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Abstract: To achieve maximum profit by dispatching a battery storage system in an arbitrage
operation, multiple factors must be considered. While revenue from the application is determined by
the time variability of the electricity cost, the profit will be lowered by costs resulting from energy
efficiency losses, as well as by battery degradation. In this paper, an optimal dispatch strategy
is proposed for storage systems trading on energy arbitrage markets. The dispatch is based on a
computationally-efficient implementation of a mixed-integer linear programming method, with a
cost function that includes variable-energy conversion losses and a cycle-induced battery capacity
fade. The parametrisation of these non-linear functions is backed by in-house laboratory tests.
A detailed analysis of the proposed methods is given through case studies of different cost-inclusion
scenarios, as well as battery investment-cost scenarios. An evaluation with a sample intraday
market data set, collected throughout 2017 in Germany, offers a potential monthly revenue of up
to 8762 EUR/MWhcap installed capacity, without accounting for the costs attributed to energy
losses and battery degradation. While this is slightly above the revenue attainable in a reference
application—namely, primary frequency regulation for the same sample month (7716 EUR/MWhcap

installed capacity)—the situation changes if costs are considered: The optimisation reveals that losses
in battery ageing and efficiency reduce the attainable profit by up to 36% for the most profitable
arbitrage use case considered herein. The findings underline the significance of considering both
ageing and efficiency in battery system dispatch optimisation.

Keywords: efficiency; storage; battery ageing; arbitrage; market; optimisation; mixed-integer-linear-
programming; piece-wise affine approximation; utility-scale; frequency regulation; primary control
reserve; lithium-ion
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1. Introduction

An increasing number of investors are considering the installation and marketing of utility-scale
battery energy storage systems (BESSs). Among others, grid ancillary services, such as the provision
of a primary control reserve (PCR), are a major application of interest [1]. In this use case, revenue
is typically linked to the provision of power (EUR/MW), and storage operation is closely linked to
the external frequency signal. With increasing numbers of utility-scale BESSs installed and operating
in control reserve markets, the attainable profits are declining, and storage system operators aim for
alternative revenue streams. The operation of storage systems for energy arbitrage, where revenue is
created through charging/discharging at variable electricity prices (EUR/MWh), has been discussed
in various contributions; however, it has received less attention after the recent liberalisation of the
European Union wholesale market [2–4]. Whilst pumped-hydro electric power plants are well-suited
to monetise the diurnal fluctuations in electricity cost and have generated large revenues, the peak and
off-peak patterns significantly changed as renewable energy sources (RESs) became widespread, and
the price variability is often recorded on shorter timescales, rendering this application increasingly
attractive for fast-reacting storage systems, such as lithium-ion batteries (LIBs) [5,6].

In the UK, the first large-scale commercial use of grid-connected batteries was to deliver an
enhanced frequency response [7,8]. However, due to the limited amount of storage needed for
fast frequency response and the subsequent decrease in the price of such services, attention has
shifted towards multi-service portfolios and/or other applications, such as energy arbitrage, both in
Europe [9,10] and in the United States [11]. In fact, a BESS is well-suited for multiple applications, in
sequential or even time-parallel operation, and to improve revenues through “value stacking”, making
it a hotly debated topic at present [12,13]. In order to ensure the best project internal rate of return,
an optimal BESS application portfolio management strategy may require the operation of the storage
system in different applications, but should also consider the risk and costs associated with swapping
of applications. However, an adequate cost analysis, including the battery dispatch, is generally not
provided in the literature.

In this contribution, we will demonstrate how to optimise battery operation while considering
the most relevant cost factors: battery ageing and energy losses in the system. We demonstrate the
optimised storage dispatch in an exclusive arbitrage operation, but the methodology can be easily
adapted for storage operation in time-parallel or sequential operation modes, as well as for other
single-use applications. The economic viability of the arbitrage operation depends on the electricity
price differences over time, as well as on the marginal cost of the system operation. The marginal
costs can be defined as the additional costs occurring specifically due to the battery charging and
discharging [14], such as energy losses and cycle-induced battery degradation during operation. In
contrast, energy consumption for auxiliary components and calendar ageing effects can be considered
as non-marginal, as these will be influenced only negligibly by the dispatch profile. The same holds
for fixed costs (i.e. real estate, housing, air condition, wiring, and so on), which are independent of
the dispatch, and are consequently excluded from this analysis. We implemented all relevant cost
and revenue functions for BESS operation in an arbitrage market scenario in a mixed integer linear
programming (MILP) framework, which allows us to derive the maximum profit attainable and best
operational behaviour for the storage system. We, then, compared these values to the profit attainable
through operation of a technically-equivalent storage system in frequency control reserve markets.

1.1. Literature Review

A detailed multi-technology analysis of storage viability for electricity arbitrage was undertaken
by Bradbury et al. [15]. Although their linear programming (LP) optimisation-based approach revealed
unfavourable conditions for batteries in general in 2014, the work clearly underlined the significance
of efficiency losses and ageing-induced costs, in the context of arbitrage profitability. A more detailed
analysis of the optimal control of battery storage dispatch, with consideration of storage loss and



Energies 2019, 12, 999 3 of 28

degradation, was conducted by Koller et al. The authors considered battery degradation by an explicit
piecewise affine (PWA) cost function for optimal control of a BESS [16].

Various other studies have attempted to add a more detailed degradation model to the economic
analysis. Stroe et al. [17] included an empirical nonlinear degradation model in a case study
for a BESS, providing primary frequency response, although no optimisation was conducted.
Swierczynski et al. [18] also analysed the profitability of frequency response using a BESS. A less
realistic, but simpler, degradation model was used in their work. Sun et al. [19] optimised distributed
batteries for balancing the grid while including a strictly-increasing convex degradation cost, but
the universal power-law type degradation model was not suitable to describe the capacity fade of
a particular LIB. Sarker et al., in [20], used a MILP method, including a basic degradation model to
analyse the effect of trading electricity at different power levels, but a lack of data underlying the
degradation and efficiency models meant that they could not quantify the effects. Xu et al. [21] also
targeted electricity trading, but using a rain-flow counting method to account for degradation. While
the proposed algorithm may mimic the cycle-induced degradation of a battery to a certain extent,
it did not take into account inverter and peripheral component-induced losses. Also, this work did
not provide any data. Goebel et al. [22] calculated model-based dispatch strategies for a lithium-ion
BESS, applied to pay-as-bid secondary reserve markets. Perez et al. [23] extended the application
side by accounting for stacking applications: they analysed the effect of degradation for a battery
which could be used for energy arbitrage, various balancing services, and localised peak shaving. They
found that, although accounting for degradation decreases the revenue due to lower battery utilisation,
the corresponding increase in lifetime more than compensated for this short-term loss. Others have
used more complex battery performance and degradation models to obtain a more accurate lifetime
prediction. Due to the non-linearities in these electrochemical models, a large computational effort is
necessary and most studies limited their analyses to short duration (few days) use cases, instead of
economic optimisation. Patsios et al. [24] analysed various control methods for a single day of usage
of a battery in a peak shaving application and found that the losses could be decreased by 43% or
the degradation could be halved, depending on the control method used. Lee et al. [25] studied a
stand-alone photovoltaic microgrid while Weisshar et al. [26] looked at microgrids. Both reported that
the electrochemical battery models increased the accuracy of the battery behaviour. Unfortunately,
both studies lacked a quantitative economic analysis. Reniers et al. compared battery models of
increasing complexity [27]. Their work shows that a more physically realistic modelling of battery
degradation may strongly alter the battery dispatch and allow for increased BESS profitability.

Efficiency losses in containerised utility-scale storage systems have been studied in detail by
Schimpe et al. [28–30], and a first demonstration, applied to the arbitrage operation, was given
by the authors in a recent contribution [14]. While the work in [14] provided a framework for the
techno-economic assessment of marginal cost, in this contribution we extend the existing literature by
linking the cost functions of battery ageing and storage system efficiency losses with a state-of-the-art
MILP framework. In this work, this framework is applied to assess the potential revenue of batteries
in an arbitrage market scenario. Attainable revenue is compared to a reference case BESS application,
using the same battery parameters. Although its tractability is not guaranteed, using an appropriate
formulation of MILP can constitute a promising approach in solving complex optimisation problems,
due to its gradually-increasing computational efficiency [31–34].

Cheng and Powell proposed an approximate dynamic programming method, considering the
stochasticity and fast-changing dynamics required for frequency regulation. They could reduce
the computation time to several seconds [35]. However, they assumed a constant round-trip system
efficiency. In [36], a stochastic optimisation algorithm leveraging a MILP formulation for the day-ahead
bidding market was proposed and compared to a traditional LP. They used binary variables to express
acceptance or rejection of their bid, and it was shown that MILP was superior to LP, in terms of
cumulative revenue. However, they also assumed a constant loss in charging and discharging;
therefore, they did not employ any detailed loss curves for battery and power converters. It has
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been shown, by Nikolakakis et al., that using such a fixed system efficiency caused overestimation of
profits [37]. However, their main focus was limited to a compressed-air energy storage module for
the power exchange for arbitrage. In this work, the parameters for the battery and storage models are
based on a state-of-the-art lithium-iron-phosphate (LFP) commercial battery cell, specifically designed
for stationary applications, and a commercially available power inverter, coupling battery systems to
the low voltage alternating current (AC) grid. A discussion on the economic impact of cycle-ageing
induced battery ageing, as well as the profit reduction caused by dissipation losses, is conducted and a
cost-optimised operation of the BESS in an arbitrage application is provided. We also compare the
revenues attainable with arbitrage to the revenue and profit attainable by operation of the storage
system in a reference PCR application.

1.2. Structure of This Work

Section 2 gives an overview of the technical parameters for the battery storage and the inverter
system. The marginal costs for the battery storage system are linked to the state-of-the-art commercial
cell. The subsequent section, Section 3, provides details on the MILP optimisation procedure used to
conduct the battery revenue optimisation. Section 4 then provides a detailed discussion of the dispatch
optimisation algorithm, applied to test and real market data values. The concluding section, Section 5,
summarises the main findings of this work and outlines directions for future research.

2. Techno-Economic Framework for Battery Storage Dispatch

This section provides a framework for the profit calculations conducted in the subsequent sections.
Both the application-specific revenue, as well as battery investment costs, are considered. A formulation
for the marginal cost of battery operation, resulting from dissipation losses and battery ageing, is
introduced, which is used to investigate the optimal dispatch for arbitrage in the subsequent section.
Finally, a simulation framework to analyse battery behaviour, when delivering frequency response for
PCR provision, is introduced.

2.1. System Layout and Framework for Profitability Analysis

A number of factors should be considered, when the profitability of BESSs is to be compared
across different applications. As motivated in a previous contribution [1], the profitability of a storage
system, measured in terms of return on investment (ROI), can be estimated as:

ROI =
Jtotal

Cinv =
(RAPL −COPEX −Cageing)

Cinv , (1)

where all cash-flow is to be taken as discounted values and RAPL represents the net present value of
the revenue attainable in a storage application, COPEX is usage induced cost, and Cageing is a cost factor
added to account for degradation. Cinv refers to the initial investment cost of the system. A more
comprehensive and quantitative discussion of cost factors and formulation of value discounting can
be found in [38]. In this article, we focus on the profit in the use state of the battery only (Jtotal) and,
thus, the overall cost-revenue function can be formulated as:

Jtotal = R
APL(PAC)−C

OPEX
dissipation(PAC)−C

ageing
usage (PAC) (2)

C
OPEX
dissipation(PAC) = C

OPEX
dissipation,bat(PAC) +C

OPEX
dissipation,pe(PAC), (3)

where COPEX
dissipation is the superposition of battery related dissipation cost COPEX

dissipation,bat and power

electronics related dissipation cost COPEX
dissipation,pe. As indicated in the Equations (2) and (3),

all contributing factors for the cost and revenue calculations depend on the AC power dispatch
of the storage system PAC. A schematic of the system layout, along with the factors considered for
revenue calculations, is provided in Figure 1.
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Figure 1. Schematic drawing of a battery energy storage system (BESS), power system coupling, and
grid interface components.

The flows of power to (charge, “+”) and from (discharge, “−”) in the battery (P+/−
b ) are coupled

to the grid power (P+/−
AC ) through a bidirectional inverter. Distinct applications can be served by the

system, determining the AC power flow. As the initial investment costs are not considered in this
work, peripheral components of the storage system, such as the energy management system (EMS)
and thermal management system (TMS), are greyed out and not considered further in this work.

2.2. Battery Model and Storage System Parameters

For the storage system, we choose a commercially-available battery storage system in conjunction
with an industrial-scale inverter. The Sony/muRata LIB Fortelion cell with LFP cathode has been
designed particularly for stationary applications [39]. A brief summary of its main parameters is
given in Table A1, and a more detailed description of the cell characteristics and its ageing behaviour
can be found in [40,41]. As per [42], battery ageing can be written as a composition of two different
degradation factors, cycle and calendar ageing. For marginal cost optimisation, calendar ageing
is omitted.

In this study, we rely on data fits to in-house laboratory measurements for cycle ageing
determination [14,40]. The model is based on single-cell measurements and scaled to mimic the
behaviour of the full-sized storage system. We anticipate a constant battery cell temperature of 25 ◦C
and neglect the state of charge (SOC) dependence of the open circuit voltage. These simplifications
may be justified for LFP cells, due to the minimal voltage variation of the cell within the operation
limits of 10–95% SOC and a limitation of battery charge/discharge power (C-rates ≤ 1), as used in
this study and explained further in the following section. At room temperature and with battery
currents within cell specifications, the cycle ageing is mostly determined by the energy throughput
and is independent of battery SOC. In the following, we use a formulation of full equivalent cycle
(FEC) based on an incremental change of SOC:

FEC(t) = 0.5 ×
∫ t

0

∣
∣
∣
∣

d

dτ

SOC(τ)

∣
∣
∣
∣

dτ ≈ 0.5 ×
∫ t

0

|Pb(τ)|

Enom
dτ ≈ 0.5 ×

∫ t

0
Cr(τ)dτ, (4)

where Pb denotes the power charged to or discharged and Enom the nominal energy of the battery.
As such, one unit of FEC denotes one full charge and discharge of the battery. A change in FEC may
be calculated using the power-to-energy ratio (PER) or, alternatively, by a “pseudo C-rate” Cr, as the
battery voltage is assumed constant.

Despite investment costs for the battery system not being considered directly in the optimisation,
these costs will influence the degradation costs, as apparent in Equation (5).

C
ageing
usage (PAC) =

−∆SOH

(1 − kEOL)
·Cinv

bat . (5)
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In this equation, ∆SOH represents the normalised state of health (SOH) losses. We assume a
battery end of life (EOL) of 80%, which corresponds to kEOL = 0.8, in accordance with the literature [14].
For the base case, a battery retail cost of Pbase

bat = 500 EUR/kWhcap was chosen, being approximately
20% below recent single-unit pricing information (excluding VAT) [43]. Nevertheless, as battery prices
are declining rapidly, a potential future scenario with halved cost (Pfuture

bat = 250 EUR/kWhcap) is also
considered [44].

A bidirectional Siemens Sinamics S120 inverter with rated power of 36 kW, which connects
to the low voltage 400 VAC grid, was used to link the storage unit to the main grid. A full
parametrisation of the inverter, based on measurements taken at DC voltages of 600–750 VDC and at
0% to 100% of the nominal power for both charge and discharge, was conducted in [14]. We use the
corresponding look-up tables as a function of voltage, relative power, and power flow direction for the
subsequent calculations.

2.3. Market Data and Battery Cost Analysis

Publicly-available energy market data, recorded in Germany, was used to conduct the optimisation.
Energy prices were obtained at the European Energy Exchange through market clearing of aggregated
supply and demand curves. While intraday market (IDM) prices are set on a quarter-hour basis
continuously throughout the day and subject to strong variations, day ahead market (DAM) prices are
set on an hourly basis and are attained by previous day auctioning. The course of a typical pricing
signal is visualised in Figure 2, and a more detailed version is also given in the Appendix A, in
Figure A1.
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Figure 2. Price distribution for (a) the intraday market and (b) the day-ahead market [45]. Red lines
indicate median values, blue boxes lower and upper quartiles, black whiskers indicate one standard
deviation, and red marks indicate outliers.
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For the IDM, an average cost of 34.68 EUR/MWh was recorded for the year 2017, used also as an
input parameter for the estimation of PCR operational costs.

2.4. Reference Scenario Operation

In order to relate profits attainable for BESS operation in arbitrage markets to an alternative mode
of operation, we simulated the operation of a technically-equivalent storage system (with the same
battery and inverter technology but an adapted PER) in the PCR operation mode. In contrast to the
aforementioned arbitrage operation, PCR prices are archived on a weekly basis through pay-as-bid
auctioning. This binds a storage system (as a winning tender) to operation following the grid frequency
signal, with few degrees of freedom [46]. The battery storage evaluation tool SimSES (Open Source
version available for download at www.simSES.org) is used for this purpose [1]. The tool allows
for time-series modelling of battery storage systems in different application scenarios, with detailed
modelling of battery ageing, as well as dissipation losses, occurring in the battery and the inverter.

In order to meet European regulatory constraints and to allow for continuous PCR operation
it is mandatory to set appropriate PER and SOC limits. A PER of 0.8, is applied (i.e., backing up a
power provision of 1 MW with 1.25 MWh storage size). Furthermore, the SOC limitations required
30 min of continuous maximum power provision, and an operation strategy incorporating all degrees
of freedom for SOC stabilisation was used in line with the previous work [46]. Using these parameters,
SimSES provides a time-series evaluation (as in Figure A4) of the storage system operation, along
with an economic evaluation. Table 1 provides a short summary of average prices attained for a
weekly-tendered PCR power provision for the years 2015–2017, based on publicly available market
data [47,48].

Table 1. Primary control reserve (PCR) market data summary. Tender prices displayed are mean values
for winning bids of weekly auctions. Extremum weeks and average yearly values are displayed.

Parameter Weekly Price (EUR/MW)

Yearly average tender price (2015) 3724
Yearly average tender price (2016) 2494
Yearly average tender price (2017) 2489

Week min. tender price (2017) 2094
Week max. tender price (2017) 2510

As directly apparent from the simple data analysis conducted, the profitability of this use case
declines and a battery operation in alternative applications (e.g., arbitrage marketing) could be analysed
by a storage system owner.

2.5. Marginal Cost for Battery Operation

Based on the results of the previous work, we consider dissipation losses and ageing losses of the
aforementioned storage system [14]. Dissipation losses may occur from the battery cells, as well as
from the AC power converter system. Based on laboratory experiments, a current-dependent ageing
formulation was derived, which describes the capacity fade of the battery cells. Figures 3a,b depict
the dissipation and ageing losses for the system with respect to the AC power. A conversion to the
C-rate for charging or discharging was also calculated, taking the losses of the power electronics into
account. The energy conversion losses in the battery were calculated using an equivalent circuit model,
featuring an open circuit voltage and a single resistance using Ohm’s law, as is given in Equation (6).

Pb
loss(PAC) = RCH/DCH · Ib(PAC)

2. (6)

The parameters were implemented for the aforementioned commercial battery cell, with values as
provided in [14,40] (muRata/Sony Fortelion LFP cell, RCH = 46.66 mΩ, RDCH = 50.29 mΩ, UOCV =

www.simSES.org
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3.30 V), and Ib being the battery current. In contrast to PCR time-series evaluations, a PER of 1:1 was
used for the arbitrage modelling, resulting in a 36 kWh battery configuration with a nominal pack
voltage of 665.6 VDC. The battery ageing model was described in detail, in [40]. As distinct from
the original ageing model, in Figure 3b the capacity fade as a function of PAC is shown for use with
variable time steps in units per hour, instead of a complete FEC. Therefore, it is multiplied with the
time step, as in Equation (31).

Figure 3. Loss factor (a) and battery ageing (b) analysis with dependence on alternating current
(AC)-side system power. The nominal power rating of 36 kW for the inverter is indicated with a dotted
line. The x-axis shows both the AC power and the C-rate in charge/discharge directions, separately.

The energy conversion losses in the power electronics are based on the power-loss measurements
of the previously described commercial inverter and look-up table values are taken as input for this
study [14]. Round-trip efficiency values, calculated from the data, are given in Figure 4.
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Figure 4. Round-trip efficiency values for battery, power electronics, and overall BESS.

3. Optimisation Framework

MILP is a powerful tool that can be used to approximate and optimise complicated problems
involving non-linear cost functions and constraints. Although the solution time is not guaranteed
to be ideal, with recent advancements in solvers, the solution can be found in a reasonable amount
of time for many problems [31,32,49–51]. In our work, three components (namely the dissipation
loss in the battery, the dissipation loss of the inverter, and cycle ageing for charging) are formulated
through a PWA approximation. Modelling the battery discharge loss is straightforward, due to its
linear dependence on PAC.
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In order to maximise profit from buying and selling energy on the arbitrage markets, the objective
function, introduced in Equation (2), may be reformulated as a minimisation problem, given by
Equation (7),

−Jtotal = −Rarbitrage +Cdissipation
︸ ︷︷ ︸

cen·PAC∆t

+ Cageing
︸ ︷︷ ︸

cag·(−∆SOH)

=
Nh

∑
k=1

(
cen(k) · PAC(k)∆t + cag · (−∆SOH(k))

)
, (7)

where PAC and Jtotal denote net power exchange with the grid and net profit function, assuming an a
priori known arbitrage price signal cen, represented by the cost of energy [EUR/kWh] over a certain
prediction horizon, Nh. The ageing-related cost cag is given as cost of unit ageing [EUR/∆SOH]. ∆SOH

and ∆t show the battery degradation in percent and time step in hours, respectively. As given in (7), it
is worth mentioninng here that the dissipation losses Cdissipation are embedded inside the formulation,
given by the subsequent system dynamics. The parameters used for the optimisation can be found in
Table A2.

3.1. Battery Dynamics Modelling

In this subsection, battery model equations, applied ∀k ∈ I[1:Nh ]
, are presented. First, the model is

defined by disambiguation of the battery charging power P+
b and discharging power P−

b , which are
limited by the maximum battery power Pbatmax.

0 ≤ P+
b (k) ≤ sb(k) · Pbatmax (8)

0 ≤ P−
b (k) ≤ (1 − sb(k)) · Pbatmax, (9)

where sb(k) ∈ Z2 is a binary variable indicating the status of the battery. The battery power is linked
with the AC-side power, PAC, by Equations (10)–(13).

PAC(k) = P+
AC(k)− P−

AC(k), (10)

P+
AC(k) = P+

b (k) + L+(k), (11)

P−
AC(k) = P−

b (k)− L−(k), (12)

0 ≤ P+
AC(k), P−

AC(k) ≤ Pinvmax, (13)

where P+
AC, and L+ are the charging power and charging losses, respectively, and P−

AC, L− denotes the
discharging power and discharging losses on the AC side. The AC side power P+/−

AC is constrained
by the maximum power of the inverter Pinvmax, for which detailed information about loss modelling
is given in Appendix A.2. Lastly, the auxiliary variables net battery power Pnet and absolute battery
power Pgross are defined by (14) and (15), respectively.

Pnet(k) = P+
b (k)− P−

b (k), (14)

Pgross(k) = P+
b (k) + P−

b (k). (15)

The main part of the battery dynamic model for the energy stored in the battery is given in
Equations (16)–(19) [52].

Ebat(0) = 0 (16)

Ebat(k) = Ebat(k − 1) + Pnet∆t (17)

0 ≤ Ebat(k) ≤ Emax(k) (18)

Emax(k) = SOH(k) · Enom · (SOCmax − SOCmin) . (19)
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Here, Ebat ∈ R(Nh+1) denotes the usable energy stored in the battery, which is restrained by a
diminishing upper limit Emax. Although, in many studies, stored energy is defined by SOC, as
in [52], in this study we have leveraged the representation by using Ebat to capture capacity loss effects
due to ageing, as in [53]. Therefore, we defined an intermediate variable for the maximum energy that
can be stored using the SOC limits SOCmax and SOCmin, as well as the nominal energy of the battery
Enom. The variable is then decreased, in proportion with the state of health SOH, and updated by
Equations (20)–(24).

SOH(0) = 1 (20)

FEC(0) = 0 (21)

SOH(k) = SOH(k − 1) + ∆SOH(k) (22)

FEC(k) = FEC(k − 1) + ∆FEC(k) (23)

∆FEC(k) = Cr(k)∆t/2. (24)

As charging and discharging powers are recorded separately, Cr is defined by the following equations;
where C+

r and C−
r denote the charging and discharging C-rates, respectively, and C+

rmax and C−
rmax are

the upper limits on the charging and discharging C-rates, respectively.

Cr(k) = C+
r (k) + C−

r (k) (25)

C+
r (k) = P+

b (k)/Enom (26)

C−
r (k) = P−

b (k)/Enom (27)

0 ≤ C+
r (k) ≤ C+

rmax (28)

0 ≤ C−
r (k) ≤ C−

rmax. (29)

3.2. Battery Ageing Modelling

The cycle ageing of the cell used for this study can be modelled by a semi-empirical model fitted
to experimental data, which was first presented in [40] and applied to marginal cost calculations in [14].
The convex fit on charging (as in Figure 3b) is approximated using PWA in Equation (31), as detailed
in Appendix A.1. For discharging, a power-independent linear function of ∆FEC is obtained, as in
Equation (32). The capacity fade is attributed mostly to battery internal loss mechanisms, such as
lithium plating and growth of a solid electrolyte interphase layer. A more detailed discussion of these
physical processes can be found in [40]. The work in [40] also provides experimentally-confirmed
values for the constant coefficient aSOH, as well as the function fag.

∆SOH(k) = ∆SOH+(k) + ∆SOH−(k) (30)

∆SOH+(k) = fag(P+
AC(k))∆t (31)

∆SOH−(k) = aSOH · ∆FEC(k). (32)

4. Results and Discussion

To explore the range of results using the optimisation approach, we differentiate between three
different cases: Case 1, where all losses are neglected; Case 2, where battery energy efficiency as
well as battery cycle ageing are considered; and, lastly, Case 3, where the dissipation losses of the
power-electronic equipment are added into case 2.

After developing our optimisation framework using YALMIP [54] and Gurobi [55], as given in
Appendix A.1, its validity was verified against a test signal with a predictable outcome (see Figure 5).
The test signal (Figure 5a) begins at an initial value of 0.5 EUR/kWh and gradually diverges. While, in
the ideal state (Case 1), the storage system follows price fluctuations directly; we observe a battery
dispatch only after a certain threshold value when additionally battery losses and ageing (Case 2), as
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well as power electronics losses (Case 3), are considered. In line with the cost function formulations,
the power dispatch increases, step by step, as an increasing cost burden of higher power dispatch is
overcome at strong price variations. The optimiser begins dispatching the battery for energy trade
only when it can cover the costs of losses with the expected profit. In fact, as is apparent from
Figure 5b, in the case considering all costs (Case 3), the system starts to dispatch much later than in the
case where inverter losses are neglected. At larger price differences (∆p ≥ 0.1 EUR/kWh) between
subsequent time steps, all cases converge to the same solution, namely charging and discharging at
maximum power, limited by the C-rate and the SOC limits. As all of our cost function formulations
are independent from battery SOC, the dispatch leads to an undulation around arbitrary SOC points
with an increasing amplitude (see Figure 5c).
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Figure 5. Results of optimising dispatch for the three case study scenarios (Case 1: “All losses
neglected”; Case 2: “Battery ageing and battery dissipation losses considered”; and Case 3: “Battery
ageing, dissipation losses of both power electronics and battery considered”. Subfigures indicate
(a) Price signal; (b) AC power dispatch; and (c) state of charge.
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After validating the algorithm, real-world price data sets were fed to the optimiser. The method
was applied to one month of real-world data obtained from the German EPEX intraday (IDM) and
day-ahead (DAM) auction markets [45]. Numerical results from the data sets are compiled in Table 2,
along with a comparison to an alternative revenue source; namely PCR using the same set of technical
parameters for the storage system. As such, the results can be used to give a direct comparison of
the profits attainable. The profit values, in Table 2, are normalised per month and one MWhcap of
battery capacity.

Table 2. Cash flow for storage operation in three use cases based on real-world data (2017).

Application and Dataset
Cash Flow under Different Cases [EUR/MWhcap/month]

Case 1 Case 2 Case 3

Battery Cost (per kWhcap) 250 EUR 500 EUR 250 EUR 500 EUR

Intraday Market

Revenue
(
RAPL) 8762 8269 7908 8068 7671

PE efficiency losses
(

COPEX
dissipation,pe

)

0 0 0 572 525

Battery efficiency losses
(

COPEX
dissipation,bat

)

0 914 812 802 707

Cycle ageing losses
(

C
ageing
usage

)

0 646 931 610 864

Net profit (Jtotal) 8762 6709 6165 6085 5575

Day Ahead Market

Revenue
(
RAPL) 1724 1618 1599 1560 1528

PE efficiency losses
(

COPEX
dissipation,pe

)

0 0 0 148 141

Battery efficiency losses
(

COPEX
dissipation,bat

)

0 143 135 132 119

Cycle ageing losses
(

C
ageing
usage

)

0 64 114 53 91

Net profit (Jtotal) 1724 1411 1351 1227 1177

PCR (Reference Operation)

Revenue
(
RAPL) 7716 7716 7716

PE efficiency losses
(

COPEX
dissipation,pe

)

0 0 366

Battery efficiency losses
(

COPEX
dissipation,bat

)

0 24 24

Cycle ageing losses
(

C
ageing
usage

)

0 18 36 18 36

Net profit (Jtotal) 7716 7674 7656 7308 7290

As apparent from Table 2, the arbitrage cost, revenue, and profits were widely varying, depending
on the consideration of ageing and dissipation losses. Similarly, not only the costs but also the
profit and, ultimately, revenue were affected, when switching between the battery cost assumptions
(250 EUR/kWh or 500 EUR/kWh) for otherwise-unchanged parameter settings. In fact, the algorithm
adapts its dispatch strategy to optimise the marginal cost. It is also evident that DAM profits were
significantly lower, compared to IDM profits. This is attributed both to overall lower price differences
in the day ahead market, as well as a lower sampling rate (15 min versus 1 h), resulting in less battery
dispatch operations within the sample time. The table also reveals differences between both arbitrage
markets analysed. While ageing is one of the largest contributors to cost in all the IDM operation
cases under investigation, for DAM applications, the dissipation losses of both the battery and inverter
infer a higher cost burden. This is attributed to an overall lower relative power during IDM operation,
the typically low power electronics efficiency, and high relative losses under partial load operation.
Overall efficiency and energy throughput values are also given in Table A3.

To better visualise the power distribution of the various scenarios, refer to Figure 6, as well as
Figures A2 and A3. In Figure 6, the plots show a cumulative frequency distribution versus battery
C-rate for the 500 EUR/kWh battery cost scenario. One can clearly see that the optimiser tends
to favour maximum C-rates in the Case 1 scenario (green lines), where ageing and losses are not
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considered. If ageing and battery dissipation are taken into account (Case 2, red line) high C-rates are
avoided, in order to keep the battery-induced ageing and dissipation loss costs at an acceptable level
(as in Figure A5). This comes at the cost of a slightly reduced overall trading revenue. Looking back
to Table 2, this results in a reduction from 8762 EUR/MWhcap down to 7908 EUR/MWhcap monthly
revenue for IDM arbitrage between Case 1 and Case 2 (500 EUR/kWhcap). When subtracting the costs
of battery dissipation losses and degradation, this results in a monthly net profit of 6165 EUR/MWhcap.
For Case 3 (blue lines), where power electronics losses (being particularly prominent at partial load
conditions) are additionally taken into account, the optimiser tries to find a compromise and avoids
both high C-rates and low C-rates. As a result, compared to Case 2 (red lines), in Case 3 (blue lines) the
dwell time at no load conditions is significantly higher. In the IDM application, the power electronics
losses comprise of an additional 5.99% loss, which is 25.04% of the total cost. In DAM, the effects are
even more pronounced: power electronics losses account for an 8.15% reduction of efficiency and
comprise 40.01% of the total losses. We, therefore, conclude that, for battery arbitrage market studies,
dissipation losses should always be considered for a net profit calculation.

Figure 6. Cumulative probability distributions of C-rate for: (a) The intraday market (IDM); (b) the
day-ahead market (DAM); and (c) the PCR.

For the reference PCR operation (Figure 6c), where the operation closely follows the frequency
signal, we observe an overall lower impact of ageing and battery efficiency losses, which will increase
with higher battery C-rates (see Figure 3). For the Case 3 scenario, however, a significant cost burden
(366 EUR/MWhcap) is associated with the power electronics losses, being prominent particularly at
partial load conditions. From a system engineering viewpoint, these findings highlight the importance
of lowering the dissipation losses of the power electronics and pushing for a higher cycle life of
batteries, when large scale storage systems are to be used in an arbitrage operation. At the same
time, the cost and revenue analysis also highlights the importance and necessity of taking ageing and
efficiency losses into account when designing a profit-optimal battery dispatch strategy.

Economic results normalised to the maximum revenue are shown in Figure 7, for each scenario.
When looking at the IDM and DAM bar plots, we see at first glance that, for both applications, not
modelling the power conversion losses and ageing costs would cause a significant overestimation
of the profits (Case 1 versus Case 3). Furthermore, the normalised bar plots illustrate which cost
contributor should be tackled first, in order to achieve improved net profits for the case of considering
all cost contributors (Case 3): while power electronic losses outweigh other costs for the PCR
application, ageing losses are the largest cost contributor for the DAM application; at a battery cost of
500 EUR/kWhcap. Ageing becomes a less-important cost contributor for the less energy-throughput
demanding DAM application. A potential decrease of battery investment cost will further reduce the
impact of ageing costs to the net profit.
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Figure 7. Comparison of revenue and losses resulting from battery ageing, as well as dissipation losses,
for the storage system.

5. Conclusions and Outlook

This paper provides an optimisation framework for arbitrage battery dispatch, along with a full
parametrisation relevant to a commercially available battery storage system including a LFP-type
lithium-ion battery and an industry-scale inverter component. Real-world data for the arbitrage
markets and the provision of PCR was used as an input, to derive the revenue and costs of the
storage system operation under various conditions and constraints. To systematically describe the
ageing and efficiency, a previously-derived set of non-linear functions, based on in-house experimental
data, was incorporated into the system with the help of PWA approximations and an open-source
toolkit. The discontinuities and nonconvexities in this PWA approximation were expressed using an
MILP formulation, where a specialised algorithm was employed to reduce the number of integer and
redundant real variables.

A test data set is used to validate the applicability of the algorithm. Depending on the operational
costs considered (Cases 1–3), the operation of the storage system adapts and finds an ideal compromise
of cost and revenue generation by arbitrage dispatch. Thereafter, the method is applied to real-world
data sets and net profits are obtained for various scenarios. The quarter-hourly IDM with significant
price fluctuations is more profitable for battery arbitrage, compared to a DAM operation with an
hourly pricing scheme. The profit attainable for storage operation in an IDM arbitrage operation is
found to be on a similar level and, in some scenarios analysed, even slightly above the revenue made
in the reference PCR operation.

In order to consider the rapid decrease in the battery costs currently observed, two price scenarios
are analysed. While. in the base case (500 EUR/kWhcap), the costs associated with battery ageing
reduce attainable arbitrage revenue (intraday market, Case 3) by 11.2%, their impact is slightly less
pronounced in an optimistic future scenario with a halved battery cost (revenue reduction by 7.6%).
In all cases considered, the sum of costs due to dissipation losses even outweighs the cost for battery
cycle ageing. However, it is worth mentioning that the cycle life of the battery cell used for this study
is far above average, and the results could change for a different battery cell.

The results obtained with the real-world data clearly highlight the importance of modelling
efficiency losses and ageing, along with revenue maximisation, in arbitrage markets. For the data sets
used herein and when taking all costs into account, an arbitrage operation is still slightly less profitable
when using the storage in the reference PCR application. However, this situation might change in
the near future: PCR prices might continue to fall, whereas an increasing share in variable renewable
generation might induce stronger fluctuations on the wholesale electricity markets.

While it provides a versatile framework for a direct comparison of a BESS in competing
applications, there are some limitations to this study. The market data is assumed to be known
a priori for the entire optimisation horizon. However, in reality, forecasts will not match market results
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perfectly. Therefore, our results reflect only the maximum attainable profit. The accuracy of the profit
estimation can be further analysed, regarding forecasting and adaptive algorithms. Only marginal
costs are considered in this work. While this allows one to find the most profitable applications for a
storage system, it can not provide a full profitability analysis. The fixed costs of the storage system, as
well as calendar ageing, should be included to derive the return on investment and the profitability
of the system over the battery lifetime. An improved battery performance model could be used,
which considers the SOC and current dependence of the battery terminal voltage, leading to increased
model accuracy. More advanced ageing formulations could be implemented, such as taking battery
temperature and SOC dependence into account. Sophisticated models, based on physico-chemical
reactions, may need to be used to capture more complex and non-linear ageing phenomena [56,57].

Although MILP-based optimisation has a drastically increased speed, compared to a simplistic
brute-force approach, the formulations are still memory-consuming (one month simulation of IDM in
Case 3 takes approximately 5–10 h on a Windows 10 computer with an i7-6700HQ CPU at 2.60 GHz
and 16 GB 2333 MHz RAM using Gurobi 8.1 with a mixed integer programming gap of 0.05%), and we
were unable to conduct simulations over a time horizon of one year. There are a couple of different
methods that can be used to enhance the scalability of the simulations. Use of receding horizon
(or rolling horizon)-based methods, namely model predictive control (MPC), could be a method of
choice for future investigations. The MPC procedure reduces the computation time by using a small
horizon and creating an artificial closed loop system [58,59]. Since the price forecast may be imprecise
and/or unavailable for long time frames, one may also prefer MPC. Utilising an integrated closed
loop controller might enable the system to better handle uncertainties in price signals [60]. Another
approach would be using a better decomposition method to create an economic MILP formulation.
As the problem can be formulated as a difference of convex PWA functions [61], it can potentially be
solved more efficiently by specific methods, as discussed in [62].
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Abbreviations

The following abbreviations are used in this manuscript:

AC alternating current
BESS battery energy storage system
DAM day ahead market
EMS energy management system
EOL end of life
FEC full equivalent cycle
IDM intraday market
LFP lithium-iron-phosphate
LIB lithium-ion battery
LP linear programming
MILP mixed integer linear programming
MPC model predictive control
PCR primary control reserve
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PER power-to-energy ratio
PWA piecewise affine
RES renewable energy source
ROI return on investment
SOC state of charge
SOH state of health
TMS thermal management system

Appendix A

Table A1. Technical parameters of the battery and inverter system used for this study.

Parameter Value

Battery type muRata Fortelion (Sony US26650FTC1)
Cathode chemistry Lithium-iron-phosphate

Nominal cell voltage 3.2 V
Nominal cell capacity 3 Ah

Storage capacity 36 kWh
Operation limits [10 · · · 95] % SOC
Ageing model Empirical cycle ageing model
Inverter type Siemens Sinamics s120

Inverter power rating 36 kW (nominal) 43.2 kW (maximum)

Table A2. Optimisation parameters.

Parameter Value Unit

cbat 500 or 250 EUR/kWh
cag cbat · Enom/(1 − kEOL) = 9 · 104 (for cbat =

500) or 4.5 · 104 (for cbat = 250)
EUR/∆SOH

kEOL 0.8 N.A.
Enom 36 kWh

Pbatmax 36 kW
Pinvmax 43.2 kW
SOCmax 0.95 N.A.
SOCmin 0.1 N.A.

Nh 30 · 96 (IDM) or 30 · 24 (DAM) N.A.
∆t 0.25 (IDM) or 1 hour (DAM) h

C+
rmax, C−

rmax 1 N.A.
aSOH −3.18·10−7 ∆SOH/FEC
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Figure A1. Price distribution for (a) the intraday market; and (b) the day-ahead market.
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Figure A2. Histogram plots of C-rate for (a) the intraday market; (b) the day-ahead market; and (c) the
primary control reserve.
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Figure A3. For PCR, DAM, and IDM in the Case 3 scenario (considering all losses and ageing):
(a) Histogram plots; and (b) cumulative distribution.

Table A3. Table of efficiencies concerning real-world data.

Application and Dataset
System Indicators under Different Cases

Case 1 Case 2 Case 3

Battery Cost (per kWhcap) 250 EUR 500 EUR 250 EUR 500 EUR

Intraday Market
Energy throughput [kWh] 21,647 16,073 14,498 14,461 12,924

Full equivalent cycle [-] 301 223 201 201 180
Mean round-trip efficiency [%] 100 93.3 93.6 88.7 89.0

Day Ahead Market
Energy throughput [kWh] 5814 3656 3418 2721 2487

Full equivalent cycle [-] 81 51 47 38 35
Mean round-trip efficiency [%] 100 96.6 96.7 90.6 90.6

PCR (Reference Operation)
Energy throughput [kWh] – – – 2168

Full equivalent cycle [-] – – – 28
Mean round-trip efficiency [%] – – – 80.7
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Figure A4. SimSES modelling of a 30 day PCR operation. The battery model is set to the
lithium-iron-phosphate (LFP) cathode chemistry, and ageing is limited to cycle ageing solely.
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Figure A5. Ageing for: (a) Test data; (b) the intraday market; and (c) the day-ahead market.
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Appendix A.1. PWA Approximation

The power of MILP lies in its ability to model highly complex functions using piecewise affine
(PWA) approximations. Therefore, the nonlinear parts in the model, the ageing and loss functions,
are modelled by suitable PWAs. As shown in Figure A6, fag is a nearly-quadratic (but not exactly)
function of P+

AC. Therefore, these nonlinearities must be approximated by a series of PWA functions to
use the MILP approach. However, since it is a convex function, the formulation can be done without
using integer variables, which reduces the computational burden substantially.

Figure A6. Piecewise affine (PWA) curve fitting for the semi-empirical cycle ageing curve (charging).

A sample PWA function is given in the form of Equation (A1) and the actual function can be
approximated by selecting the maximum value of the pieces, as in Equation (A2) [63].

f̃ (z) =







a1z + b1 if r0 ≤ z ≤ r1
...

aiz + bi if ri ≤ z ≤ ri+1
...

aNz + bN if rN−1 ≤ z ≤ rN

(A1)

f ≈ max
ai ,bi

(
f̃ (z)

)
. (A2)

This formulation can be converted into epigraph form, as in Equation (A3) [63]. In the epigraph
form, a variable called fPWA is defined as an upper boundary for all PWA functions. When an
expression involving fPWA is minimised, fPWA will be minimised until it intercepts the maximum
value amongst the PWA functions. Hence, it can accurately represent a convex PWA function.

min
z

(
f̃ (z)

)
≡

[

min
z

( fPWA) s.t. aiz + bi ≤ fPWA ∀i ∈ I[1:N]

]

. (A3)

After obtaining an appropriate form for approximation, the coefficients ai and bi, and the
breakpoints ri, in Equation (A1), can be found by solving a nonlinear programming problem, defined
by Equation (A4) for a pre-defined N number of pieces [52]. Therefore, an open-source toolbox,
developed by Alexander Szücs et al. [64–66], is used to determine the unknown parameters. Solutions
are given in Tables A4 and A5.
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min
ai ,bi ,ri

[
N

∑
i=1

(∫ ri

ri−1

( f (z)− (aiz + bi))
2 dz

)]

(A4)

such that zmin ≤ r1 ≤ · · · ≤ rN−1 ≤ zmax

airi + bi = ai+1ri + bi+1

r0 = zmin

rN = zmax.

Consequently, total ageing in the epigraph formulation is given by Equations (A5) and (A6).

∆SOH(k) = ∆SOH−(k) + ∆SOH+
PWA(k) ∀k ∈ I[1:Nh ]

(A5)

aiP
+
AC(k) + bi ≤ ∆SOH+

PWA(k) ∀i ∈ I[1:N] ∀k ∈ I[1:Nh ]
. (A6)

In this formulation, ∆SOH+
PWA(k) ∈ RNh constitutes the upper bound for the PWA functions at

each time step k, similar to the role of fPWA in the epigraph formulation given by Equation (A3).

Appendix A.2. Battery Loss Modelling

In battery loss modelling, two loss elements are considered: Battery internal losses and power
electronic losses [14]. In this study, three cases are analysed: All losses are neglected (Case 1);
only battery internal losses and ageing are considered (Case 2); and battery internal losses, battery
ageing, and power-electronic losses are considered (Case 3). Therefore, as illustrated in Figure A7,
there exist different data-driven functions that map the input power P+/−

AC to the dissipation losses
L+/−

bat (battery dissipation losses), L+/−
PE (power electronic losses) and L+/−

tot (total system losses). Loss
mapping for Cases 2 and 3 is shown in Figure A7, and L+/−

bat = 0 for Case 1. Therefore, according to
the three different cases we study, there are four different functions f+bat, f−bat, f+tot, and f−tot (given in
Figure A8) to be approximated with the method given in the previous subsection.

Figure A7. System Diagram.
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Figure A8. Loss values for different AC side power levels.

Compared to the PWA approximation of the ageing function, which is an increasing convex
function, there are two complications for the modelling of the loss functions:

1. Some of the price values may be negative, which causes the loss function to be concave at that
time step; therefore, the epigraph formulation given in Equation (A3) cannot be used.

2. Although the battery loss functions f+bat and f−bat are convex, the combined loss functions f+tot and
f−tot are non-convex. Hence, they can not be written as in Equation (A3).

Due to the above problems, the representation in Equation (A3) cannot be completely relied on
for selecting the appropriate part of the PWA function. Therefore, we need to expand our formulation
into the mixed-integer domain to include binary variables, which can be utilised to select the correct
segment of the PWA function. However, despite having the state-of-the-art MILP solvers, excessive
use of integer variables may lead to an insufficient memory problem and an increased computation
time. Hence, we utilise a decomposition method that will reduce the number of redundant binary and
real variables. The procedure followed is produced in Figures A9 and A10.

The procedure given in Figures A9 and A10 is basically a classifier that makes rough decisions to
determine if a part of the system is convex, non-convex, or concave, which are collected, respectively,
in the sets E , B, and A. The algorithm assumes that the PWA approximations are mostly convex, and
that there are only several pieces that violate the convexity condition. The validity of this assumption
can be verified by Figure A8. Only a small portion of L+/−

tot causes non-convexity. Therefore, using
binary variables to represent all segments is not necessary. For this reason, the function can be split
into several regions that are convex themselves and fewer binary variables that can be utilised to select
amongst these regions instead of all piece-wise functions. Inside each different region, the epigraph
formulation can be leveraged to select the correct piece. On the other hand, as given in Equation (7),
the cost incurred by the efficiency losses is embedded in the first term, and it can be expanded into
Equation (A7) by using Equations (10)–(12):

cen(k) · PAC(k)∆t = cen(k) ·
(

P+
AC(k)− P−

AC(k)
)

∆t

= cen(k) ·
(
[P+

b (k) + L+(k)]− [P−
b (k)− L−(k)]

)
∆t

= cen(k) ·
(
[P+

b (k)− P−
b (k)] + [L+(k) + L−(k)]

)
∆t

= cen(k) ·
[
P+

b (k)− P−
b (k)

]

︸ ︷︷ ︸

independent decision variables

·∆t + cen(k) ·
[
L+(k) + L−(k)

]

︸ ︷︷ ︸

approximated variables

·∆t. (A7)
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For the epigraph formulation to hold, the approximated variables, shown in Equation (A7), must
be minimised in the optimisation problem. However, if the multiplier cen(k) at time k is negative,
the loss values in the brackets are going to be maximised by the optimisation solver. In other words,
having a negative price signal at time k causes the curves shown in Figure A8 to be reversed and
become concave or mostly concave. Therefore, a full-scale MILP formulation with binary variables
assigned for each piece in the PWA approximation must be used. In summary, when the price signal is
negative, the loss function is multiplied by a negative number and converted into a mostly concave
function. In this case, the algorithm executes the complete MILP modelling at that time step. If the
price signal is not negative, but the PWA approximation violates the convexity requirement at some
points (e.g., the slope is not monotonically increasing), then the algorithm collects all breakpoints and
the time step in the set B. Lastly, if the PWA approximation is completely convex, then the procedure
given in Appendix A.1 (the previous section) is applied.

After the problem separation, the final equations to complete the system formulation are given.
First, the a, b, and r coefficients and breakpoints must be defined in the system, according to the
studied case (where the numerical values are presented in Table A4). Selected parameters for charge
and discharge will be called a+, b+, and r+, and a−, b−, and r−, respectively. Then, by leveraging the
algorithm given in Figure A9 for both charge and discharge approximations, the sets E+, B+, and
A+, and E−, B−, and A− are obtained, respectively. Then, we define two group of variables for the
full MILP and economic MILP models. Binary variables are shown by S, where continuous variables
are given by P, with indices full and eco for full MILP and economic MILP, respectively. finally, the
variables related to charging and discharging are indicated by a plus and minus sign as superscript,
respectively. Therefore, the newly defined variables are given by S+

f ull(k, j), S+
eco(k, j) ∈ Z2, P+

f ull(k, j),

P+
eco(k, j) ∈ R, S−

f ull(k, j), S−
eco(k, j) ∈ Z2, and P−

f ull(k, j), P−
eco(k, j) ∈ R, in respective sets of appropriate

dimensions. Thereafter, we define the following constraints. For all k that the epigraph formulation
can be used, the constraints are defined by Equations (A8) and (A9).

L+(k) ≥ a+j P+
AC(k) + b+j ∀j ∈ I[1:N] ∀k ∈ E+ (A8)

L−(k) ≥ a−j P−
AC(k) + b−j ∀j ∈ I[1:N] ∀k ∈ E−. (A9)

For all k that the full MILP formulation must be used, the constraints are defined by
Equations (A10)–(A15).

L+(k) = ∑
j

(

a+j P+
f ull(k, j) + b+j S+

f ull(k, j)
)

∀j ∈ I[1:N] ∀k ∈ A+ (A10)

L−(k) = ∑
j

(

a−j P−
f ull(k, j) + b−j S−

f ull(k, j)
)

∀j ∈ I[1:N] ∀k ∈ A− (A11)

S+
f ull(k, j)r+j−1 ≤ P+

f ull(k, j) ≤ S+
f ull(k, j)r+j ∀j ∈ I[1:N] ∀k ∈ A+ (A12)

S−
f ull(k, j)r−j−1 ≤ P−

f ull(k, j) ≤ S−
f ull(k, j)r−j ∀j ∈ I[1:N] ∀k ∈ A− (A13)

∑
j

(

S+
f ull(k, j)

)

= 1 ∀j ∈ I[1:N] ∀k ∈ A+ (A14)

∑
j

(

S−
f ull(k, j)

)

= 1 ∀j ∈ I[1:N] ∀k ∈ A−. (A15)

For all k that the economic MILP formulation can be utilised, the constraints are defined by
Equations (A16)–(A21).
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L+(k) ≥
p+2

∑
v=p+1

(
avP+

eco(k, i) + bvS+
eco(k, i)

)

∀i ∈ B+
I ∧ ∀k ∈ B+

K ∧ (k,B+
I ,B+

J ) ∈ B+ ∧ (k, p+1 , p+2 ) ∈ B+
J (A16)

L−(k) ≥
p−2

∑
v=p−1

(
avP−

eco(k, i) + bvS−
eco(k, i)

)

∀i ∈ B−
I ∧ ∀k ∈ B−

K ∧ (k,B−
I ,B−

J ) ∈ B− ∧ (k, p−1 , p−2 ) ∈ B−
J (A17)

S+
eco(k, i)r+

(p+1 −1)
≤ P+

eco(k, i) ≤ S+
eco(k, i)r+

p+2

∀i ∈ B+
I ∧ ∀k ∈ B+

K ∧ (k,B+
I ,B+

J ) ∈ B+ ∧ (k, p+1 , p+2 ) ∈ B+
J (A18)

S−
eco(k, i)r−

(p−1 −1)
≤ P−

eco(k, i) ≤ S−
eco(k, i)r−

p−2

∀i ∈ B−
I ∧ ∀k ∈ B−

K ∧ (k,B−
I ,B−

J ) ∈ B− ∧ (k, p−1 , p−2 ) ∈ B−
J (A19)

∑
i

(
S+

eco(k, i)
)
= 1 ∀i ∈ B+

I ∧ ∀k ∈ B+
K ∧ (k,B+

I ,B+
J ) ∈ B+ (A20)

∑
i

(
S−

eco(k, i)
)
= 1 ∀i ∈ B−

I ∧ ∀k ∈ B−
K ∧ (k,B−

I ,B−
J ) ∈ B−. (A21)

Table A4. PWA approximation parameters for power loss (r0 = 0 is omitted).

Efficiency

Charging Discharging

Case 2 Case 3 Case 2 Case 3
a b r a b r a b r a b r
(×10−3) [kW] [kW] (×10−3) [kW] [kW] (×10−3) [kW] [kW] (×10−3) [kW] [kW]
3.29 0 4.26 1000 0 0.29 4.71 0 4.68 467.65 0 0.44
14.99 −0.0498 9.57 12.14 0.2655 5.33 19.31 −0.0684 10.34 24.18 0.1955 7.74
26.26 −0.1577 14.94 30.3 0.1688 10.97 33.98 −0.2202 15.93 39.5 0.077 13.3
37.23 −0.3216 20.39 46.17 −0.0052 16.95 48.89 −0.4576 21.46 58.97 −0.1821 19.47
47.97 −0.5406 25.97 61.36 −0.2627 22.96 64.07 −0.7835 26.94 78.7 −0.5662 25.66
58.56 −0.8155 31.68 76.69 −0.6147 28.94 79.74 −1.2054 32.41 101.55 −1.1526 31.62
68.86 −1.1419 37.39 91.77 −1.0513 35.17 95.58 −1.7188 37.84 118.59 −1.6915 37.56
79.01 −1.5213 43.2 104.71 −1.5062 43.2 111.67 −2.3276 43.2 135.27 −2.3179 43.2

Table A5. PWA approximation parameters for cycle ageing (r0 = 0 is omitted).

Cycle Ageing

a (×10−8) b (×10−6) r
[∆SOH· h/kW] [∆SOH] [kW]
1.44 0 9.24
2.97 −0.142 17.11
5.62 −0.594 22.8
9.58 −1.5 27.25
15.1 −3.01 30.94
22.5 −5.28 34.06
31.8 −8.47 36.76
43.4 −12.7 39.13
57.3 −18.1 41.26
73.7 −24.9 43.2
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