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Abstract

Purpose Degeneration of the intervertebral disc is asso-

ciated with various morphological changes of the disc itself

and of the adjacent structures, such as reduction of the

water content, collapse of the intervertebral space, disrup-

tion and tears, and osteophytes. These morphological

changes of the disc are linked to alterations of the spine

flexibility. This paper aims to review the literature about

the ageing and degenerative changes of the intervertebral

disc and their link with alterations in spinal biomechanics,

with emphasis on flexibility.

Methods Narrative literature review.

Results Clinical instability of the motion segment, usu-

ally related to increased flexibility and hypothesized to be

connected to early, mild disc degeneration and believed to

be responsible for low back pain, was tested in numerous

in vitro studies. Despite some disagreement in the findings,

a trend toward spinal stiffening with the increasing

degeneration was observed in most studies. Tests about

tears and fissures showed inconsistent results, as well as for

disc collapse and dehydration. Vertebral osteophytes were

found to be effective in stabilizing the spine in bending

motions.

Conclusions The literature suggests that the degenerative

changes of the intervertebral disc and surrounding struc-

tures lead to subtle alteration of the mechanical properties

of the functional spinal unit. A trend toward spinal stiff-

ening with the increasing degeneration has been observed

in most studies.

Keywords Disc degeneration � Biomechanics � Annular

tears � Osteophytes � Disc collapse � Motion segment

Introduction

Degeneration of the intervertebral disc is associated with

various morphological changes of the disc itself and of the

adjacent structures, such as collapse of the intervertebral

space, water and proteoglycan content reduction and

damage and sclerosis of the vertebral endplates or osteo-

phytosis [12, 76]. These changes have an influence on the

biomechanics of the motion segment, which may exhibit

abnormal mobility and loss of its mechanical properties,

therefore having in turn an impact on the progression of the

degenerative disease.

This paper reviews published studies on the biome-

chanics of intervertebral discs showing macroscopic

changes due to degenerative disc disease, with special

emphasis on the spinal flexibility. Following an introduc-

tion to the functional anatomy and biomechanics of the

healthy disc, macroscopic degenerative changes are

described with focus on their possible relevance to low

back pain. Published studies on the biomechanical impact

of the most important degenerative changes of the disc, i.e.

tears and fissures, osteophytes, dehydration and collapse of
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the intervertebral space, are also presented and discussed.

Relevant topics not directly linked to the degeneration of

the intervertebral disc (e.g. disc herniation and endplate

lesions) were not included in the present paper. Further-

more, disc loading and its alteration due to degeneration

were out of the scope of the present review, since they are

covered in another paper in the same issue [48].

It should be noted that the reviewed biomechanical

studies, being mainly based on the mechanical response of

cadaveric specimens or numerical simulations, do not

directly address the mechanisms of low back pain and have

therefore little value in determining why disc degeneration

may result in a painful condition, and why in some cases

degenerated discs are asymptomatic.

Functional anatomy of the intervertebral disc

The intervertebral disc is a fibrocartilaginous joint con-

necting two adjacent vertebral bodies, which distributes

loads to the osseous structures and allows for a certain

degree of motion in different directions (Fig. 1) [75]. The

central nucleus pulposus (NP) consists of a water-based

gel-like substance rich in proteoglycans (approximately

250 lg/mg dry tissue weight [33]) and a small amount of

collagen type II and elastin fibers [75]. The annulus fi-

brosus (AF) encloses the nucleus with a collagen type

I-based concentric lamellar structure. Within each lamella,

the collagen fibers are aligned approximately 30� with

respect to the transverse plane of the vertebral endplates.

The angle of collagen fibers also alternates with respect to

the same plane between adjacent lamellae. Between

lamellae, there are occasional radial connecting collagen

bundles [60], but most of the lamellae are filled with a

proteoglycan-rich gel. The intervertebral disc is connected

to the vertebral bodies through the endplates, which consist

of osseous and hyaline-cartilaginous layers [75]. The car-

tilaginous endplate covers only the NP and the inner AF;

the collagen fibers of the outer AF anchor directly into the

bone of the apophyseal ring [61]. The collagen fibers of the

inner AF and the NP are contiguous with that in the car-

tilage endplate and can transmit considerable tensile loads

to the osseous endplates [72]. Between the NP and the

inner AF there is no distinct border; rather a slow transition

between tissue type. This is often referred to as the tran-

sition zone [14, 73].

Due to its specific structure, the IVD is capable to

withstand high compressive loads. Proteoglycans synthe-

sized by the NP cells, in particular aggrecan, are highly

negatively charged. These fixed charges are electrically

balanced by positive cations in the interstitial fluid. This

higher concentration of cations gives the disc an osmotic

pressure (Donnan equilibrium) with respect to the external

environment and, thus, the capacity to attract and imbibe

water [66]. Due to its high water content, low permeability

and osmotic properties, the nucleus is, therefore, able to

sustain high compressive forces [4]. The NP swelling

pressure is balanced by the hydrostatic pressure, which is a

result of the NP being contained by the endplates and the

AF. Both at rest and under active loading, the pressure in

the NP is balanced by tensile stresses in the AF, which

limit bulging and avoid collapse of the disc under com-

pression [75]. To withstand the other types of loading from

daily activities, such as bending and shear in multiple

directions, the unique lamellar structure of alternating

collagen fibers in the AF is loaded primarily in tension,

similar to the fiber reinforcement of a tire, when combined

with an almost iso-volumetric NP core.

Finally, the endplates contribute to the even distribution

of the pressure acting within the nucleus and tension in the

annulus on the vertebral bodies [2]. The viscous fluid flows

through the endplates, allowed by their permeable nature,

and the viscoelastic stretching nature of collagen networks in

the annulus allows the disc to dampen loads. Due to this fluid

exchange, the IVD exhibits the creep and relaxation behavior

under sustained loads typical of a damper, i.e. when sub-

jected to the body weight for 4 h, a lumbar IVD expels

10–15 % of its water content through the endplates [1].

Ageing and degenerative changes of the intervertebral

disc

The ageing intervertebral disc usually shows several

changes in comparison to the young, healthy disc, even in

asymptomatic subjects [28]. The boundary between

Fig. 1 A schematic of the intervertebral disc: the central nucleus

pulposus (NP), surrounded by lamellae of the annulus fibrosus (AF),

located between the vertebral bodies (VB) and separated by the

cartilaginous endplates (CEP). Spinal cord (SC), nerve roots (NR) and

apophyseal joints (AJ) are also shown (reproduced from [67])
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physiologic disc ageing and degenerative disc disease is

not always clear, since in most cases ageing and degener-

ative changes do not substantially differ. Disc degeneration

has been defined as an accelerated ageing process including

structural failure [4]. Nevertheless, purely physiological

ageing changes such as water loss and thus the so-called

‘‘black disc’’ have been also referred to as disc degenera-

tion [52], thus promoting confusion in the literature due to

different definitions of disc degeneration. The following

paragraphs are based on the aforementioned definition by

Adams [4].

Cellular and matrix changes

In general, physiological ageing changes start in the end-

plates and then sequentially affect the nucleus and the

annulus [4]. Cell density in the intervertebral disc starts to

decrease during childhood [68]. The loss of cellularity

leads to a decrease and fragmentation of the proteoglycan

content [13], especially in the nucleus, and to a reduction of

matrix turnover which, in turn, induces cross-linking of

collagen fibrils that reduces the self-repairing capability of

the disc [16, 59]. The loss in proteoglycan content is further

worsened by a reduction in the per-cell synthesis rate,

which is probably related to cell senescence [44].

These cellular and biochemical changes determine alter-

ations in the extracellular matrix. During the whole ageing

sequela, a progressive loss of the water fraction in the whole

disc (due to the reduction of the proteoglycan content and,

therefore, of the osmotic gradient) and a corresponding

increase in the fibrotic tissue are generally observed [3, 4].

Within the nucleus pulposus, the water content was found to

decrease from 5.8 gH2O/g dry weight at an age of 14 years

(85 % volume fraction) to 3.3 gH2O/g dry weight at age

91 years (75 %) [66]. For the NP, primarily, a loss of pro-

teoglycans was observed [7, 34]. For the AF, a change in

water content, although to a more limited extent in com-

parison with the NP, as well as collagen content is observed

during ageing [7]. The decrease in the proteoglycan content

is linked to a reduction of the swelling pressure, for which

values ranging from 0.19 MPa (age of 37 years) to 0.05 MPa

(age of 91 years) were measured [66].

Structural changes

In addition to—or perhaps because of—matrix content

changes, the intervertebral disc also undergoes structural

failure showing tears and clefts [69] (Fig. 2). Although

these abnormalities may be related to each other, and

gradually overlap the physiological ageing course [12], in

most of the literature they are described and defined as

degenerative disc disease [4, 76] and are, therefore, clearly

distinct from natural ageing. An analysis of midsagittal

sections of cadaveric specimens showed that more than

50 % of intervertebral discs in the third and fourth decade

of life exhibit annular tears and fissures [40]. Tears were

shown to have different orientations and extents and are

classified following the terminology shown in Fig. 3

(adapted from [69]). Concentric and radial tears were found

to be frequent in young discs as well as in specimens

harvested from elderly donors. However, studies showed

that the presence of radial tears increases with ageing [28,

30]. Rim lesions and endplate separations had higher

incidence in the 50–80 age group [69].

Changes to the endplate are also observed [52, 76].

During degeneration, the endplates calcify and become

sclerotic [8, 57, 58]. Although the hypothesis of an endo-

chondral ossification process in the cartilaginous endplate

related to changes in load transfer from the NP to the AF is,

as yet, unproven, it does have several biomechanical con-

sequences; for example, significantly less flexible endplates

that are prone to fracture, altered load transfer to vertebrae

and reduced water and solute exchange between the disc

and the vertebrae.

Disc height is generally not affected [10, 18] or even

slightly increased [6] in the physiological ageing process,

whereas collapse of the intervertebral space is common in

pathological disc degeneration [46, 52, 64, 76].

Finally, formation of osteophytes around the margins of

the vertebral bodies is a common observation associated

with disc degeneration [52, 64, 76]. It has been estimated

that 25 % of subjects in their third decade and 90 % in their

sixth decade have at least one vertebral osteophyte [47].

Osteophytes are believed to be an adaptive remodeling

process that stabilizes an unstable spine segment. This

statement has been confirmed by in vivo experiments in

rabbits in which osteophyte growth was observed in the

adjacent vertebrae after artificial lesions in the anterior

annulus fibrosus [43].

Discogenic pain

Degenerative disc disease is believed to be the major cause

of mechanical or axial back pain [15, 42], defined as back

pain determined by loss of integrity of the spinal structures.

Degenerated discs with structural abnormalities have been

found to be more strongly correlated with discogenic pain

than the normal changes with age [17]. Severely degener-

ated discs, including collapsed, prolapsed discs and discs

showing leaking radial tears, exhibited a higher penetration

of nociceptive nerve fibers toward the nucleus center [17,

70, 71]; this phenomenon has been associated with

increased back pain [22]. Endplate lesions and irregular

endplate loading were also found to be correlated with back

pain history [74]. In addition to this, due to the loss of
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height, the vertebral bodies approach one another. Because

the vertebral body is not only moving downwards but also

backwards, in some cases the nerve root may be displaced

cranially into a small space, close to the capsule joint, thus

determining radicular pain [29]. Pain due to disc

degeneration is usually exacerbated by specific body

positions, e.g. sitting [36], and certain movements, for

example twisting and lifting weights [11], because the facet

impinges against the nerve root which leads to pain.

Another important cause of axial back pain is facet joint

osteoarthritis, which consists in the decrease of the thick-

ness and regularity of the cartilage layer of the facet joints,

also called apophyseal or zygoapophysial joints. Disc

degeneration and facet joint osteoarthritis are commonly

observed together in the same patient and spinal level [20,

26, 35] and a possible correlation between these two

pathologies is currently debated [62].

Biomechanics of the degenerated motion segment

Flexibility

The aforementioned degenerative changes of the interver-

tebral disc are believed to be significantly correlated with

alterations of the flexibility of the motion segment.

Fig. 2 Sagittal sections of human lumbar intervertebral discs in various stages of degeneration. The most relevant degenerative changes

observable are pointed out in brackets

Fig. 3 Classification of tears of the intervertebral disc (adapted from

[69])
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Kirkaldy-Willis and Farfan [38] hypothesized that the

course of disc degeneration is characterized by three

stages: temporary dysfunction, instability and stabilization.

Instability was, therefore, connected to early, mild disc

degeneration and believed to be the main factor responsible

for low back pain. Other papers further developed the

subject, e.g. providing a clear definition for spinal insta-

bility as an abnormal response to physiological loads, with

reduced spinal stiffness and greater motion [55]. This

rationale provided a basis for fusion techniques [19], with

which the mobility of the spinal segment is eliminated.

However, 10 years later, the first follow-up study reporting

on a surgical implant that restricts the flexibility of the

motion segment [25], but preserved some degree of pos-

sible motion, i.e. dynamic stabilization devices, was pub-

lished. Since then, multiple devices were developed and are

currently widely employed.

The hypothesis of increased flexibility for early, mildly

degenerated discs was tested in numerous in vitro studies.

Some papers have reported an increment in spinal flexi-

bility for mild degeneration [20, 41, 63] while other

investigations have found either an increase in spinal

stiffness with progressing degeneration [37, 45, 78] or a

combination of both [50]. Tanaka et al. [63] found max-

imal flexibility in axial rotation in the lower lumbar spine

for the grade III of the Thompson scale [64], whereas

minimal changes in the spine motion were found in

flexion, extension and lateral bending. Similar results

were reported by Fujiwara et al. [20] who found maximal

range of motion for spine specimens of grade IV of the

Thompson scale in flexion, extension and axial rotation,

and for grade III in lateral bending. Both papers showed

reduced mobility for severely degenerated spines (grade

V). Krismer et al. [41] did not analyze flexion–extension,

but found increased flexibility of lumbar specimens in

axial rotation and lateral bending starting from grade III.

On the contrary, a recent study [9] reported increased

range of motion only in axial rotation for severely

degenerated specimens (grade IV, V), whereas in flexion–

extension and lateral bending disc degeneration was cor-

related with decreased flexibility. These findings are in

general good agreement with the widely cited study by

Mimura et al. [45], which showed reduced flexibility in

flexion–extension and lateral bending and higher flexi-

bility in axial rotation. The most comprehensive study

consisted of a retrospective analysis of a large database of

in vitro results, including tests carried out on 203 motion

segments harvested from 111 donors; it showed that

spinal stiffness increased in flexion/extension and lateral

bending from no to severe degeneration (Fig. 4) [37]. No

changes in the range of motion were observed in axial

rotation. However, some specific motion segments

showed reduced stiffness for mild degeneration.

As a matter of facts, there is no evidence supporting a

clear clinical significance of instability in the diagnosis and

treatment of disc degeneration. These findings pose ques-

tions on the current indications of dynamic stabilization

systems, which may be restricted to cases in which the

instability is actually proven, e.g. with radiographic

investigations or when decompression, and subsequent

iatrogenic destabilization is necessary. It should be noted,

however, that these findings were derived under different

conditions and are therefore only partially comparable.

Neutral zone

A parameter frequently involved in the analysis of clinical

instability is the neutral zone [51]. Based on the observa-

tion that patients suffering from low back pain had

increased anteroposterior translation in the lumbar spine

[24, 39], Panjabi redefined the concept of clinical insta-

bility based on the capability of the stabilization systems of

the spine (passive structures, muscles, possible instru-

mentation) to restrain the neutral zone within the physio-

logical limits. The evaluation of the neutral zone of spine

specimens as an indicator of clinical instability was

therefore a logical consequence and was therefore per-

formed in a number of studies.

Fig. 4 Mean values of the range of motion (ROM) and neutral zone (NZ) for motion segments in different degrees of degeneration relative to

non-degenerated (grade 0) specimens [37]. The degenerative degree is graded radiographically following the scale introduced by Wilke et al. [76]
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From early studies, consensus about an increase of the

size of the neutral zone in all the three main directions for

degenerated discs seemed to emerge [45, 51]. More

recently, other studies either confirmed these trends [23] or

showed no—or hardly any—change in its size between

healthy and degenerated motion segments [63]. In the

aforementioned retrospective paper about a wide number

of degenerated specimens [37], an increase in the neutral

zone was found only in axial rotation, and was not limited

to mild degeneration, but progressed with the presence of

severe degenerative changes (Fig. 4). However, the

hypothesis that neutral zone may be more sensitive to the

degree of disc degeneration in comparison with the range

of motion [51] seems to be reasonable. The use of dynamic

stabilization devices may therefore find a more solid jus-

tification as means to reduce the neutral zone rather than

the range of motion.

Influence of the specific degenerative changes

on the motion segment biomechanics

Disruptions and tears

The consequences and influence of the presence of tears on

the biomechanics of the motion segment are still a debated

research question that has been investigated in a few

papers. It is generally believed that disc disruptions and

tears are the main factors responsible for the clinical

instability in mild degeneration, as hypothesized by Kirk-

aldy-Willis and Farfan [38]. This statement is not sup-

ported by available biomechanical studies, which are,

however, not conclusive. Tanaka et al. [63], for example,

showed increased flexibility of human spine segments

exhibiting radial tears but other degenerative changes were

also present in the investigated specimens, thus disguising

the specific mechanical effect of tears. This topic was more

specifically investigated in another in vitro study on 15

sheep non-degenerated lumbar motion segments in which

concentric, radial tears and rim lesions were artificially

created in fixed locations [65]. Rim lesions were the only

type of disruptions that reduced the stiffness of the motion

segment, especially in lateral bending and axial rotation.

Concentric and radial tears had no effect on the joint sta-

bility, in terms of flexibility and neutral zone. However, all

tears changed the hysteresis energy dissipation character-

istics of the specimens, indicating that the stress distribu-

tion inside the intervertebral disc has been altered. The

authors concluded that this alteration may lead to over-

loading of the other structures, i.e. ligaments and facet

joints, thereby inducing a progression of the degeneration

of the motion segment. In another study [56], rim lesions

have been shown to have a negligible effect in determining

the stresses inside the intervertebral disc when compared to

endplate fractures.

Osteophytosis

Few in vitro studies investigating the mechanical effects of

vertebral osteophytes exist but the concept that osteophytes

are an adaptive reaction to stabilize the motion of unstable

spines, rather than a degenerative phenomenon, seems to

be supported by the currently available data. Tanaka et al.

[63] and Fujiwara et al. [20] showed that there is a stiffness

increase in the degenerative degrees including osteophy-

tosis. However, these studies cannot be considered con-

clusive in this regard due to the presence of other

degenerative changes of the spine such as disc disruption

and disc height collapse. A more specific in vitro investi-

gation conducted on 20 human motion segments showed

comparable results [5]. Vertebral osteophytes were found

to stabilize the spine from 35 to 49 % in bending motions,

and less effectively (15 %) in compression. The mechani-

cal effect of osteophytes tended to increase with the size of

the spurs.

Matrix changes

Disc degeneration compromises the capacity of the inter-

vertebral disc to imbibe water and swell. As shown by

Johannessen et al. for the NP [34] and Iatridis et al. [31, 32]

and Gu et al. [27] for the AF, these changes affect the

biomechanical behavior of the disc. Due to the reduction of

the proteoglycan content in the NP, the swelling capacity

of the NP tissue decreases significantly; at the same time,

due to breakdown of collagen, the permeability of the tis-

sue increases. Because of these changes, the water can be

more easily squeezed out of the tissue and the NP tissue

may not be as successful in withstanding high loads for a

long period of time compared to a healthy NP. With regard

to the AF, a disappearance of nonlinear behavior under

compression, which can be explained by the change in

water and collagen content [32], has been reported. Per-

meability of the AF tissue changes from a highly aniso-

tropic behavior to a more uniform behavior, independent of

the direction. Due to the stiffening of AF and the reduced

load carrying capacity of the NP, the AF becomes the

major load bearing component of the intervertebral disc

[4].

The mechanical effect of these degenerative changes is

not fully understood and scarcely investigated, although

Zhao et al. [77] showed increased flexibility and neutral

zone after dehydration of the NP in vitro by applying a

sustained compressive load that caused a reduction of the

disc height. This indicates that these changes lead to

instability of the whole motion segment.
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Collapse of the intervertebral space

Numerical models were used to assess the effect of the

reduction of disc height as a consequence of dehydration.

This approach allows for studying the effect of single

degenerative parameters, keeping the other degenerative

characteristics unaltered. Coherently with Tanaka et al.

[63], Galbusera et al. [21] found increased compressive and

flexion–extension stiffness of the spinal segment with the

decreasing disc height. These results were confirmed by a

probabilistic numerical model targeted to the investigation

of the effect of the anatomical variability of the spine [49].

Besides the biomechanics of the spine, the reduction in

height of the disc directly effects the adjacent vertebrae; it

can lead to an increase of more than 50 % of the com-

pressive force on the lumbar spine being resisted by the

neural arch [54], while, at the same time, a reduction of

force in the vertebral bodies could lead to bone mass loss

due to unloading [53]. Such changes in loading pattern, as

well as narrowing discs, are also associated with osteoar-

thritis in the apophyseal joints [20].

Conclusions

Biomechanical investigations do not provide insights about

the mechanisms of low back pain, but have great value for

the understanding of progression of disc degeneration and

possible surgical treatments. The literature suggests that the

degenerative changes of the intervertebral disc and sur-

rounding structures lead to subtle alteration of the

mechanical properties of the functional spinal unit. A trend

toward spinal stiffening with increasing degeneration has

been observed in most studies, although conclusive studies

regarding some aspects are lacking. Evidence supporting a

general increase of spinal instability with disc degeneration

could not be found.
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