitted separately for children and adults,

and tXi;s is the time of infection.

The susceptibility qi,s(t) is the weighted average of the two components (Eq. 3).

Titer dynamics after infection:

Infections can affect the latent titers. We model the post-infection titer
dynamics as a series of equations that describe the acute boost, the waning from
peak titer, and the potential long-term titer boost. Together, these equations
determine the latent titer of individual i against subtype s at any time t, hi,s(t).

When individual i is infected with subtype s, antibody titers increase from the
time of infection and eventually peak. The acute boost occurs occurs according to
frise,

friseðhi;sðt
X
i;sÞ; t

X
i;s; tÞ ¼ hi;sðt

X
i;sÞ

ð1�kai ;sÞdi;sðt
X
i;sÞ 1� e�rðt�tXi;sÞ

� �

; ð11Þ

where tXi;s and hi;sðt
X
i;sÞ give the time and titer, respectively, of the most recent

infection; r gives the fixed rate of titer rise after infection (Supplementary Table 4);
and di;sðt

X
i;sÞ is the magnitude of the short-term boost. Recall that the time tXi;s of a

simulated infection is driven by the individual’s infection rate, λi,s(t). The age- and
subtype-specific parameter kai ;s determines the dependence of the titer boost on the

pre-infection titer. When positive, it allows for an antibody ceiling effect54, whereby
higher pre-infection titers have smaller boosts (see Supplementary Discussion,
Supplementary Tables 1 and 5, Supplementary Figs. 13–15).

Multiple studies demonstrate heterogeneity in the short-term titer rise after
infection39,55. Therefore, we allow for variability in the magnitude of the short-
term boost for each infection,

logðdi;sðt
X
i;sÞÞ � N ðdai ;s; σai ;sÞ; ð12Þ

where dai;s and σai ;s give the age- and subtype-specific log mean and standard

deviation, respectively, of the boost. We estimate the parameters kai ;s , dai ;s, and σai ;s
from a sub-model fitted to data from individuals with PCR-confirmed infection
(see Supplementary Discussion). We then fix the values of these parameters in the
main model.

After peaking at time tPi;s , the titer wanes exponentially at a fixed rate w

(Supplementary Table 4) to an individual’s subtype-specific baseline titer,
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hbaseline;i;sðtÞ. Therefore, the titer after the peak short-term response is given by

fwaneðhi;sðt
P
i;sÞ; t

P
i;s; tÞ ¼ ðhi;sðt

P
i;sÞ � hbaseline;i;sðtÞÞe

�wðt�tPi;sÞ
: ð13Þ

Infection may cause a long-term boost, dlongterm;i;s; ðt
X
i;sÞ, that does not wane,

where dlongterm;i;sðt
X
i;sÞ is defined as a fraction ζai ;s of the acute boost,

dlongterm;i;sðt
X
i;sÞ ¼ ζai ;sdi;sðt

X
i;sÞ: ð14Þ

The long-term boost changes the baseline titer after each infection at time tXi;s ,

hbaseline;i;sðtÞ ¼ hbaseline;i;sðt
X
i;sÞ þ dlongterm;i;sðt

X
i;sÞ: ð15Þ

Let Tpeak denote the fixed length of time between infection and peak titer

(Supplementary Table 4). The complete expression for hi;sðtÞ is then

hi;sðtÞ ¼ hi;sðt
X
i;sÞ þ friseðhi;sðt

X
i;sÞ; t

X
i;s; tÞ; for t � tXi;s<Tpeak ;

hi;sðtÞ ¼ hbaseline;i;sðt
X
i;sÞ þ fwaneðhi;sðt

P
i;sÞ; t

P
i;s; tÞ; for t � tXi;s � Tpeak :

(

ð16Þ

Heterosubtypic immunity:

Heterosubtypic immunity acts as a nonspecific form of protection against
subtype s following infection with subtype m at time tXi;m and wanes at rate

wnonspecific;m ,

qhetero;i;sðtÞ ¼ 1� e�wnonspecific;mðt�tXi;mÞ
: ð17Þ

Measurement model and likelihood function. The observed titer Hobs;i;sðtÞ relates
to the corresponding latent titer hi;sðtÞ via the measurement model, which accounts

for error in the titer measurements and the effect of discretization of titer data into
fold-dilutions. The observed titers are fold-dilutions in the range [<1:10, 1:10,
1:20…, 1:5120]. Consistent with other models12,14,16, we define a log titer (log H)
for any titer h,

logH ¼ log2
h

10

� �

þ 2; ð18Þ

such that the log of the observed titer takes on discrete values in the range1,11. In
order to relate the observed titer, Hobs;i;sðtÞ, to the latent titer, hi;sðtÞ, we begin by

transforming both into log titers (Eq. 18), yielding the log observed titer
logHobs;i;sðtÞ and the log latent titer logHi;sðtÞWe assume that the observed log titer

to subtype s is normally distributed around the log latent titer,

logHobs;i;sðtÞ � N ðlogHi;sðtÞ; ϵÞ; ð19Þ

where ε gives the standard deviation of the measurement error.
Following other analyses that quantified the measurement error associated with

different titers15,39, we assign a lower measurement error (ε= 0.74 log titer units,
Supplementary Table 4) for undetectable (<10) titers. The observed titer is
censored at integer cutoffs, such that the likelihood of observing logHobs;i;sðtÞ ¼ j

given log latent titer logHi;sðtÞ is

Lðj j θ; logHi;sðtÞÞ ¼

f ðlogHi;sðtÞ � jÞ; j ¼ 1

f ðj � logHi;sðtÞ � jþ 1Þ; 2 � j � 10

f ðlogHi;sðtÞ � jÞ; j ¼ 11

8

>

<

>

:

ð20Þ

where θ gives the parameter vector and f is specified as in Eq. 19. For each
individual, the log likelihood is the sum of the log likelihoods across observations,

Li ¼ Σ
n¼nobs
n¼1 Lðj j θ; logHi;sðtnÞÞ; ð21Þ

where nobs is the number of observations for individual i and tn gives the time at
observation n. The log likelihood of the model for any parameter set θ is then the
sum across nind individuals,

L ¼ Σ
nind
i¼1Li: ð22Þ

Supplementary Table 4 summarizes the model parameters and state variables.

Initial conditions. We assign each individual’s initial latent subtype-specific
baseline titer, hbaseline;i;sð0Þ, based on that individual’s lowest observed titer

during the study, hmin
obs;i;s . Because an observed HI titer represents the lower bound

of a two-fold dilution, we draw hbaseline;i;sð0Þ for each realization of the model

according to

hbaseline;i;sð0Þ � Uðhmin
obs;i;s; 2h

min
obs;i;sÞ: ð23Þ

The values of the initial latent titer, hi,s(0), and the initial susceptibility, qi,s(0),
depend on the time of most recent infection, which may have occurred before entry
in the study. To initialize the latent states for each individual, we draw the time of
the most recent infection from the density of subtype-specific flu intensity, Ls(t), in
the seven years before the first observation. In this way, we account for known
epidemic activity in Hong Kong before the beginning of the study (Supplementary
Fig. 5). For children less than 7 y old, the distribution is truncated at birth, and the
density includes the probability that the child is naive to influenza infection. For
sensitivity analysis, we fitted the models using other assumptions about the density

from which we drew the time of most recent infection (see Supplementary
Discussion, Supplementary Figs. 17 and 18).

Likelihood-based inference. The titer and infection dynamics of each individual
are modeled as a partially observed Markov process (POMP). The model for each
subtype is a panel POMP object, or a collection of the individual POMPs with
shared age- and subtype-specific parameters. We use panel iterated filtering (PIF)
to fit the models56,57.

Iterated filtering uses sequential Monte Carlo (SMC) to estimate the likelihood
of an observed time series. In SMC, a population of particles is drawn from the
parameters of a given model to generate Monte Carlo samples of the latent
dynamic variables. To evaluate the likelihood of a parameter set, SMC is carried out
over the time series for each individual, generating a log likelihood for the
corresponding panel unit. The log likelihood of the panel POMP object is the sum
of the individuals’ log likelihoods.

Within each PIF iteration, filtering, or weighted particle re-sampling, occurs
once for all observations from each individual. One PIF iteration is one pass of the
weighted re-sampling over all individuals. Damped perturbations to the parameters
occur between iterations. As the amplitude of the perturbations decreases, the
algorithm converges to the maximum likelihood estimate56.

For each model, we initialize the iterated filtering with 100 random parameter
combinations. We perform series of successive 50-iteration MIF searches, with the
output of each search serving as the initial conditions for the subsequent search.
We use 10,000 particles for each MIF search. The likelihood of the output for each
search is calculated by averaging the likelihood from ten passes through the particle
filter, each using 20,000 particles. We repeat the routine until additional operations
fail to arrive at a higher maximum likelihood.

For model selection in the sub-model of the acute titer boost, we used the
corrected Akaike Information Criterion (AICc) (Supplementary Table 1)58. We
obtained maximum likelihood estimates for each parameter and associated 95%
confidence intervals by constructing likelihood profiles. We used Monte Carlo
Adjusted Profile methods57 to obtain a smoothed estimate of the profile
(Supplementary Discussion).

Calculating imprinting probabilities. We calculate the probability that an indivi-
dual’s first influenza A infection was with a particular subtype (H1N1, H3N2, or
H2N2) or that the individual was naive to infection at each year of observation. We
assume that the first infection occurred between the ages of 6 months and 12 years, as
infants are protected by maternal antibodies for the first six months of life59,60

Following the original imprinting model by Gostic and colleagues8, we estimate
the probability that an individual with birth year i has his or her first influenza A
infection in calendar year j:

νi;j ¼
ð1� AÞj�1A

Σ
iþ12
j¼1 ð1� AÞj�1

A
: ð24Þ

Here, A is the constant annual attack rate in seronegative children as estimated
by Gostic and colleagues (A= 0.28 8). Given observation year y, the probability that
individual i was first infected in year j is

νijjy ¼

A
Nijy

y � iþ 12

AðΠ
j�1

k¼1
ð1�AÞÞ

Nijy
y < iþ 12

8

<

:

ð25Þ

where Nijy is a normalizing factor that enforces the assumption that all individuals

have their first infection by age 12 and ensures that all probabilities sum to one for
individuals that are ≥ 12 years old at the observation date. The normalization factor
does not apply to individuals <12 years old, who have some probability of being
naive to infection. We combine the probabilities of the age of first infection with
annual historical influenza A subtype frequency data (see Supplementary
Discussion) to determine the probability that an individual with birth year i had his
or her first exposure to subtype S in year j,

pimpS;ijy
¼ Σ

y
j¼ifSjjνi;jjy : ð26Þ

Here, fSjj gives the fraction of specimens of subtype S out of all specimens from

community surveillance that are positive for influenza A. For individuals younger
than 12 years old during the year of observation, the probability that an individual
was naive in observation year y is

pnaiveijy ¼ 1� Σ
y
j¼iνi;jjy: ð27Þ

Data availability
The data for this study are available at https://github.com/cobeylab/Influenza-immune-

dynamics/tree/master/Data.

Code availability
All of the software to run the analysis and produce the figures is available at https://

github.com/cobeylab/Influenza-immune-dynamics. All code was built and run using R

version 3.3.2.
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