
Agent Amplified Communication

Henry Kautz, Al Milewski, and Bart Selman
AT&T Bell Laboratories
Murray Hill, NJ 07974

{kautz, aem, selman} @research.att.com

Abstract

We propose an agent-based framework for assisting and
simplifying person-to-person communication for informa-
tion gathering tasks. As an example, we focus on expertise
location within a large organization. In our approach, the
informal person-to-person networks that exist within an or-
ganization are used to "referral chain" requests for expertise.
User-agents are employed to automate the referral chaining
process. We also present simulation results demonstrating
the effectiveness of our approach.

Introduction

There are basically two ways of finding something out by
using a computer: "ask a program" and "ask a person".

The first covers all ways of accessing information stored
online, including the use of traditional database programs;
file indexing and retrieval programs such as glimpse (Man-
ber and Wu 1994) or Apple’s AppleSearch; news filtering
programs such as Hoover (SandPoint Corp.); and even more
simply, the use of tools such as ftp, awk, and text editors to
retrieve and view files.

The second, "ask a person", covers ways that a computer
can be used as a communication medium between people.
Currently the prime examples are electronic mail, including
both personal e-mail and mailing lists, and bulletin boards
and newsgroups. The growing integration of computers and
telephones allows us to also view telephony as a computer-
based communication medium. Simple examples of such
integration are telephone address book programs that run
on a personal or pocket computer and dial numbers for you;
more sophisticated is the explosion in the use of computer-
based FAX. Today it is hard to even buy a modem that does
not have FAX capability, and by far the heaviest use of FAX
is for person-to-person communication.

There are inherent problems with both general approaches
to obtaining information. It has often been noted that as
the world of online information sources expands, the "ask
a program" approach suffers from the problem of knowing
where to look. For example, the Mosaic system overcomes
many of the technical problems in accessing a wide variety
of information on the Internet, by automatically handling

the low-level details of different communication protocols.
It is easy and entertaining to browse through an enormous
hypermedia space. However, finding an answer to a specific
question using Mosaic tends to be slow and frustrating,
and often results in failure. One response to this problem
has been the attempt to design systems that incorporate
knowledge about the location of information (Etzioni and
Weld 1994; Kirk et al. 1995; Knoblock et al. 1994; Maes
1993). However, a deeper problem remains, that no solution
based solely on building a better search-engine can address.
This is the fact that much valuable information is simply
not online, but only exists in people’s heads. Furthermore,
there are economic, social, and political reasons that much
valuable information will never be made publicly accessible
on the Internet or any other network. Indeed, part of the
value of a piece of information resides in the degree to
which it is not easily accessible.

This is perhaps most obvious in relationship to proprietary
corporate information. For instance, if I am involved in
trading General Motors stock, I may be vitally interested
in knowing the specifications of the cars to be introduced
next year. That such information exists is certain - indeed,
factories are already being set up to produce the vehicles -
but I am certainly not going to be able to find this information
in any database to which I have access.

For a more mundane example (at least one of less concern
to the SEC), suppose I need to have my house painted,
and want to know if Acme Painters Inc. does good work.
It is highly unlikely that I am going to be able to access
a database of "reliable housepainters". Conceivably the
Better Business Bureau might offer a service that could tell
me whether many people have actually taken Acme to court,
but that would hardly be all that I would want to know. Any
recommendations offered by such a public service would
have to be either advertisements or sufficiently innocuous
to avoid legal entanglements. An even more telling case
would be where I am trying to decide whether or not to hire
a certain professor John Smith to do some consulting for
me, and I want to know whether or not Smith knows what
he is talking about. It is certainly not the case that I will be
able to access a database of academics, with entries such as
"solid, careful thinker" or "full of hot air".

78

From: AAAI Technical Report SS-95-08. Compilation copyright © 1995, AAAI (www.aaai.org). All rights reserved. 



Thus, many important kinds of information can only be ob-
tained by what we called "ask a person". As with the "ask
a program" paradigm, there is an initial technical problem
of establishing a communication link that is yielding to cur-
rent technology. Bridges exist between most major e-mail
systems, the Internet domain naming standard is becoming
universally adopted, and eventually global directory ser-
vices (very roughly approximated by the current "netfind"
program) will make it easy to determine the electronic ad-
dress for anyone in the world. Looking further into the
future we see wireless personal communicators replacing
stationary telephone sets and computer terminals, so that all
of electronic mail, voice mail, and ordinary telephone calls
can really be routed directly to a person, rather than merely
to a location that the person is likely to frequent.

But in this rosy scenario the thorny problem of determining
how to ask the right person remains. Quite often someone
I know (or someone with whom I have a potential profes-
sional or social relationship) has the information that I need,
but I am not sure who they are. At first e-mail seems to offer
to offer a solution to this problem: just mail the question to
everyone who I think might know the answer. It is easy to
add recipients to a message, and easier still to send mail to
an alias that expands to a large number of potential candi-
dates. But in this context the phrase "potential candidate"
might better be replaced by "potential victim", because such
wide-area broadcasting of electronic mail quickly becomes
obnoxious. In getting one person to help me, I annoy hun-
dreds or even thousands of others. For example, using one
alias I can easily send mail to everyone who works at AT&T,
that is, more than 100,000 people (and from time to time
someone does just that, to his or her everlasting regret). If 
am persistent in this kind of activity, people will soon ignore
my requests; in their view, I am lumped together with door
to door salesmen and telephone solicitors. Ultimately mall
I send may be electronically filtered out by my intended
recipients, and I may face even more serious consequences.
A relatively mild rebuke that was recently sent to members
of our lab concerning our "news" alias ran as follows:

From XXXXX Thu Aug 25 15:57:18 1994

To maintain ’news’ as a useful channel
for our professional interests, it
is necessary to avoid other kinds of
information.

Netnews is available for selling cars,
giving away kittens and puppies, and
many other purposes.

For many years, it has been clearly
if tacitly understood that ’news’
should only be used for items of
professional interest. Please --
let’s not litter this unique channel
with unrelated items.

So, what about netnews? Posting to netnews does elim-
inate the annoyance factor, because only people who ac-
tively want to read the messages do so. Unfortunately the
people I truly wish to reach, those who have the valuable
information that I need, are the least likely to read net-
news. Many would agree that as access to and the volume
of netnews has increased over the past years, the "quality
level" of most newsgroups (never that high to begin with)
has declined. Informed, busy people simply drop out of the
electronic community, so that most groups become forums
for ill-informed opinions, unanswered pleas, downright mis-
information, and various exhibitions of social pathology.

The current tools for "ask a program" and "ask a person"
are largely disconnected at the top level, despite the fact
that they rely on a shared electronic infrastructure. We
believe that systems that integrate the two paradigms can
provide solutions to the problems inherent in each. We
are designing and building systems that use software agents
to assist and simplify person-to-person communication for
information gathering tasks; we call this approach agent
amplified communication.

Expertise Location

In a previous paper (Kautz et al. 1994), we described our
view of software agents and the particular agent platform we
had built. We take agents to be programs that assist users in
routine, communication intensive activities, such as locating
information, scheduling meetings, coordinating paper re-
views, and so on. A user delegates a task to an agent, which
can then engage in many transactions with other agents and
other people. Delegation thus reduces the total communica-
tion load on the user. As a philosophical point, we believe
that agent systems should blend transparently into normal
work environments and existing infrastructure, and take ad-
vantage of (rather than trying to replace) the networks 
formal and informal systems and social relations that exist
in an organization.

The system we built used two basic classes of agents: task
specific agents, called "taskbots", and personal agents for
each user.called "userbots". Our initial task specific agent
was used for scheduling meetings with visitors to our lab,
and was thus named the "visitorbot". A host would merely
need to provide the visitorbot with a talk abstract and the
times that a visitor was available for meetings, and the vis-
itorbot would carry out all the steps necessary to set up a
series of meetings (i.e., sending out a talk announcement,
obtaining preferred meeting times from interested parties,
and generating and distributing a schedule for the day). The
userbots provide a graphical, customizable interface to the
taskbots, as well as a repository for information that is pri-
vate to the user. For example, a user could tell his userbot
his preferred meeting times, and the userbot would then
transmit this information to the visitorbot.

We are now designing a new generation of taskbots and user-
bots for information-gathering tasks of the kind described
above. The specific task we are working on is expertise

79



location. In any large organization, determining who is an
expert on a particular topic is a crucial problem. The need
for expertise location ranges from informal situations, such
as where I might need to find an expert on LaTex macros
to help fix a typesetting problem in a paper I’m writing,
to formal construction of project teams to meet business
needs. The range of expertise specifications may range
from the generic ("who knows about logic programming?")
to the highly specific ("who knows how to modify the inter-
rupt vector handling microcode in the reboot module of the
XZY999 processor?").

Online directories of expertise rarely exist, and when they
do, the information that they contain is certain to be out of
date and incomplete. In fact, expertise needs are potentially
so specific that it is simply impossible to determine a com-
prehensive set of categories in advance. Expertise location
is therefore generally an "ask a person" task, with the all the
problems associated with that approach outlined above.

Let us consider for a moment how expertise location actually
works when it is successful. In a typical case I contact a
small set of colleagues whom I think might be familiar with
the topic. Because each person knows me personally, they
are quite likely to respond. Usually none of them is exactly
the person I want; however, they can refer me to someone
they know who might be. After following achain of referrals
a few layers deep I finally find the person I want.

Note that in this successful scenario I needed to walk a fine
line between contacting too few people (and thus not finding
the true expert) and contacting too many (and eventually
making a pest of myself). Even in the end I might wonder
if I might not have found even a better expert if only I could
have cast the net a bit wider. I may have had difficulty
bringing to mind those people I do know personally who
have some expertise in the desired area. If only all of my
colleagues employed endlessly patient assistants that I could
have contacted initially, who would have known something
about their bosses’ areas of expertise, and who could have
answered my initial queries without disturbing everyone...

Now let us consider how software agents could be used to
augment the expert location process. Each person’s userbot
would create a model of that person’s areas of interest. This
model would be created automatically by using information
retrieval techniques (such as inverted indexes) on all the
documents created and received by the user. The user model
could be quite large and detailed, and would be private to
the user, that is, not stored in a central database. The userbot
would also create a much more coarse-grained model of my
contacts by applying similar techniques to all the electronic
mail that I exchange with each person.

When I have an expertise location need, I present the prob-
lem to my userbot as an unstructured text description. Again
using IR techniques, my userbot selects a medium-to-large
set of my contacts to whom the query may be relevant. It
then broadcasts the query, not to the people themselves, but
to their userbots. Upon receipt of the question, each user-
bot checks if it’s owner’s user model does indeed provide a

good match. If there is a good match, the userbot presents
my request to it’s owner. If the owner’s model does not
match, but the model of one of the owner’s contacts does,
then the userbot can ask the owner if it can provide a refer-
ral. Finally, if there is no match at all, the query is silently
logged and deleted. A great deal of flexibility can be built
into each userbot, depending upon it’s owner’s preferences.
For example, I might allow automatic referrals to be given
to requests that come from my closest colleagues.

This system provides several benefits over the netnews and
the "send personal e-mail to everyone" approaches de-
scribed above. First, it is largely passive on the part of
the recipients - they do not need to be reading netnews
and wading through dozens of articles. Second, queries
are broadcast in a focused manner to those who are at least
somewhat likely to find them of interest. Third, users are
shielded from seeing a large number of completely irrelevant
messages; each userbot may process dozens of messages for
every one the user sees. Finally, messages that a user does
see do not come from "out of the blue", but rather are tagged
with a chain of referrals from colleague to colleague.

One reason to believe that the system just described would
be useful in practice is that it basically models the manner in
which expertise location actually works now, while allowing
more people to be contacted without causing disruption and
disturbance (Krackhardt and Hanson 1993; Grosser 1990).

Implementation of an Expertise Locator

An initial version the expertise location has been imple-
mented by extending the user-agents as developed in our
earlier "visitorbot" project (Kautz et aL 1994). Each user-
agent has access to the following kinds of database files,
each of which is specific to and owned by the individual
user. It is important to note that we do not assume that these
files can be directly accessed by anyone other than the user
and the user’s agent.

1. A user-contacts file containing a list of some of the user’s
colleagues, and for each a list of keywords describing their
areas of expertise.

2. A file containing all of the email that the user has sent
and received for a substantial period of time: typically, the
past year or several years.

3. A indexed-email file that stores for each word that appears
in any email message, a list of the messages that contain that
word. This kind of file, called an "inverted index", can be
generated using standard information retrieval algorithms,
such as those described in Salton et al. (1989).

4. A email-record file that stores for each message number
the identifier of the sender of the message (if other than the
user) or the identifier of the recipient of the message (if sent
by the user).

5. A user-profile file containing a list of keywords that
describe some of the user’s own areas of expertise.

6. A user-index file containing an inverted index of all of the

80



other files in the user’s directory. That is, for every word that
appears in any file the user has stored on the computer, this
file contains a list of the names of the files containing that
word. This kind of very large inverted index can be quickly
created and searched by the program "glimpse" (Manber
and Wu 1994).

A user begins the process of locating an expert in a topic
by clicking on the user-agent window and typing a phrase
that describes the general kind of request (such as, "I need
to locate an expert"; another phrase may initiate other kinds
of agent-assisted activities, such as the visitor-scheduling
function mentioned above). The user agent then prompts the
user for a phrase describing the area of expertise. Once this
is done, the user agent generates and presents for approval
a list of suggested candidates for receiving the request.

The list of candidates is generated by combining names
from two sources. First, names are added that appear in
the user-contacts file, such that the words that appear in
the phrase describing the expertise request appear in the list
of keywords associated with the name. Second, the email
records are skimmed to determine for each potential contact
person how many of their messages mention one or more of
the keywords. The result is a list of pairs of "person name"
and "number of messages". This list is sorted according
to "number of messages". The 20 names with the highest
number of messages in this list are then added to the list of
candidates.

After being approved, the expertise location request is for-
matted as an email message containing special fields that
indicate that it should be read and processed by the recip-
ients’ user agents, rather than the users’ themselves. Each
recipient user agent notes the "Msgtype" field, removes the
message from the incoming mail stream, and processes it as
follows:

First, the words in the expertise description phrase con-
tained in the message are matched against the recipient’s
user-profile file. If the words appear in that file, then the
user-agent assumes that this request is appropriate for the
recipient to see.

If the words in the phrase do not match against the contents
of the user-profile file, the user-agent uses the user-index
file to match the phrase against the contents of all of the re-
cipient’s files. This matching can be efficiently performed
using the program "glimpse" mentioned above. If the num-
ber of matches is greater then a threshold number (e.g., more
than 10 matches), the recipient’s user agent guesses that this
request is likely to be appropriate for the recipient.

If the recipient’s user agent thus determines in either way
that the message is appropriate, it forwards to message to
its owner. The recipient is then given the option of (i)
responding affirmatively back to the sender; (ii) responding
negatively back to the sender; or (iii) referring the request 
someone else. In this final option is selected, the recipient’s
user agent creates a list of candidate recipients as described
above and the process is repeated.

av.final av. number success
A dist. messages rate

1.00 1.00 0.0 12.1 100.0
1.00 0.70 0.0 42.6 99.7
1.00 0.50 0.0 109.8 99.1
1.00 0.30 0.1 377.2 94.6
1.00 0.10 0.6 1225.2 52.5
1.00 0.00 1.2 1974.6 8.5
0.90 0.90 0.1 21.3 95.2
0.90 0.70 0.2 43.8 92.0
0.90 0.50 0.3 92.1 83.1
0.90 0.30 0.7 204.9 53.2
0.90 0.10 1.5 316.3 13.3
0.70 0.90 0.7 16.0 60.3
0.70 0.70 1.1 22.3 39.0
0.70 0.50 1.7 27.5 19.6
0.70 0.30 2.2 28.3 6.8
0.70 0.10 2.5 31.9 1.2
0.50 0.90 1.4 9.5 26.6
0.50 0.70 1.9 10.5 11.1
0.50 0.50 2.3 10.8 5.2
0.50 0.30 2.6 10.7 3.1
0.50 0.10 2.9 11.1 0.2
0.10 1.00 2.2 3.3 1.3
0.10 0.70 2.7 3.5 0.3
0.10 0.50 2.9 3.5 1.1
0.10 0.10 3.2 3.5 0.1

Table 1: Simulation results for a 100,000 node network.

We are currently experimenting with email records of vari-
ous volunteers in our center to determine how accurate the
various expertise matches and referral suggestions are when
based on email records and collections of user files. It is
clear, of course, that the automatically generated matches
will be less accurate than when people are asked directly.
In the next section, we consider the effect of this loss of
accuracy on the referral chaining process.

Measuring Effectiveness of Amplified
Communication

A key question concerning agent amplified communica-
tion is whether it will actually improve upon the traditional
person-to-person referral chaining process. It is clear that
agents can handle larger numbers of messages, which may
increase the chance of finding the desired information. On
the other hand, as noted above, referrals suggested by user
agents will generally be less accurate than those provided
by people. This decreases the effectiveness of the referral
process, and could in fact render the process ineffective. In
order to study this issue~ we ran a series of simulations of
agent amplified communication.

In our simulation, we consider a communication network
consisting of a graph, where each node represents a person
with his or her user agent, and each link models a personal
contact. In the referral chaining process, messages are sent
along the links from node to node. Some of the nodes are



80

60

l ’,. /’,, - ./\ \/[k /, ",../’\ 

2 <~ ~’: 2 A
0 0

Fig. 1 : Success rate as a function of responsiveness and referral accuracy. (Data from Table 1.)

designated "expert nodes", which means that the sought-
after information resides there. In each simulation cycle,
we randomly designate a node to be the "requester"; the
referral chaining process starts at that node. The goal is to
find a series of links that leads from the requester node to
an expert node. We now introduce several parameters that
further characterize the referral chaining process.

First, we have to model the fact that the further removed a
node is from an expert node, the less accurate the referral
will be. Why we expect the accuracy of referral to decrease
is best illustrated with an example. Assume that one of your
colleagues has the requested expertise. In that case, there is
a good chance that you know this and can provide the correct
referral. However, if you don’t know the expert personally,
but know of someone who knows him or her, then you may
still be able to refer to the correct person (in this case, your
colleague who knows the expert), but you’ll probably be
less likely to give the correct referral than if you had known
the expert personally. In general, the more steps away from
the expert, the less likely it is that you will provide a referral
in the right direction. To model this effect, we introduce an
accuracy of referral factor A (a number between 0.0 and
1.0). If a node is d steps away from the nearest expert node,
it will refer in the direction of that node with a probability
p(A, d) = ~a, where c~ i s afi xed scaling fa ctor. With
probability of 1 - p(A, d), the request will be referred to a
random neighbor (i.e., an inaccurate referral).

Similarly, we model the fact that the further removed a node
is from the requester node, the less likely the node will

av.final av. number success

R A dist. messages rate

0.90 0.70 0.1 90.1 97.1
0.90 0.50 0.1 200.4 96.4
0.90 0.40 0.1 307.4 93.3
0.90 0.30 0.2 558.3 86.7
0.90 0.20 0.4 955.8 68.9
0.90 0.10 0.7 1466.4 43.9
0.70 0.90 0.4 32.4 74.5
0.70 0.70 0.7 52.4 57.1
0.70 0.50 1.2 72.2 32.3
0.70 0.30 1.7 87.0 14.1
0.50 0.90 1.2 17.6 29.4
0.50 0.70 1.7 20.0 16.8
0.50 0.50 2.1 21.4 6.6

Table 2: Simulation results for the network from Table 1,
but with B = 4.

respond. This aspect is modeled using a responsiveness
factor R (again between 1.0 and 0.0). If a node is d links
removed from the originator of the request, its probability
of responding will be p(R, d) = ~d, where fl i s ascaling
factor. Finally, we use a branching factor B to represent
the average number of neighbors that will be contacted or
referred to by a node during the referral chaining process.

Table 1 gives the results of our first simulation experiment.
The network consists of a randomly generated graph with
100,000 nodes. Each node is linked on average to 20 other
nodes. Five randomly chosen nodes were marked as expert

82



av. final av. number success
R A dist. messages rate

0.90 0.90 0.1 10.1 95.8
0.90 0.50 0.1 39.6 93.4
0.90 0.30 0.2 99.2 83.3
0.90 0.10 0.8 246.9 37.8
0.70 0.90 0.3 9.7 78.4
0.70 0.50 0.9 20.3 42.3
0.70 0.30 1.4 26.3 20.1
0.70 0.10 1.9 30.7 4.6
0.50 0.90 0.8 7.2 45.7
0.50 0.70 1.1 9.0 30.4
0.50 0.50 1.5 9.7 17.2
0.50 0.30 1.9 10.7 8.8
0.50 0.10 2.2 10.9 1.3
0.30 0.90 1.2 5.0 21.9
0.30 0.70 1.6 5.6 11.5
0.30 0.50 1.8 5.8 7.9
0.30 0.10 2.4 5.9 0.4

Table 3: Simulation results for a network as in Table 1, but
with an average of 50 neighbors per node.

nodes. The average branching B, while referral chaining,
is fixed at 3. The scaling factors c~ and/3 are fixed at 0.5.
The table shows results for a range of values of R and A.

The final column in Table 1 gives the success rate of the
referral chaining process, i.e., the chance that an expert
node is found for a given request. (The values in the table
are based on an average over 1,000 information requests
for each parameter setting.) We also included the average
number of messages sent when processing a request. Note
that because of the decay in responsiveness, at some distance
from the requester node, the referral process will die out by
itself. So, the processing of a request ends when either the
chain dies out or an expert source node is reached. The third
column shows how close (on average) a request came to 
expert node. The distance is in terms of number of links.
(This average includes the successful referral runs, where
the final distance is zero.) On average, in the network under
consideration here, the length of the shortest chain between
a random node and the nearest expert nodes is about four
links.

Our simulation results reveal several surprising aspects of
the referral chaining process. Let us first consider some
of the extreme cases. With R = 1.0 and A = 1.0, i.e.,
total responsiveness and perfect referral, we have a 100%
success rate, and, on average, it takes about 12 messages to
process a request. Now, if we reduce the accuracy of referral
to 0.0 (i.e., nodes will simply refer to random neighbors),
our success rate drops to 8.5%? and it takes almost 2000
messages per request. There is a reasonably intuitive expla-
nation for the large number of messages and the low success

~With maximum responsiveness, the referral process would
only halt when an expert node is found, giving a success rate of
100%. However, in our simulation we used a maximum referral
chain length of 10. This limit was only reached when R was set
to 1.0.

av. final av. number success
R A dist. messages rate

0.90 0.90 0.1 30.1 94.7
0.90 0.70 0.2 77.3 89.1
0.90 0.50 0.7 170.8 60.7
0.90 0.30 1.4 281.9 22.9
0.90 0.10 2.2 329.3 3.2
0.70 0.90 1.0 21.5 46.7
0.70 0.70 1.6 26.1 23.4
0.70 0.50 2.3 29.6 7.5
0.70 0.30 2.8 31.4 1.8
0.70 0.10 3.1 33.3 0.3
0.50 0.90 1.9 9.9 11.9
0.50 0.70 2.5 10.8 5.5
0.50 0.50 3.0 10.6 1.8
0.50 0.30 3.3 10.9 0.2
0.30 0.90 2.5 6.0 2.9

Table 4: Simulation results for the network from Table 1,
but with only 1 expert node in the net.

rate. Without any referral information, the search basically
proceeds in a random manner. With 100,000 nodes, and 5
expert nodes, we have 1 expert per 20,000 nodes. In a ran-
dom search, a request would visit on average about 20,000
nodes to locate an expert. (For simplicity, we assume 
completely connected graph where the request travels ran-
domly from node to node, and may visit a node more than
once.) Given that the search only involves 2,000 message,
the measured value of 8.5% is intuitively plausible. 2 Com-
paring these numbers with perfect information chaining,
where we get a 100% success rate using only 12 messages,
reveals the power of referral chaining.

Of course, in practice we have neither perfect referral nor
complete responsiveness. Also, in our agent amplified com-
munication approach, we are specifically interested in the
question of to what extent the referral chaining process de-
grades with a decrease in referral accuracy. Let’s consider
this issue by looking at the results for R = 0.9 and A = 0.3,
i.e., a slightly lower responsiveness but drastically reduced
referral accuracy. Table 1 shows that we still have a suc-
cess rate of over 50%, and it takes about 200 messages per
request. These numbers suggest that with a reduced refer-
ral accuracy, one can still obtain effective referral chaining,
albeit at the cost of an increase in the number of messages.
This should not pose a problem in our agent amplified com-
munication model, where many messages will be processed
automatically. Also, the 200 messages should be compared
to the approximately 10,000 messages that would be re-
quired in a search without any referral information to reach
the same success rate (see argument above). So, even with
limited referral information, the referral chaining process
can be surprisingly good, which suggests that an agent am-
plified approach can be very effective.

2Note that our argument is only meant to provide some intuition
behind the numbers. A rigorous analysis is much more involved.
See, for example, Liestmann (1994).

83



Let us also briefly consider a setting of the parameters that
would model more closely direct person-to-person referral
chaining. In that case, we would expect a lower respon-
siveness, but a much higher referral accuracy. For example,
consider R = 0.5 and A = 0.9. We obtain a success rate of
around 27%, with about 10 messages per request. So, with
relatively accurate, but not perfect, referral, we still need
only a few messages to get reasonably successful referral
chaining. This is consistent with the observed effectiveness
of the referral process in real organizations (Krackhardt and
Hanson 1993).

In general, our simulation experiments suggest that a de-
crease in referral accuracy can be compensated for by hav-
ing a somewhat higher responsiveness. The plot in Fig. 1
gives the success rate as a function of the responsiveness
and referral accuracy. The figure nicely confirms a fairly
smooth tradeoff between the two parameters.

Finally, the reader might wonder about the effect of the
particular settings of the various network parameters in our
simulation. Tables 2, 3, and 4 give the results of some of our
other simulations. We only included the most informative
settings of R and A. Each experiment was based on a
modification of a single parameter used in the simulation
experiment for Table 1. (See the caption of each table.)
The results in these tables show again that one can reliably
trade referral accuracy for responsiveness, and vice versa.
We are still conducting a more exhaustive exploration of the
parameter space.

Conclusions

We studied the use of agents in assisting and simplifying
person-to-person communication for information gathering
tasks. As an example, we considered the task of expertise
location in a large organization. We discussed how user-
agents can enhance the referral chaining process for exper-
tise location. In our approach, agents gather information
about the expertise of their owner and their owner’s con-
tacts. This information is then used in the referral chaining
process to filter messages and to automate request referrals.
We also presented simulation results of the referral chaining
process. Our experiments suggest that an agent amplified
communication strategy can be surprisingly effective.

References

Coen, M. 1994. SodaBottle. M.Sc. Thesis, MITAILab.

Etzioni, O., and Weld, D. S. 1994. A softbot-based in-
terface to the internet. Communications of the ACM, July
1994.

Grosser, D. 1990. Human communication. AnnualReview
of lnfo. Sci. and Techn.
Kautz, H.; Selman, B.; and Coen, M. 1994. Bottom-up
design of software agents. CACM, July 1994.

Kirk, T.; Levy, A.; and Srivastava, D. 1995. The infor-
mation manifold project. In Proceedings AAAI-95 Spring

Symposium on Information Gathering in Distributed En-
vironments.
Knoblock, C.; Arens, Y.; and Hsu, C.-N. 1994. Coop-
erating agents for information retrieval. In Proceedings
of the Second International Conference on Cooperative
Information Systems.

Krackhardt, D., and Hanson, J. 1993. Informal networks:
The company behind the chart. Harvard Business Review.
Liestmann. 1990. Broadcasting and gossiping. Discrete
Applied Mathematics.

Maes, E, ed. 1993. Designing Automomous Agents.
MIT/Elsevier.

Manber, U., and Wu, S. 1994. Glimpse: A tool to search
through entire file systems. In Usenix Winter 1994 Tech-
nical Conference, 23-32.
Salton. 1989. Automatic Text Processing. Addison-Wesley.

Shoham, Y. 1993. Agent-oriented programming. Artificial
Intelligence 60:51-92.


