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Abstract: Epithelial ovarian cancer (EOC) mortality rates are strongly correlated with the stage 

at which it is diagnosed. Detection of EOC prior to its dissemination from the site of origin is 

known to significantly improve the patient outcome. However, there are currently no effective 

methods for early detection of the most common and lethal subtype of EOC. We sought to 

determine whether laser-induced breakdown spectroscopy (LIBS) and classification techniques 

such as linear discriminant analysis (LDA) and random forest (RF) could classify and 

differentiate blood plasma specimens from transgenic mice with ovarian carcinoma and wild 

type control mice. Herein we report results using this approach to distinguish blood plasma 

samples obtained from serially bled (at 8, 12, and 16 weeks) tumor-bearing TgMISIIR-TAg 

transgenic and wild type cancer-free littermate control mice. We have calculated the age-specific 

accuracy of classification using 18,000 laser-induced breakdown spectra of the blood plasma 

samples from tumor-bearing mice and wild type controls. When the analysis is performed in 

the spectral range 250 nm to 680 nm using LDA, these are 76.7 (±2.6)%, 71.2 (±1.3)%, and 

73.1 (±1.4)%, for the 8, 12 and 16 weeks. When the RF classifier is used, we obtain values of 

78.5 (±2.3)%, 76.9 (±2.1)% and 75.4 (±2.0)% in the spectral range of 250 nm to 680 nm, 

and 81.0 (±1.8)%, 80.4 (±2.1)% and 79.6 (±3.5)% in 220 nm to 850 nm. In addition, we 

report, the positive and negative predictive values of the classification of the two classes of blood 

plasma samples. The approach used in this study is rapid, requires only 5 μL of blood plasma, 
and is based on the use of unsupervised and widely accepted multivariate analysis algorithms. 

These findings suggest that LIBS and multivariate analysis may be a novel approach for 

detecting EOC.  

Abbreviations: LIBS, Laser-Induced Breakdown Spectroscopy; EOC, Epithelial Ovarian Cancer; 

Linear Discrimination Analysis, Random Forest 
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I. Introduction 

Despite intensive research efforts, cancer remains a lethal disease that affects millions of 

people around the world. In 2014, it accounted for the deaths of nearly 600,000 Americans, or 

1,600 people per day [1, 2]. Sadly, despite many efforts and progress in cancer diagnosis and 

treatment, the human cost of this disease remains very high. A key challenge is to be able to 

detect and diagnose in its early stages of development. Early detection provides medical 

professionals much better possibilities for interventions to prevent or halt further progression, 

which would lead to a reduction in mortality and morbidity. Thus, for a large number of cancers, 

it is essential to develop and implement tests that provide signs of the disease prior to its spread 

from the site of origin. In addition, such tests would be even more useful if they are minimally 

invasive and can be made widely available.  

Despite rich and diverse research efforts, early detection and diagnosis of epithelial ovarian 

cancer (EOC) remains a significant challenge [3, 4]. In the United States, approximately 22,000 

women are diagnosed with EOC each year. This disease is the leading cause of death among 

gynecological cancers with ~14,000 deaths annually. Worldwide, it is estimated that there are 

220,000 new cases of EOC and 140,000 deaths caused by the disease annually. EOC typically 

develops in the absence of specific symptoms; therefore, the majority (>70%) of cases are 

discovered when the disease is already at an advanced stage [5, 6]. The 5-year survival rate for 

patients diagnosed with advanced (stage III and IV) cancers is 30-40%. However, if EOC is 

diagnosed at an early stage, this rate ranges from 60% to 90%, depending on the degree of tumor 

differentiation [7, 8]. These statistics demonstrate that successful early detection and diagnosis of 

EOC would be particularly useful for improving prognosis and decreasing the mortality rate.  

One of the important and promising strategies for earlier cancer diagnosis includes identification 

and detection of cancer-associated biomarkers through non- or minimally-invasive approaches. 

Such biomarkers would be ideally produced either by the tumor itself or by the surrounding 

tissues and can be found in a variety of biological fluids. Also important is the ability to yield 

specific and sensitive signatures accurate enough for the early detection of the disease. Changes 

in biomarkers present in biological fluids are particularly attractive because they can reveal the 

state of a cell. Cancer Antigen 125 (CA-125) is a protein widely used as a biomarker for 

detection of recurrent EOC [9, 10]. Recently, researchers reported the simultaneous detection of 

multiple candidate biomarkers for the early detection of EOC instead of a single one leads to 

increased specificity and sensitivity for cancer detection [11, 12] and the use of multicolor 

quantum dots and metal nanoparticles for tagging biomarkers for diagnostics of cancer [13, 14]. 

Recently, we reported on a technique, Tag-laser induced breakdown spectroscopy (Tag-LIBS), 

which relies on tagging CA-125 with metal microparticles in blood serum prior to performing 

LIBS measurements [15-17]. We have shown that this approach provides an estimated near 

single molecule per particle efficiency of CA-125 in human blood plasma and can, in principle, 

be generalized for the sensitive and simultaneous detection of multiple biomarkers in biomedical 

fluids and/or tissues.  

Another approach that has attracted much attention is the use of classification techniques on 

spectroscopic data of biological samples acquired using methods such as surface-enhanced laser 

desorption and ionization (SELDI) [10], matrix-assisted laser desorption/ionization (MALDI) 

[18] and at the genomic level, DNA chip technology [19, 20].  
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LIBS has been used by a number of researchers to classify various samples [see for example, 

22]. A number of review papers have been devoted to the theoretical, experimental and 

applications of the technique [23-26]. In this paper, we report on the first use of laser–induced 

breakdown spectroscopy (LIBS) for the blind classification of blood samples extracted from wild 

type and transgenic mice with ovarian tumors. The blood samples used for this study were 

collected from transgenic TgMISIIR-TAg mice in which transgene positive females develop 

bilateral epithelial ovarian cancer with metastatic spread to peritoneal organs and the formation 

of ascites [27]. The blood samples collected from wild type (transgene negative) female 

littermates were used as controls. Unlike Tag-LIBS, this approach does not require a specific 

sample preparation prior to performing LIBS measurements and classification.  

II. Transgenic mice, sample preparation and experimental set-up 
 

The C57BL/6 TgMISIIR-TAg transgenic mice used for this study have been described [8, 

20, 28, 29]. Female C57BL/6 TgMISIIR-TAg transgenic mice develop bilateral ovarian tumors 

with 100% penetrance [28, 29]. Tumors develop with variable latency and female TgMISIIR-

TAg transgenic mice survive an average of 152 days [28, 30]. The size of ovaries remains 

relatively normal (<10 mm
3
) for the first 70–85 days of life, and undergoes a substantial increase 

in growth between 100 and 150 days of age, reaching a volume of about 50 mm
3
 in a median 

time of 110 days. Although ovaries appear ostensibly normal in structure and size in young mice, 

postmortem examination of the ovaries shows the presence of small numbers of TAg+ tumor 

cells as early as 28 days of age [28, 29]. Although the size of the ovaries remains normal for the 

first 2-3 months, the early presence of tumor cells in one-month old mice suggests that potential 

cancer signatures may exist in the blood samples of young transgenic mice. For this reason, we 

collected blood from mice at 8, 12 and 16 weeks of age. 

 

All of the blood specimens used in this study were collected from mice bred at Fox Chase 

Cancer Center under an Institutional Animal Care and Use Committee (IACUC) approved 

protocol. Male C57BL/6 TgMISIIR-TAg transgenic mice were bred with wild type C57BL/6 

female mice to produce female C57BL/6 TgMISIIR-TAg transgenic and wild type littermate 

control mice. Prior to blood collection, mice were anesthetized with 2-3% isoflurane in O2. 

Blood was successively collected from each mouse at 8, 12 and 16-weeks of age. Blood was 

collected from the retro-orbital sinus (three draws/mouse, alternating eyes) using heparinized 

Natelson blood collecting tubes and following collection, the blood collection tubes were 

centrifuged to compact cells. The tubes were cut just above the cellular component and the 

plasma is transferred to sterile micro-centrifuge tubes. Plasma specimens were stored at -80°C 

until all of the specimens were collected at which time they were shipped on dry ice for 

subsequent LIBS measurement and analysis. 

 

A total of 56 mice (n=28 each, transgenic and wild type mice) were bred and bled at 8, 12 and 16 

weeks of age yielding a total of 168 blood samples. Six specimens contained insufficient 

material, leaving 162 specimens for analysis in this study: 28 transgenic “cancer” and 26 wild 

type “non-cancer” blood plasma samples (Table 1). The blood plasma samples were divided into 

3 groups according to age of mice at moment of blood collection: groups 1, 2 and 3 consisted of 

blood samples from 8, 12 and 16 week-old mice respectively. With the blood plasma samples 

grouped, we further created 6 sets of samples for each age group for analysis in the LIBS 
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chamber. Each set consisted of a total of 9 age-specific samples, 4 or 5 of which were selected 

from blood samples of wild-type mice and 5 or 4 (for a total of 9) from transgenic mice and 1 

empty filter, i.e. with no blood deposit on it.  

 

Prior to performing LIBS measurements, we prepared the surface on which the blood plasma 

samples were to be deposited by cutting the top part (about 21 mm) of the polyvinylidene 

fluoride (PVDF) filter (EMD-Millipore), we used a pipette (Fisherbrand Finnpipette II 

Adjustable-Volume Pipetters, Single Channel, 0.5-10 µL) to extract 5 μL from each blood 
plasma sample and deposited it on the top surface of the PVDF prepared filter. These filters 

were selected because their porous structure and hydrophilicity allow for a more uniform 

spatial distribution of the mice blood plasma over a large surface area than other 

substrates we considered (e.g. glass). Third, the filters were dried using a 40-Watts Tungsten 

lamp (UL certified portable lamp, model 1400, DA) for 5 minutes. This partially dries the liquid 

content of the blood plasma and increases the concentration of dissolved compounds of blood, 

minimizes the blood splashing caused by propagation of acoustic shock wave following plasma 

formation. To minimize contamination from the environment, these steps were performed in an 

isolated air-filtered preparation room. The sample preparation sample is illustrated in Figure 1.  

 

The LIBS spectra of the various blood plasma samples were obtained using the previously 

described experimental set-up [31]. Essentially, it consists of a CPA-Series Ti-Sapphire 150-fs 

laser (Clark-MXR, Model 2210) operating at 775 nm with pulse energy about 1.54 mJ per pulse 

focused on the sample surface to generate a laser-induced micro plasma by using a fused silica 

Bi-Convex lens of 50 mm focal length. The focused laser spot diameter at the sample’s surface 
was about 100 µm. A motorized stage with x-y translation was used to automatically translate 

the sample to a new location following each laser ablation. To reduce the effect from the 

surrounding atmosphere, measurements were performed in a chamber kept at a constant pressure 

of helium of 764 Torr. Helium gas was selected over argon and air, because we find that 

breakdown in helium leads to more uniform plasma, compared to breakdown in air or 

argon. The loading capacity for our set-up is 10 samples, which for this study consisted of 9 

samples of blood plasma from mice of the same age group and of 1 empty filter. Optical 

emission from the plasma was collected by a fiber collimation lens at 45
o
 with respect to the 

laser beam and focused onto a 50 μm core-diameter optical fiber. The other end of the fiber was 

coupled into an Echelle spectrograph, (Andor Technology, ME 5000). Dispersed light from the 

spectrograph was recorded with a thermoelectrically cooled iStar Intensified Charge Coupled 

Device (ICCD) camera (Andor Technology, DH734-18F O3) designed to operate in the 

wavelength region ranging from 190 to 975 nm in a single acquisition, with a spectral resolution 

power of 4000 corresponding to 4 pixels FWHM which corresponds to a spectral resolution of 

0.013 to 0.056 nm respectively.

Emission from the plasma was collected 50 ns after the laser pulse with an integration time of 

700 µs by an onboard digital delay generator of the spectrograph. 

To ensure genotype-specific blind classification of the samples of each set, we randomized its 9 

samples prior to performing a LIBS measurement. In other words, as the spectra were collected 

the information whether the blood plasma sample originated from a transgenic or a wild type 

mouse was not used. For this study, each LIBS spectrum was collected from a single laser pulse 

ablation of a single spot on the surface of the filter. Therefore, for each sample, we collected a 



 5 

series of 100 consecutive LIBS spectra obtained from 100 non-overlapping spots of the filters 

with blood plasma samples and from the control samples. Thus, we analyzed a total of 180 (60 

specimens per age group) including 18 empty filters as controls. A total of 18,000 LIBS emission 

spectra were collected for this study. These measurements took approximately 30 minutes per set 

of 10 samples for a total of 21 hours (for all 6 sets of the 3 age groups).  
 

III. Processing of LIBS data 

 

To reduce the impact of the presence of the filters on the analysis of the data, we collected 100 

LIBS spectra from each empty filter used for a total of 6 per age group. These spectra were 

averaged and subtracted, data point-by-data point, from each of the remaining blood plus filter 

spectra of the set. This step provides a way to reduce the effect of the background signal related 

to the chemical composition of the surface of the filters used. To improve precision and 

reproducibility and reduce statistical errors of the LIBS measurements per sample, total 

integrated spectra that did not fall within one standard deviation about the mean integrated 

spectra for the 100 shots were rejected. Each of the remaining spectra was normalized by its 

total integrated area. In addition, we have taken great care to monitor and control the 

experimental parameters such as laser energy, spatial characteristics of the laser, and sample 

preparation process. In Figure 2, we show as an example a LIBS spectrum of blood plasma 

samples from 16 weeks old transgenic mice (Fig. 2 a) and a LIBS spectrum of empty filter (Fig. 

2 b) (Spectral range 220- 850 nm). 

 

Classification of the spectra from blood plasma from the two classes of mice was performed 

using Linear Discriminant Analysis (LDA) [21]. LDA is a supervised learning approach 

that assumes normal class-conditional distribution models to find the separating 

hyperplanes between two or more classes.  Features are projected to linear vector 

subspaces and subsequently classified.  To determine the class of an unknown sample, score 

values for the various classes are computed using the score functions and data features and 

the sample is assigned using maximum likelihood decision rules. In this work, wavelength 

dependent intensities of the spectra were not used directly as features. Instead, features 

were extracted from the raw spectra using the statistical dependency (SD) between features 

and associated class labels using a quantized feature space [32]. This was done to mitigate 

the contribution of non-discriminatory data points, reduce the dimensionality of the 

original dataset and avoid over fitting. We also tried the RELIEFF algorithm for feature 

selection but we adopted the SD approach because of the similarity in results obtained from 

the two methods [33]. All calculations were done using MATLAB [33]. We have performed 

our analysis over the spectral range 250 nm to 680 nm and in the range of 250 nm to 278 nm. 

The former wavelength range was limited to 680 nm because of the limiting computer power 

available. The latter range was selected because we noticed that the LIBS spectrum of an empty 

filter is weak compared to those of the blood plasma samples dominated by Fe emission lines 

(Figure 3). Although for this study, the identification of the emission lines is not necessary, we 

have performed it for few emission lines using the NIST table and the one previously developed 

by our research group [34]. 

 

Furthermore, we developed random forest-based classifiers to separate transgenic from 

wild type mice. RF is an ensemble learning method for classification. It constructs a set of 

decision trees *  (    )        + -where   is the input vector and   is the number of 
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trees- from subsets of the training set determined by random vectors   . RF also uses 

random feature selection for node splitting of each tree. These techniques decide the class 

after applying voting to the predicted classes by the individual trees for classification, or by 

calculating the mean prediction for regression. They address the overfitting tendency of the 

decision trees and have shown robustness with respect to noise [35]. In [35] it is shown that 

the generalization error asymptotically converges to an upper bound as the number of 

individual tree classifiers increases. 

 

In this experiment we performed feature selection by first computing the information gain 

with respect to each class for each feature. Information gain is defined as         (             )   (     )   (             ) (1) 
where   is the entropy of each class given by  (     )    (     )      (     ). The gain 

in information content is equal to the reduction of entropy between the two classes when we 

use a specific feature. After computing the information gain for each feature we rank all          values and we select the top performing features by applying a threshold to these 

values. 

 

 

IV. Results and analysis 

 

To estimate the reproducibility of the spectra of the blood samples, we report, as an example, 

the shot-to-shot ratios of the intensities of the emission lines of the Na D lines (588.96 nm and 

589.58 nm) for 100 single shots and for a set of averaged 100 spectra. These are measured to be 

about 10% and 2% respectively. For the empty filters, the shot-to-shot reproducibility measured 

by taking the ratios of the intensities of two emission lines of F, detected only in the empty filters 

at 623.96 nm and 634.88 nm, is found to be about 2% while the averaged over 100 shots better 

than 1%. These differences may be due to fluctuations related partly to the relative packing 

density of the samples [36]. 

 

The main goal of this work is to determine if LIBS spectra can be used to automatically identify 

the one of the two classes, transgenic (cancerous) or wild type (non-cancerous) mice, each blood 

sample originates from and quantify the accuracy of the result. Our approach does not require 

information on the origin (transgenic or wild type) of specific samples for the LIBS 

measurements or for the LDA or random forest analysis. To quantify our results, we define 

classification accuracy as the percent ratio of the number of correctly classified samples to the 

total number of analyzed blood samples within each age group, and positive and negative 

predictive value (PPV and NPV) as the percent ratios of the number of samples correctly 

classified as originating from transgenic mice and those originating from wild type mice 

respectively.  

 

IV. 1. LDA Results and Analysis 

 

Figures 4 and 5 shows the LDA scores for the LIBS spectra of the samples for 8- (Figs. 4a and 

5a), 12 – (Figs. 4b and 5b) and 16 – (Figs. 4c and 5c) weeks in the 250 -278 nm and 250 nm – 

680 nm spectral ranges respectively. Labeling of the data points was achieved subsequent to the 

generation of the LDA plots and was based on information on the origin of the samples provided 
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by Connolly’s laboratory. Following the labeling step, the position of a decision line that 
separates the samples originating from the transgenic and the wild type mice was determined 

automatically using the Fisher Discriminant approach which places the boundary in the 

direction that maximizes the separation between the groups and minimizes the variability 

within each group [37]. The solid black lines shown represent decision boundaries separating 

the 2 classes of samples. For each plot, LDA-1 is the score for the wild type and LDA-2 is the 

score for the transgenic classes. 

 

We further evaluated the classification performance measures of classification accuracy, 

positive predictive value (PPV), and negative predictive value (NPV) using leave-one-out 

cross-validation (CV) [38, 39] based on the LIBS data analyzed by LDA. The values 

obtained of the classification accuracy for the transgenic and the wild type mice samples 

are shown in Figure 6.  The values obtained of the classification accuracy for the transgenic and 

the wild type mice samples are shown in Figure 6. This data includes the classification accuracy 

for the spectral ranges 250-680 nm (Figure 6a) and 220-850nm (Figure 6b) using leave-one-out 

cross-validation. When the analysis is performed in the spectral range 250 nm to 680 nm, 

mean classification accuracy is 76.7 (±2.6)%, 71.2 (±1.3)%, %, and 73.1 (±1.4)%, for the 8, 

12 and 16 weeks old mice respectively using LDA and become 76.4 (±2.9)%, 69.4 (±2.6)%, 

%, and 68.3 (±2.8)% for 220 to 850 nm. Our LDA analysis over the full range of data (up to 

850 nm) did not improve the classification accuracy. We also measured the classifier 

performance in the range of 250-278 nm and obtained values of 62.9 (±1.2)%, 60.9 (±1.6)%, 

and 61.8 (±1.7)% respectively.  This spectral range was considered because, as shown in Figure 

3, the LIBS spectra of the empty filters are relatively weak compared to those of the blood 

plasma samples. 

 IV. 2. Random Forest Results and Analysis 

 

We evaluated the performance of random forest classifier after dimensionality reduction 

using the information gain measure. We report results from leave-one-out-cross-validation 

in Figure 7 by using the spectral range of 250-680nm (Figure 7a) and 220-850nm (Figure 

7b) respectively. In 250-680nm this technique produces classification accuracy of 78.5 

(±2.3)%, 76.9 (±2.1)% and 75.4 (±2.0)% for 8, 12 and 16 weeks old mice respectively. The 

corresponding performance rates for the range of 220-850nm are 81.0 (±1.8)%, 80.4 

(±2.1)% and 79.6 (±3.5). Finally, the classification accuracy in 250-278nm was 65.6 

(±1.6)%, 64.8 (±1.8)% and 66.2 (±1.8)% for 8, 12 and 16 weeks old mice. In Figure 7 we 

observe that the PPV and NPV values follow similar trends with the classification accuracy. 

The improved performance of random forest classification may be because random forest 

can successfully approximate nonlinear decision functions in contrast to the LDA that 

searches for linear decision hyperplanes in multi-dimensional vector spaces. 

 

IV. 3.  LDA and RF classification of the larger group formed by the six sets 

 

Furthermore, for each age group we have attempted to separate the cancerous from the non-

cancerous populations using the larger datasets formed by all six sets. For the spectral range from 

250 to 680 nm, with LDA using leave-one-out cross-validation, the classification accuracy is 

found to be 67 %, 63 %, and 62 % for the 8, 12, and 16 weeks old respectively. For the same 



 8 

spectral range, using RF, these values become 56.5 %, 67.8 %, and 70.9%.  This shows that 

when considering all six sets of the same age group, using RF the classification accuracy 

improves slightly with age; that is specimens of the oldest age group (16 weeks) is more 

accurately classified than specimens from the younger age groups. This observation supports the 

idea that plasma specimens will exhibit greater difference from control specimens as tumor 

burden increases in the animals.  However, when all six sets are considered as a single one, the 

classification accuracy for each age group decreases.  We suspect that this decrease to be caused 

by the fact that after collecting LIBS spectra from one blood plasma set, the LIBS chamber had 

to be re-opened to load the new batch of blood plasma samples.   

 

III. Conclusions and Perspectives 

 

The use of multivariate analysis to classify LIBS spectra of various samples is known to be a 

powerful and useful strategy. Using a transgenic mouse model that predictably develops EOC, 

we have extended this approach to automatically classify blood plasma samples from wild type 

and transgenic mice using random forest analysis and found that using the spectral data around 

in the range of 220 to 680 nm, the accuracies obtained for all three age groups (8, 12 and 16 

weeks old mice) are 76.7 (±2.6)%, 71.2 (±1.3)% and 73.1 (±1.4%). These increase to 81.0 

(±1.8)%, 80.4 (±2.1)% and 79.6 (±3.5)% using RF in 220 nm to 850 nm.  Additional work 

remains to be done to identify the specific atomic and/or ionic lines that contribute to the 

separation. Nevertheless, the strategy used appears to show considerable promise. 

 

The classification accuracies reported in this work may potentially be improved by using 

multivariate classification tools other than LDA and RF. However, we suspect that it is critical 

that more blood samples be interrogated by LIBS at the same time (larger sets) irrespective of 

age of the mice. We are attempting to enhance the separation of the cancerous and non-cancerous 

populations using an improved experimental chamber and a variety of multivariate techniques 

for dimensionality reduction and classification. Such techniques include PLS-DA, to neural 

networks, Support Vector Machines or other ensemble classification techniques (see for 

example: [40]), with training set cross-validation and random test set model validation. An 

additional interesting perspective is to proceed to physical interpretation of the selected set of 

wavelengths that yields the best classification results. 

 

Recent studies have shown that epithelial ovarian cancer development in mice is similar to that 

in humans [27, 41]. Due to the lack of availability of matched blood specimens from patients 

with early and late stage disease, genetically engineered mouse models of epithelial ovarian 

cancer are invaluable tools to evaluate novel methodologies for early disease collection. 

Moreover, such models are routinely used to collect useful information about factors involved in 

malignant transformation, invasion and metastasis, and the response to therapy [28, 42-44]. Like 

humans, mice with ovarian tumors exhibit few or no symptoms until the disease progresses to 

advanced stage [41]. Therefore, the work and conclusions obtained in this work can be very 

useful and have the potential to lead to development of analogous methods applicable to early 

stage cancer diagnostic in humans. 
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Table 1: N. Melikechi et al. 

 

Table 1. List of MISIIRTAg DR26 blood samples. 

 
ID Tag 

4 
weeks 

8 
weeks 

12 
weeks 

1 K2821 - N/A N/A 401 

2 K2869 - N/A N/A 402 

3 K2981 + 203 303 403 

4 K2982 - 204 304 404 

5 K2987 + 205 305 405 

6 K2988 - 206 306 406 

7 K2989 + 207 307 407 

8 K2995 + 208 308 408 

9 K2996 - 209 309 409 

10 K3002 + 210 310 410 

11 K3008 - 211 311 411 

12 K3010 + 212 312 412 

13 K3011 + 213 313 413 

14 K3016 - 214 314 414 

15 K3066 + 215 315 415 

16 K3067 - 216 316 416 

17 K3068 - 217 317 417 

18 K3069 - 218 318 418 

19 K3252 - 219 319 419 

20 K3253 - 220 320 420 

21 K3308 - 221 321 421 

22 K3309 + 222 322 422 

23 K3310 - 223 323 423 

24 K3314 - 224 324 424 

25 K3415 - 225 325 425 

26 K3416 + 226 326 426 

27 K3417 - 227 327 427 

28 K3418 + 228 328 428 

29 K3419 - 229 329 429 



30 K3421 + 230 330 430 

31 K3422 + 231 331 431 

32 K3423 + 232 332 432 

33 K3424 - 233 333 433 

34 K3463 + 234 334 434 

35 K3464 + 235 335 435 

36 K3466 - 236 336 436 

37 K3471 + 237 337 437 

38 K3472 + 238 338 438 

39 K3473 + 239 339 439 

40 K3474 - 240 340 440 

41 K3475 - 241 341 441 

42 K3476 - 242 342 442 

43 K3477 - 243 343 443 

44 K3478 + 244 344 444 

45 K3479 - 245 345 445 

46 K3549 - 246 346 446 

47 K3550 + 247 347 447 

48 K3551 - 248 348 448 

49 K3552 + 249 349 449 

50 K3553 + 250 350 450 

51 K3554 + 251 351 451 

52 K3555 + 252 352 452 

53 K3556 + 253 353 453 

54 K3557 - 254 354 454 

55 K3558 + 255 355 N/A 

56 K3653 + 256 356 N/A 
 

 

 

 

 

 

 

 



Figure฀1฀



Figure฀2



Figure฀3



Figure฀4a



Figure฀4b



Figure฀4c



Figure฀5a



Figure฀5b



Figure฀5c



(a) 

(b) 

Figure 6a-b. Classification accuracy, positive predictive value (PPV), and negative predictive 

value (NPV) produced by the LDA technique using leave-one-out cross-validation for mice ages 

of 8 weeks, 12 weeks, and 16 weeks in wavelength ranges of (a) 250-680nm and (b) 220-850nm. 



(a) 

(b) 

Figure 7a-b. Classification accuracy, positive predictive value (PPV), and negative predictive 

value (NPV) produced by the RF technique using leave-one-out cross-validation for mice ages of 

8 weeks, 12 weeks, and 16 weeks in wavelength ranges of (a) 250-680nm and (b) 220-850nm. 


