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Abstract: Mobility modeling is an essential component of wireless and mobile net-
working research. It assists planning, developing and evaluating protocols and mobile
systems. A simulated mobile world provides flexibility for constructing scenarios that
closely resemble the real world. Our proposed mobility model emphasizes humans’ so-
cial roles when making movement decisions. Our model, the Agenda Driven Mobility
Model, takes into consideration a person’s social activities in the form of agenda (when,
where and what) for motion generation. The paper uses a constructive approach to de-
fine functional components of the Agenda Driven Mobility Model for building specific
real world scenarios and generating motion steps. A variety of real data sources can
be used to populate these components. In this sense, the model provides a framework
for translating social agendas into a mobile world. In the paper, we utilize National
Household Travel Survey (NHTS) information from the U.S. Department of Trans-
portation to obtain activity and dwell time distributions. As an example, we simulate
a mobile ad hoc network in an urban scenario, analyzing the geographic features of
the network topology generated by the model and the impact of the model on routing
performance. Our simulation results suggest that social roles and agenda activities
tend to cause geographic concentrations, significantly impacting network performance.
We conclude that the incorporation of social agendas into mobility modeling produces
a performance evaluation that better reflects real world scenarios.
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1 Introduction

Mobility modeling has become an important direction in
wireless and mobile networking research because it helps
in planning, developing and evaluating mobile systems and
applications that are under development or have been de-
ployed. Many testbeds or network infrastructure are avail-
able for providing understanding about mobility impact.
Still, vast amount of research and developments use sim-
ulations for performance evaluation. A simulated mobile
world is one of the enabling tools that contributes to the
research in wireless and mobile networking with which re-
searchers are able to study performance of protocols at all
layers of the protocol stack. Research results show that
mobility models have a significant effect on the perfor-
mance of protocols (Camp et al., 2002; Hong et al., 1999).
The same routing protocol may produce dramatically dif-
ferent levels of packet delivery capability when evaluated
with different mobility models. Thus, the capability and
flexibility of capturing key properties of a real mobile node
become a critical requirement for a mobility model.

Many mobility models have been proposed recently. In-
terested readers are referred to (Boukerche and Bononi,
2004; Camp et al., 2002; Zheng et al., 2004) for surveys and
modeling issues. Among those existing models, the ma-
jority consider the geographical movements of individual
mobile communication devices. Those models can be clas-
sified into three classes (Zheng et al., 2004) based on the
degree of randomness, i.e., total random statistical models,
partial random constrained topology based models, and
trace based models. Examples include Random Waypoint
Model (Johnson and Maltz, 1996), Manhattan Model (Bai
et al., 2003), and trace based models (Zhang et al., 2007;
Hsu et al., 2007; Kim et al., 2006; Tuduce and Gross, 2005).
The statistical and constrained topology based models re-
gard each node as statistically identical and independent.
They do not reflect social connections among mobile users
nor possible influence of such connections on motion be-
haviors. Trace based models could include different types
of nodes, but they may not explicitly model node roles.

Mobility models taking social connections among mobile
users into consideration have also been proposed, where
correlated or coordinated motion patterns are identified.
Group mobility models were proposed (Hong et al., 1999;
Li, 2002) to describe mobility of nodes that tend to move in
a group. Mobility models considering real social network
have been proposed in (Herrmann, 2003; Musolesi et al.,
2004; Musolesi and Mascolo, 2006). These models capture
the fact that nodes with stronger social relations tend to
move together. Geographic motions are not taken into
consideration in these pieces of work.

In this paper, we address the social influence on human’s
motion behavior from a drastically different angle of mo-
bility modeling, namely, we use a person’s social activities
as a driving force for his or her movement. To this end,
we introduce a key element named agenda into mobility
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modeling: the agenda guides a node’s movements. This
is based on the observation that people’s movements are
most likely the explicit or implicit results of their activity
agenda. On the other hand, as a mobility model, activi-
ties must map to geographical locations and motion steps.
In this paper, we introduce a general mobility modeling
framework named Agenda Driven Mobility Model. The
framework contains components that model social activi-
ties, geographic locations, and movements of mobile users.
It can be used to characterize various wireless network sce-
narios, e.g., campus wireless networks, urban mesh net-
work coverage, or a regional wireless network that would
contain multi-hop wireless networking, vehicular network-
ing and opportunistic connectivity. We use a construc-
tive approach to define functional components for building
real world scenarios and generating motion steps. We also
instantiate the Agenda Driven Mobility Model in an ur-
ban scenario. In such a scenario, the uses of mobile and
wireless technologies like UMTS, mesh networks, WiFi or
mobile multihop wireless networks are or will be all avail-
able. Further, we simulate a Mobile Ad Hoc Network in
this scenario to show the spatial statistic properties, the
aggregated connectivity graph properties and communica-
tions performance. Our simulation results show that the
incorporation of social roles and agenda activities into mo-
bility modeling has significant impact on routing protocol
performance. Moreover, the idea of agenda has its impact
beyond this mobility model. Since agenda provides a cer-
tain amount of predictability of a node’s whereabouts, it
can be used to assist routing (Tang et al., 2007).

An earlier version of this work was presented in (Zheng
et al., 2006). This papers extends the work by pre-
senting data analysis results for the National Household
Travel Survey (NHTS) (U.S. Department of Transporta-
tion, 2007) of the U.S. Department of Transportation. We
also analyze the Agenda Driven Mobility Model using a
continuous time Markov chain. The model is evaluated
with more simulations, and new insight is discussed. The
rest of the paper is organized as follows. Section 2 gives
a brief review of related work on mobility modeling. Sec-
tion 3 introduces the Agenda Driven Mobility Model. An
overview of the framework and detailed descriptions of the
components of the model are given. Section 4 introduces
NHTS survey, where the social activities that our model
uses are described in great detail. Section 5 analyzes our
model by using Markov chain. In Section 6 we use simula-
tion to show the network topology generated by the model
and the ad hoc network routing performance impacted by
the model. We conclude the paper in Section 7.

2 Related Work

Based on the degree of randomness as nodes move geo-
graphically, mobility models can be classified into three
classes (Zheng et al., 2004), namely, total random statis-
tical models, partial random constrained topology based
models and trace based models. A few representative mod-
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els are reviewed below.
Random Waypoint Model (Johnson and Maltz, 1996) is

a widely used statistical model. In this model, nodes ran-
domly select destinations, speeds, and destination pause
durations. In Random Direction Model (Royer et al.,
2001), nodes randomly select directions. In these two
models, nodes move freely in an open area. To restrict
nodes’ movements to a more realistic application scenario,
several other models were proposed. Obstacle Mobility
Model (Jardosh et al., 2003) introduces obstacles to re-
strict node movements and signal transmission. In City
Section Model (Camp et al., 2002), nodes move along
street grid to their random destinations. In Manhattan
Model (Bai et al., 2003), nodes wander along street grid
and make random turns at street crossings. Researchers
also proposed mobility models specifically for vehicles on
roads (Choffnes and Bustamante, 2005; Saha and Johnson,
2004), where real maps were acquired from the U. S. Cen-
sus Bureau’s TIGER (Topologically Integrated Geographic
Encoding and Referencing) database (U.S. Census Bureau,
2007). These pieces of work simulated car-following and
traffic control (traffic lights, stop signs, lanes, etc.). Mo-
bility models based on the analysis of user moving pat-
terns from trace data were also proposed (Jain et al., 2005;
Kim et al., 2006; Lelescu et al., 2006; Tuduce and Gross,
2005). For example, transition probabilities between phys-
ical locations are obtained in (Tuduce and Gross, 2005),
the speed and pause time of campus users follow a log-
normal distribution (Kim et al., 2006). In the models,
nodes move according to these probabilities or distribu-
tions. Based on similar trace data, (Hsu et al., 2007) pro-
posed a time-variant community mobility model, where
communities were introduced to capture the fact that peo-
ple tend to visit some places more frequent than others
and that people will periodically revisit the same places.
In (Zhang et al., 2007), a very interesting set of trace data
from a bus-based delay tolerant network was analyzed and
models for describing contact process between node pairs
were derived. The work provides valuable insight into real
world mobile ad hoc networks and the importance of se-
lecting the right granularity for mobility modeling. Na-
tionwide Personal Transportation Survey (NPTS), the pre-
decessor of the National Household Travel Survey (NHTS)
(U.S. Department of Transportation, 2007) that we use for
this study, was also used in Metropolitan Mobility Model
(Lam et al., 1997) which captures the distribution of daily
locations visited and the transition probabilities between
locations.

Mobility models considering real social network have
been proposed in (Herrmann, 2003; Musolesi et al., 2004;
Musolesi and Mascolo, 2006). They are based on the obser-
vation that people’s relation with each other heavily influ-
ences their mobility patterns and motion correlations. In
(Herrmann, 2003), a graph is created where edges repre-
sent that two persons will meet each other. A set of nodes
that must meet each other forms a clique. Nodes in each
clique meet at an anchor (a location). The movements of
nodes are generated from anchor to anchor. In (Musolesi

and Mascolo, 2006), the authors used interaction matrix to
represent the strength of interactions between nodes (per-
sons). Communities are then extracted based on that ma-
trix. A node chooses a region as its destination with the
highest social attractivity, the value of which depends on
the interactions between this node and the nodes already
in that region. A group mobility model was proposed in
(Hong et al., 1999) to describe mobility of nodes that tend
to move in a group, where correlated or coordinated mo-
tion patterns are identified. The focus of that model is on
the relation between individual mobility and the mobility
of the group he or she belongs to. A further group mobility
model (Li, 2002) was able to determine group membership
dynamically at runtime based on each node’s current state.
It has the very nice property of deciding group member-
ship by similarity of mobility pattern rather than physical
distance.

In all, these models use different modeling approaches
from the activity-driven approach we present in this pa-
per. In our model, both social and geographical factors
are considered. The social factors and their influence on
motions are reflected implicitly through agenda items.

3 The framework of Agenda Driven Mobility Model

We aim at not only developing a concrete mobility model
but also providing a general framework which allows
us to build various scenario-oriented mobility models to
meet different network applications and research demands.
This framework defines functional components for build-
ing more specific motion scenarios and generating motion
steps. In this model, nodes move with purposes (not ran-
domly) and different nodes have different moving behav-
iors. To model his or her social role, each node has an
individual agenda which specifies his or her activities at
various times and locations corresponding to his or her
role. The movements of the node are totally determined
by this agenda. The geographical aspect of the model is
supplied by geographic maps with roads and addresses as
basic elements. More specifically, while agenda driven be-
ing a core concept, we introduce it and materialize it in a
constructive way, especially when the association between
an agenda and a geographic location is concerned. We in-
stantiate the Agenda Driven Mobility Model in an urban
scenario. In this section, we first present an overview of
the framework, then we describe the key elements of our
model.

3.1 The general framework

This framework has three key components: personal
agenda, geographic map, and motion generator. They will
be elaborated in this section. It also includes knowledge
bases of activity profiles for job related and social connec-
tion related activities. Fig. 1 illustrates the architecture
of the framework.
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An agenda defines a person’s activities based on his or
her social role. It includes “what, when and where” ele-
ments of the activities. The agendas drive the movements
of nodes. The National Household Travel Survey (NHTS)
(U.S. Department of Transportation, 2007) data is used to
obtain various distributions to generate agendas, including
activities and dwell times.

A geographic map contains location information of pos-
sible activities and road information that connects all the
locations. Our model presents the map with its geographic
addresses that are associated with activities. This gives
the framework great flexibility in being populated using
various geographic data sources, e.g., program generated
random locations, significance statistics of locations from
WLAN traces, or real maps from GIS database like TIGER
(the U. S. Census Bureau’s Topologically Integrated Geo-
graphic Encoding and Referencing database) (U.S. Census
Bureau, 2007).

With inputs from an agenda and a map, a motion gener-
ator generates nodes’ physical movements, i.e., how nodes
move along the map to reach their destinations, including
moves, turns, and pauses.

In addition to these three key components, there are
global knowledge bases that will be used to help gener-
ate the personal agenda. Global knowledge bases include
job-related activities, social events calendar, social rela-
tionships, area maps at different detail levels and common
senses.

Based on the framework, different scenarios can be con-
structed by using different maps and activities as inputs.
In the rest of the section, we build a concrete Agenda
Driven Mobility Model for activities in an urban area.

Figure 1: Agenda Driven Mobility Model

3.2 NHTS survey data

An important step we take to model the mobility real-
istically is to use measurements from the real world. We
use data from the National Household Travel Survey of the
U.S. Department of Transportation. “The National House-
hold Travel Survey (NHTS) is the national inventory of

daily and long-distance travel. The survey includes demo-
graphic characteristics of households, people, vehicles, and
detailed information on daily and longer-distance travel
for all purposes by all transportation modes. NHTS sur-
vey data are collected from a sample of U.S. households
and expanded to provide national estimates of trips and
miles by travel mode, trip purpose, and a host of household
attributes” (U.S. Department of Transportation, 2007). A
sample record of the data from NHTS would read like this:
a student, on a specific weekday took a trip; the purpose
of the trip was to go to school; she used her personal ve-
hicle to travel a distance of four miles, which took her 10
minutes; she then stayed at school for six hours.

The large number of records in the database presents
many useful statistics, e.g., people’s various occupations,
their activity features, such as the mode of transportation,
the duration, distance and purpose of a trip, dwell time at
the destination, etc. From the NHTS repository, we ex-
tract the distributions of address type, activity type, dwell
time, etc., to be used in our model. In the particular urban
scenario that we build in the paper as a case study, we do
not include all the possible distributions. Rather, we pick
a set of representative occupations and use only associated
distributions. This allows us to focus on the descriptions
of the model. To illustrate the usefulness of the NHTS
data in mobility modeling, we will describe our analysis
methods and results in a later section.

3.3 Geographic map

Geographic topology is a key component in our model. In
our Agenda Driven Mobility Model, the geographic map
consists of streets and avenues. These streets and avenues
are the routes where real motion takes place. To capture
the fact that human activities are conducted at certain
locations on streets and avenues which can be identified by
addresses, we base our mobility model on road addresses.
Each activity on a person’s agenda then links to a specific
address.

Earlier synthetic mobility models like Random Way-
point Model allow nodes to move freely in an open area
by picking a random location and moving straight towards
it. Criticizing Random Waypoint Model as unrealistic,
a later model named Obstacle Mobility Model (Jardosh
et al., 2003) constructs map and confines node movements
on roads. In that model, the construction includes two
steps: first, buildings are randomly scattered in an area;
second, roads are built according to Voronoi diagram of
these buildings.

Our approach of constructing map differs from the above
practice. We define roads first and place buildings (ad-
dresses) second. The buildings are represented by their
addresses. People move along the roads and stay at those
addresses for the activities listed in their agendas. This
approach allows great flexibility in populating the map:
users can use real digital map like that from the TIGER
database, or use synthetically generated roads and ad-
dresses as we do in our implementation.
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In our implementation we use synthetic approach to gen-
erate a map consisting of roads with addresses. We take
the example of Manhattan type of city scenario. The map
in our implementation consists of streets that run east-
west and avenues that run south-north. Distances between
neighboring streets (or avenues) are randomly chosen; they
are not equally separated. The lengths of streets and av-
enues are also randomly chosen within a certain range.
The generated streets and avenues are indexed (and also
named) numerically, e.g., from south to north, streets are
numbered 0, 1, 2, ...; and from west to east, avenues are
numbered 0, 1, 2, .... Fig. 2 shows a typical urban area gen-
erated by our model. Addresses are notated with ’+’.

Figure 2: Map generated by the Agenda Driven Mo-
bility Model. Addresses are marked. Each address
serves a different function, e.g., restaurant, school, su-
per market.

3.3.1 Address

An important element in our Agenda Driven Mobility
Model is the addresses. Addresses are used to locate the
places where people will stay for certain activities. The
address distributions can be either acquired from real road
data or randomly selected.

Each address is associated with one type of activities
that people will conduct at that place, e.g., a restaurant,
a library, etc. The importance of address type is that it
decides how long people will stay there, i.e., the dwell time
at that location. Dwell times are different for different
types of activities, and hence different at different types of
addresses. For example, a gas station has a shorter average
dwell time than a restaurant. From the NHTS database,
we obtain mean durations of many types of activities. We
call it mean activity duration. For example, activity ‘go
to gym exercising’ takes an average of 91 minutes, activity
‘ice cream break’ takes an average of 25 minutes.

The actual duration a person staying at an address is
mainly decided by this mean activity duration (travel time
will also be considered as shown in later section). This
approach of deciding dwell time ensures a realistic meaning
- compare that to the approach of randomly picking a dwell

time as used by many existing mobility models like Ranom
Waypoint Model, Obstcle Mobility Model, etc.

The NHTS database provides a large collection of ad-
dress types (28 in total). From those, we are able to derive
the occurrence ratio of each address type. For example,
1.7% addresses are theaters. The NHTS database also pro-
vides mean activity duration. We will discuss this later.

3.3.2 Speed table

We take into consideration the fact that a node’s speed is
decided by road traffic which is out of the traveler’s con-
trol. Thus, each street or avenue is associated with another
important property - speed limits. Each street or avenue is
assigned a speed table which contains the estimated speed
ranges for nodes moving along this road at different times
of the day. Any node entering this road has to move ac-
cording to the speed limit of that time.

3.4 Agenda

The agenda of a node is the core of our Agenda Driven
Mobility Model. It organizes all the whereabouts of this
node. The places he or she stays, the time he or she travels
and all the details regarding a trip to his or her next desti-
nation. For example, in a college student’s schedule for a
certain weekday, he or she records which classes he or she
is going to take and in which building, when and where he
or she is going to have lunch, and when and where he or
she is going to exercise. He or she will then move accord-
ing to this schedule. Thus agenda well captures the social
aspect of human activities. In our model, each node car-
ries a unique agenda. Agenda describes his or her whole
day journey. Each item of the agenda indicates when and
where the node will be, and what activity he or she is go-
ing to participate. The node moves only according to his
or her agenda. Please note that in our model, the time
associated with each activity is the time the activity is ex-
pected to begin, e.g., the time for an interview. Thus, a
node has to calculate the time to start to move towards
the next activity according to the destination’s address,
the roads’ average speeds, and the time that he stops the
current activity.

3.4.1 Activities

Each agenda item will specify an activity the person will
participate. The NHTS data records 35 different types of
activities (purposes of trips) in total. Examples include
‘go to work’, ‘shopping’, ‘hang out’, etc. Each activity
has a corresponding mean activity duration. NHTS data
also gives the distribution of frequency of these activities.
For example, it tells us that 2.3% activities are ‘buy gas’.
In agenda generation, we use this distribution to select
the activity for next agenda item. Each activity will be
performed at a corresponding address and the node will
stay at that address for a time period around the mean
activity duration. For example, the activity of ‘buy gas’
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will result in a node staying at a gas station for about 9
minutes.

3.4.2 Occupation types

It is natural to assume that people with different occupa-
tions will have different activities and people with the same
occupation have similar activities and agendas. NHTS
data shows a total of 14 occupations together with their
corresponding percentages. Our model allows a predefined
profile agenda template for each occupation type. A node
with the occupation will derive his or her own agenda based
on the profile (and add his or her own randomness).

3.4.3 Agenda generation

Our implementation of the Agenda Driven Mobility Model
creates an agenda for each node at initialization that covers
all day long activities. The type of the activity for the
next agenda item is picked according to NHTS’s activity
distribution; its address is picked randomly from the many
addresses of the corresponding address type (notice that
there will be many addresses bearing the same address
type).

The time recorded in the agenda for each item is the time
the activity expected to occur. Thus the time for the next
activity has to consider the current activity’s mean activity
duration, and the longest possible travel time from current
address to next address. More specifically, the current ac-
tivity will last for a period around the mean duration (se-
lect from an appropriate distribution); the longest possible
travel time will take the shortest path from the current lo-
cation to the next location using the slowest speed of each
road segments. So the next activity’s starting time equals
to the current activity’s starting time plus the current ac-
tivity’s lasting time and the longest possible travel time to
the next address.

3.5 Motion generator

Motion generator chooses a motion path for a node to move
towards its next activity location according to the agenda.
This path is the shortest distance path between current
activity location and the next activity location (using Di-
jkstra’s algorithm). It also calculates the time that a node
starts this movement. Let us suppose the starting time of
current activity is T1, the starting time of next activity is
T2, the trip duration is Dt. Notice that given T2, next ad-
dress, current address, and speed tables of roads that the
node will travel from current address to next address, the
trip duration Dt is acquired accurately by counting back-
wards from T2 (as the node takes the shortest path). Then
the dwell time at current address is T2 − T1 − Dt. The
node starts its movement at T2−Dt. It will arrive at next
address just in time at T2. Since in our agenda generation
we use the longest possible travel time from current ad-
dress to next address to decide the starting time for next
activity, a node will always have enough time to finish its
current activity and travel to the next location before the

scheduled starting time of next activity. Current model
doesn’t consider extreme travel cases.

4 NHTS data analysis

4.1 The Survey data

NHTS survey data serves various purposes, for example,
transportation safety (U.S. Department of Transportation,
2007). Mobility modeling is one of its many uses. As
cited earlier that the National Household Travel Survey of
U.S. Department of Transportation includes demographic
characteristics of households, people, vehicles, and detailed
information on daily and longer-distance travels for all
purposes. It collected travel data from a national sam-
ple of the civilian, non-institutionalized population of the
United States, not including people living in college dormi-
tories, medical institutions, military bases, etc. The avail-
able 2001 NHTS dataset includes approximately a total of
66, 000 households. About 26, 000 households are in the
national sample, while the remaining 40, 000 households
are from nine add-on areas, including Baltimore metropoli-
tan area, Des Moines metropolitan area, etc. Four datasets
are provided in the original survey data, describing the
household information, personal information, vehicle in-
formation, and the information of each day trip. In our
study, we use the data that provides profiles of day trips.

A portion of the database is shown in Table 1 (the actual
database has more fields. We excluded those fields that
are not directly related). For each field, data records are
marked with different code values. Some fields have a large
set of values that finely categorize the fields. Many of the
subcategories are useful for other statistics information but
not necessary for mobility modeling. For the convenience
of analysis, we processed the database to aggregate some
codes that only have a small amount of records associated
with them. For example, code for ‘attend funeral/wedding’
and ‘family personal business/obligations’ are combined
into one. Only limited bias could be introduced to the
related fields due to the small portion of the data affected.

We give a brief description of the fields in Table 2.
The listed OCCAT codes are the occupations of the per-
sons who take the trips. WHYTRP01 has a large collection of
codes and is the source of the activity types in our model.
NHTS has provided aggregated WHYTRP1S field which sim-
ply groups similar purposes of WHYTRP01 into larger cat-
egory. For example, code 3 (‘shopping’) of WHYTRP1S
includes not only WHYTRP01 code 41 (‘buy goods: gro-
ceries/clothing/hardware store’), but also WHYTRP01 code
43 (‘buy gas’), among others.
STRTTIME and ENDTIME are the starting and ending

time of the trip. TRPMILES is the mileage of the trip.
DWELTIME is how long the person stays at the trip des-
tination, counted in minutes. We define trip duration
DURATION=ENDTIME-STRTTIME, which represents how long
this trip lasts. The histograms of DURATION (trip dura-
tion), TRPMILES (trip mileage) and DWELTIME (dwell time)
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Table 1: Simplified sample NHTS data records
OCCAT WHYTRP01 WHYTRP1S STRTTIME ENDTIME TRPMILES DWELTIME

3 60 4 1000 1015 6 235
3 1 6 1410 1425 6 45
1 11 1 815 825 5 515
4 41 3 1100 1105 0.77 20
4 11 1 1125 1128 0.22 47

Table 2: Selected categories in simplified sample NHTS data
Field names Meaning Code
OCCAT occupation 1 = Sales or Service

2 = Clerical or administrative support
3 = Manufacturing, construction, maintenance, or farming
4 = Professional, managerial or technical
91 = Other

WHYTRP01 purpose of a trip 1 = home
11 = go to work
41 = buy goods: groceries/clothing/hardware store
60 = family personal business/obligations
...

WHYTRP1S larger category of purpose 1 = work
2 = school
3 = shopping
4 = personal
5 = social
6 = others

for different trip purposes are shown in Figs. 3, 4, and 5.
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Figure 3: Trip duration distribution

4.2 Data analysis

In this section, we present our analysis on the survey data
using statistics tools for the distributions of trip duration,
mileage, and dwell time. All of these results are impor-
tant for mobility modeling. We examine the histograms
obtained from the raw data presented in Figs. 3, 4, and
5 (secondary distributions are removed in this analysis).
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Figure 4: Mileage distribution

We use a statistics tool called DFITTOOL in MATLAB
(MathWorks, 2007) to fit the data to different distribu-
tions. DFITTOOL draws Cumulative Distribution Func-
tion (CDF) of the data. It also shows CDFs of those dif-
ferent distributions together in one graph, allowing us to
decide which distribution fits the data best. In determining
the closeness of fitted distributions against the real data,
we use AIC (Akaike’s Information Criterion) (Burnham
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Figure 5: Dwell distribution

and Anderson, 1998) method. AIC is defined as:

AIC = −2 ∗ (log likelihood) + (number of parameters) ∗ 2

In this formula, number of parameters is the number of
parameters in the distribution. For example, the nor-
mal distribution has two parameters, µ and σ, thus,
number of parameters = 2. The log likelihood is provided
by DFITTOOL as an output. So for each candidate distri-
bution, we can compute its AIC. The one with the smallest
AIC is the best fit for the data.

4.2.1 trip mileage

Figure 6: Fit Weibull distribution to trip mileage data

Initial observation of the raw data shows that the
mileage of 94.9% trips are under or equal to 30 miles. Of
the remaining records, some mileage is exceptionally large.
Those large milage comes from long distance travelers. The
data could be helpful in a separate study to analyze long
distance motion patterns. Here, we exclude all the records
whose mileages are larger than 30 miles (the threshold is

selected partly due to convenience and partly due to a rea-
sonable good fit to the majority of the data). Using the
method we described above, we find that the best fit for
trip mileage data is a Weibull distribution (Sa, 2003):

wα,β(x) =
α

β
(x/β)α−1e−(x/β)α

with shape parameter α = 0.91, and scale parameter β =
5.56. See Fig. 6.

4.2.2 trip duration

Figure 7: Fit Gamma distribution to trip duration
data

Similar to mileage data, 95.0% trips have a duration
under or equal to 50 minutes. Of the remaining records,
some duration is exceptionally large. Thus, we exclude
the records whose durations are above 50 minutes in order
to have a reasonable good fit to the majority of the data.
The best fit for trip duration is a Gamma distribution (Sa,
2003):

γa,p(x) =
1

apΓ(p)
e−x/axp−1

with shape parameter p = 1.87, and scale parameter
a = 7.87. The Gamma function is defined as Γ(p) =∫∞
0

e−ttp−1dt. See Fig. 7.

4.2.3 dwell time

A Weibull distribution (Sa, 2003) can be used to depict
the distribution of dwell times that are under 500 minutes
(covering 92.7% data):

wα,β(x) =
α

β
(x/β)α−1e−(x/β)α

with shape parameter α = 0.77, and scale parameter β =
82.17. See Fig. 8.
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Figure 8: Fit Weibull distribution to dwell time data

Table 3: The Mean of Sample Activities
code meaning mean r p

(min)
21 go to school as student 355 2.38 0.007
30 medical/dental service 67 1.24 0.018
40 shopping/errands 33 0.58 0.020
53 visit friends/relatives 121 0.90 0.007
80 meals 55 1.18 0.021

4.3 Dwell time of different activities

For the purpose of our Agenda Driven Mobility Model,
we’ll take a look at the distribution and the mean of lasting
time of each individual activity in WHYTRP01 (notice that
the distributions in previous sections are aggregated dis-
tributions). For example, for activity code 83 (‘coffee/ice
cream/snacks’), the mean time is 26 minutes. Negative
binomial distribution describes the dwell time of each ac-
tivity (with different parameters). The probability mass
function of negative binomial distribution with parameters
p (0 < p < 1) and r (r > 0) is defined as:

f(k; r, p) =
Γ(r + k)
k!Γ(r)

pr(1− p)k

for k = 0, 1, 2, ..., where Γ is the gamma function.
The mean values and parameters of negative binomial

distribution of some example activities are shown in ta-
ble 3.

5 Model Analysis

In this section we use a Markov chain to analyze our
Agenda Driven Mobility Model. Using a slightly differ-
ent assumption (exponential staying at an address or lo-
cation), we are able to get the limiting probabilities of a
node staying at various addresses (or locations). The cer-
tain amount of predictability of a node visiting a location
is an important character of agenda.

Suppose there are n locations, noted as 1, 2, ..., i, ..., n.
Once the node enters location i, it will stay there for
a duration obeying exponential distribution with mean
1/λi. There is also home h. The node stays at home
for a duration obeying exponential distribution with mean
1/λh. There are m activities in the node’s agenda, named
A1, A2, ..., Ai, ..., Am. For each activity Ai, there are sev-
eral possible locations for the node to choose. For example,
if the activity is dining, the node has many restaurants to
select from. Suppose the corresponding location set of ac-
tivity Ai is Si, i = 1, 2, ..., m. We assume none activity
in the agenda is same as another, so all location set Si’s
are disjoint. Suppose these sets cover all locations, that is,⋃m

i=1 Si = {1, 2, ..., n}. The size of Si is denoted as |Si|.
After the node finishes all m activities, it returns home.
This procedure loops.

A continuous time Markov chain (Ross, 1995) can be
set up for analysis. A state is denoted as (i, j) where i
is the node’s current location, j is the number of steps
the node has taken so far. When the chain leaves state
(i, j), it will next enter state (i′, j + 1) with probability
p(i,j),(i′,j+1). See Fig. 9. If j = m, it will next enter
state (h, 0) with probability 1. This chain is irreducible
and positive recurrent (Ross, 1995).

Thus the limiting probability py = limt→∞ pxy(t), which
can be rewritten as p(k,l) = limt→∞ p(i,j),(k,l)(t), can be
found. Here p(i,j),(k,l)(t) is the probability that the chain,
currently in state (i, j), will be in state (k, l) after time t.

(         ,j+1)(ik,j+1)

In its (j+1)th step, the node leaves location i. |Sj+1| possible 

transitions. ik  i, k=1,2,…,|Sj+1|.

(i1,j+1)

ijijip )1,(),,( 1

(i,j)

|| 1jSi

ijiji k
p )1,(),,(

ijiji
jS

p )1,),(,( |1|

Figure 9: State transition when number of steps j <
m.

We give an example here. Suppose a node has an agenda
consisting of only two activities: A1 and A2. Its corre-
sponding location sets are S1 = {1, 2, 3}, S2 = {4, 5}. See
Fig. 10. Parameters of exponential distributions of stay-
ing at each location are shown in the figure. We draw
state transition in Fig. 11. Transition rates are shown in
the figure. We use Kolmogorov equations (Ross, 1995) to
obtain numerical results. Fig. 12 shows the state prob-
ability of each of the states p(h,0)(t), p(1,1)(t), p(2,1)(t),
p(3,1)(t), p(4,2)(t), p(5,2)(t). Given any time t, the Figure
gives the probability of staying at any of these 6 locations.
We further calculate the following limiting probabilities
for each state: p(h,0) = 0.68, p(1,1) = 0.07, p(2,1) = 0.02,
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p(3,1) = 0.03, p(4,2) = 0.11, p(5,2) = 0.09.
System-wide behavior can be deducted henceforth. Re-

call that location sets are disjoint and no repeated visits in
one agenda circle, we take the example that there are M
nodes in the network. The M nodes may visit location i in
their different step, e.g, node A in its gth step, node B in
hth step; Or they may not visit location i at all. We use Ik

as an indicator variable (Ik = 1 when node k is at location
i, 0 otherwise). If the limiting probability of node k at lo-
cation i (in its jth step) is pk

(i,j), counting these M nodes,
we have the expected number of nodes (X) at location i
as

E[X] = E[I1 + ... + IM ]
= E[I1] + ... + E[IM ]

=
M∑

k=1

pk
(i,j)

2

5.0
1

3.0
4

S1, corresponding to A1

S2, corresponding to A2

home

3

4

1

7.0
2

5

6.0
3

4.0
5

1.0
h

Figure 10: A node starting from home has an agenda
consisting of activities A1 and A2. There are 5 loca-
tions (plus home). To conduct activity A1, the node
select one (and only one) location from location set
S1 = {1, 2, 3}; to conduct activity A2, it selects one
from set S2 = {4, 5}. The node staying at location i
for exponential time with parameter λi. It returns
home after it finishes activity A2. This procedure
loops.

6 Simulation

In this section, we simulate the Agenda Driven Mobility
Model (Agenda Model in short). The main objective of
the simulation is to understand the impact of agenda and
map in a simulation environment. The simulation shows
that the introduction of map (with addresses) and agenda
into the model has significant impact on both network
topology and routing performance. The Agenda Model
is implemented in a well known network simulator Qual-
net (Scalable Network Technologies, 2007). Through sim-
ulation, we first test node movements and geographic dis-
tributions. Then, as a case study, we simulate a Mobile

(h,0)

(5,2)(4,2)

(3,1)(1,1) (2,1)

h
5.0

h
2.0

h
3.0

16.0

14.0 27.0
23.0

32.0 38.0

4 5

Figure 11: Continuous Time Markov Chain state
transition.
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Figure 12: Numerical solution: state probabilities.

Ad Hoc Network in an urban environment where activities
and motion steps are generated using the model we imple-
mented. The nodes run routing protocol AODV (Perkins
and Royer, 1999) for connectivity and data forwarding.
We evaluate topological metrics and routing performance
to show mobility influence. Since Agenda Model depicts
motion and relocation of nodes continuously over a long
time, we present the results in both short and long periods
of time so as to illustrate how social roles and activities
impact network connectivity.

In our simulation scenario, we aggregated node types to
three broader categories: the first type is employee whose
first activity must be ‘go to work’; the second type is
student whose first activity must be ‘go to school’; the
third type is other whose first activity could be any of
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those 35 activities in NHTS except ‘go to work’ and ‘go to
school’. The percentages of the three types are 60%, 10%
and 30% respectively after the aggregation. The starting
time of the first activity of any nodes is between 8:00AM
and 9:00AM. As a comparison, we also simulate Random
Waypoint Model (RWP). The Random Waypoint Model
chooses destinations randomly from the field. Nodes move
in a speed picking up randomly from the range between
the minimum and the maximum of the street speed limits
that match the Agenda Model. They then pause at desti-
nations for a time period that is randomly picked up from
the interval between the minimum and maximum mean
dwell times of all the addresses.
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Figure 13: Number of nodes at a workplace (address
0 4th st., or (35, 1533)).
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Figure 14: Number of nodes at a restaurant (address
17 3rd av., or (1168, 2638)).

6.1 Geographic distribution

We simulate an area of 4000m × 4000m with 2000 nodes.
There are 478 addresses in the map. The simulation runs
from agenda time 08 : 00 to 18 : 00, lasting 10 hours.
We assume that every node will go out for lunch (mainly
around 12 : 00 to 14 : 00), but he or she usually goes back
to home for his or her dinner as one day’s activities end.
We want to see that at an address, as time flows, how the
node density changes. From our simulation results, we pick
two addresses to show their node density variations. The
first one is a workplace, whose address is 0 4th st. with co-
ordinates (35, 1533). We observe in Fig. 13 a pattern very
close to real life. Employees arrive at the workplace ran-
domly around 08 : 00 to 09 : 00, then they stay there and
work. During the lunch period, they leave workplace to
take their lunch. The curve goes down during that period.

After lunch they come back to work and the curve goes up
again. When its time to be off duty, people leave. Some
hard-working employees may come back again after some
break. In the second address - a restaurant with address
17 3rd av. and coordinates (1168, 2638), curve shown in
Fig. 14 - we observe a surge of nodes during the prime
lunch time and very few nodes during other times. This
is also very close to real world. On the other hand, Ran-
dom Waypoint model shows little node density variations
(at those destinations) and all destinations are statistically
identical. The results thus are not included here. This is
because that the model randomly picks a destination, with-
out making a difference on address types nor considering
the time in a day.

6.2 Network performance

We simulate a mobile ad hoc network running routing pro-
tocol AODV in an area of 2000m × 2000m. The map is
the same as in Fig. 2. We set 100 nodes as being able to
communicate while moving, representing the reality that
only a portion of population would be a part of the mobile
ad hoc network . The distributed coordination function
(DCF) of IEEE 802.11 is used at the MAC layer and the
two-ray ground reflection is the radio propagation model.
The channel capacity is 2Mbps with the default transmis-
sion range 370m in Qualnet. This density generates 11
neighbors on average which is an acceptable density. On
the other hand, we intend to use a less dense network in
order to observe the influence from mobility more easily.
We have 5 CBR (constant bit rate) flows with randomly se-
lected sources and destinations. Each CBR sends 4 packets
per second with a packet size of 1000 bytes. This configu-
ration is used to generate all the following results.

We show two simulation runs, one in short time period
and the other over a long time period. The short simula-
tion runs for 900 seconds (15 minutes), corresponding to
the agenda time 8 : 45 AM - 9 : 00 AM. Some figures be-
low extract data of the last 400 seconds from this run. The
long run simulates a 15 hour period, starting from agenda
time 7 : 45 AM. A sample travel trace of seven nodes is
given in Fig. 15. The travel paths are the results of us-
ing Dijkstra’s shortest path algorithm. The figure shows
various routes. It also includes a node that stays at its
original location(the little black dot in the middle). Fig.
16 shows the position changes of three nodes during the 15
hour period of time. Notice that the lines between points
are not the real travel traces. They simply indicate the
connections between a node’s locations every two hours,
starting at 8 AM from his or her home. Here, every trace
is closed - since during this period, each node leaves home
in the morning and returns home at the end of the day.

6.2.1 Topological metrics

Through topological metrics we directly examine how the
motions generated by the Agenda model affect nodes’ in-
terconnections, i.e., the topology of the networks. We
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Figure 15: Travel traces of 7 nodes
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Figure 16: A whole day journey of 3 nodes. Locations
are recorded every 2 hours.

choose 75, 100 and 130 nodes respectively. The topologi-
cal metrics include the average numbers of partitions and
unreachable pairs. The calculation is based on snapshots
taken every 5 seconds for the short run and 5 minutes for
the long term simulation respectively.

Number of partitions

From time to time, due to the limited transmission range,
the network could be disconnected and partitioned into
many sub networks. We call such sub networks partitions.
In a partition, all nodes can reach any other nodes in the
same partition over one or multiple hops. However, there
is no way to organize a route, over one-hop or multi-hops,
from a node in one partition to another node in a different
partition. Let P be a partition and D(x, y) be the mini-
mum number of hops of any possible routes between node
x and node y, we conclude that ∀x, y ∈ P, D(x, y) 6= ∞.
Our metric number of partitions describes the extent of
this phenomenon. Specifically, suppose the number of
partitions is n, and the partitions are P1, ...Pn, we have
{∀x ∈ Pi, ∀y ∈ Pj |i 6= j,D(x, y) = ∞}. The simulation re-

sults are given in Fig. 17. Clearly, the network partitions;
and the number of these partitions fluctuates. The figure
also shows that as network density increases, the number
of partitions decreases. This is natural as nodes will have
more chances to connect to other nodes. Not only that, a
sparser network increases the fluctuation level. For exam-
ple, for a 130 nodes network, the number of partitions is
either 1 or 2; but for a 75 nodes network, the number of
partitions fluctuates between 2 and 7. Fig. 18 shows the
number of partitions in the long time of 15 hours.
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Figure 17: Number of partitions in 15 minutes, from 8 : 45
AM to 9 : 00 AM
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Figure 18: Number of partitions in 15 hours

Unreachable pairs

Because of partitioning, a pair of nodes each belonging
to a different partition can not establish a route between
them. We call such node pairs unreachable pairs. In a
fully connected network of n nodes, each node can reach
every other node, the total reachable pairs is n(n − 1)/2.
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The unreachable pairs can be represented as the cardinal-
ity of the set {(x, y)|x ∈ Pi, y ∈ Pj , i 6= j}. Fig. 19 shows
the percentage of pairs that is unreachable. It is obvious
that as the number of nodes increases, the number of un-
reachable pairs decreases. The curves fluctuate but the
overall ratios of unreachable pairs are kept at a low level
since this is the time period corresponding to a time inter-
val prior to nodes’ first agenda item. Nodes are roughly
evenly distributed at their homes before they move to their
first destinations. Compare to Fig. 20, which shows the
ratio of unreachable pairs in the long simulation run, the
overall ratio there is much higher. That is because during
the long period of a whole day, at many times nodes will
concentrate at various addresses (e.g. grocery store), thus
increase the ratio of unreachable pairs (nodes at two differ-
ent addresses are likely not to reach each other if these two
addresses are far apart). When we compare these two fig-
ures to the number of partitions figures 17 and 18, we can
see that they roughly fluctuate at the same time - when
there are more partitions, there are more pairs that cannot
reach each other.
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Figure 19: Unreachable pairs in 15 minutes, from 8 : 45 AM
to 9 : 00 AM

6.2.2 Routing performance metrics

Here we examine the network performance in terms of de-
livery ratio and average path length. In order to show the
influence on the topology change of the two mobility mod-
els through time, we sample the metrics based on a time
slot of 5 seconds, i.e., counting all of the packets received
and sent in every 5-second time slot. Thus the delivery
ratio is the ratio of the number of packets received and
sent during the time slot. For the path length, we take
the packets arrived during the slot. On average, there will
be 100 packets in total during each time slot. Since some
packets may not be generated and received within the same
time slot, the delivery ration may be larger or smaller than
real cases, e.g., more than 100%. Thus, we take an average
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Figure 20: Unreachable pairs in 15 hours

using the current, the previous and the succeeding slots.
This method is different from early work which mostly cal-
culate average at the end of the simulation. While the
latter approach is common in evaluating stationary behav-
ior, the way we adopt here can highlight the nonstationary
behavior of mobility better. As demonstrated in our mea-
surement, the connectivity variations we demonstrated in
previous Figures will significantly affect these two perfor-
mance metrics. Further, in comparing the two mobility
models, we refer to previous research (Camp et al., 2002;
Hong et al., 1999) which has shown that mobility models
have vital impact on routing protocol performance, with-
out necessary indications on which model tops the rest
models nor which routing protocol reacts better to all the
different mobility models. We expect our results validate
these observations.

Delivery ratio

The result of delivery ratio is shown in Fig. 21. The two
curves vary a lot because our measurements are calculated
based on different time slots. Thus they are affected by
the highly dynamic connectivity as shown in the previous
Figures. Comparing the delivery ratios of the two models,
Agenda Model can be higher than that of Random Way-
point Model because when nodes in Agenda Model confine
to roads, they tend to have better connectivity, while in
Random Waypoint Model nodes can be at any place in the
area. On the other hand, Agenda Model can also create
more partitions when nodes concentrate, leading to lower
delivery ratio than that of Random Waypoint Model. This
shows that the influence of mobility model on routing per-
formance is significant. The choice of mobility model in
performance evaluation is important.

Average path length

Path length counts the number of hops of the AODV rout-
ing path between the source and the destination for the
successfully delivered packets. The average path lengths
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Figure 21: Delivery ratio

vary over time as shown in Fig. 22. Same as delivery ratio,
the curves vary a lot for Agenda Model and Random Way-
point Model. For Agenda Model, because nodes are con-
fined to limited places (roads), the distance between them
show less arbitrary pattern then that in Random Waypoint
Model. In addition, nodes in Random Way-point Model
can move anywhere. The routing paths then can cut cor-
ners when possible. This results in shorter path lengths in
many cases.
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Figure 22: Average path length

6.3 Summary

Our simulation study shows that the Agenda Model gen-
erates uneven distributions of node concentrations around
the addresses, as a demonstration of nodes’ social roles
and activities. Such a result is close to the observation of
a real world. The direct influence of the geographic con-
centration is the partitioning of the network. The partition
fluctuates as time passes and as nodes move to participate

different activities. We also show that the use of map (with
addresses) and agenda has a significant impact on routing
protocol performance, using Random Waypoint Model as a
comparison. It shows that different mobility models would
diverge on predicting the performance of the same rout-
ing protocol. This validates the results from early study
(Camp et al., 2002; Hong et al., 1999) that the selection of
mobility models is crucial for accurate performance evalu-
ations. By generating realistic scenarios, Agenda Model is
expected to provide more realistic results.

7 Conclusions

We have presented an Agenda Driven Mobility Model. The
key contribution of the work is using a person’s social roles
and activities as a driving force for his or her motion. We
use agenda to describe a person’s activities and to deter-
mine his or her whereabouts. The proposed model is a
general framework that can be used to produce various
scenarios. In the paper, we simulated an example of an
urban area. With a comparison to a popular statistic mo-
bility model, we show that our model is able to reduce the
unrealistic randomness. The performance results confirm
that different mobility models affect performance differ-
ently. Our results suggest that social roles and agenda
activities tend to cause geographic concentrations, which
impact network performance significantly. Agenda model
has its advantage in producing a performance evaluation
that reflects situations in a real world. In addition to the
simulated example of an urban area, the model can be used
to generate a variety of realistic scenarios, such as campus
networks where people tend to walk rather than drive cars.
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