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A b s t r a c t 

Agent architecture has been one of the core components in building an 

agent application. Agent architecture is considered as the functional brain 

of an agent in making decision and reasoning to solve problem and 

achieving goals. This paper reviews some of the existing agent 

architectures such as logic-based architecture, reactive architecture, BDI 

architecture, hybrid architecture, cognitive architecture, and semantic 

architecture. The purpose of this study is to identify distinctive features of 

the different types of agent architectures and how they are implemented to 

solve real world problems.  

 
Introduction 

The advancement of the Internet technology has increased the need for distributed, concurrent, 

heterogeneous and dynamic application systems. Agent technology is a new paradigm suitable for 

developing such systems that situates and operates in a dynamic and heterogeneous environment. 

What exactly is an agent? To date, there is no widely accepted definition of what an agent is. In this 

study, an agent is referred to as an autonomous software entity that is situated in some environment 

where it can monitor and response to changes proactively or reactively by itself or through 

communication with other agents to persistently achieve certain goal/task on behalf of user or other 

agents (Wooldridge, 2009). An agent possesses certain distinct characteristics such as (Wooldridge & 

Jennings, 1995). 

 Autonomous: the ability to operate without the direct intervention of human and control over 

its internal state. 

 Social: the ability to interact with human and other agents. 

 Reactive: the ability to perceive changes in the environment and response to it in a timely 

fashion. 

 Proactive: the ability to show goal directed behavior. 

 

Other characteristics that an agent might have include mobility, benevolent, trustworthiness, 

rationality, and learning capability. Mobility is the ability to travel between different hosts in a 

computer network. Benevolent is the characteristic agent will always perform what it is asked to do. 
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Trustworthiness is the characteristic agent will not deliberately communicate false information. 

Rationality is the characteristic agent will always never to prevent its goals being achieved. Learning 

capability is the ability to adapt itself to fit its environment and to the desires of its users. In a complex 

system, an agent may not exist alone in an environment as they may be multiple agents that are 

situated in the same environment. Multi-agent system is the study of systems that are made up of 

multiple heterogeneous software entity (agents) that interact with each other (Wei B, 1999; Shoham & 

Leyton-Brown, 2008). In a multi-agent system environment, agents may have common or conflicting 

goal to be achieved (Yu et al., 2010; Durfee & Rosenschein, 1994). The interaction between agents 

can happen directly or indirectly. Direct communication is achieved through channel such as message 

passing whilst indirect communication is achieved through affecting the environment and sense by 

other agents (Genesereth & Ketchpel, 1994; Maes, 1997). Normally, agents that have common goal in 

a multi-agent system will cooperate in order to achieve the goal (Doran et al., 1997; Pozna et al., 

2011). In the case of agents with conflicting goals, the agents will compete against each other to 

obtain resources for personal goal attainment (Leyton-Brown , 2003). In order for agents to cooperate 

and coordinate in achieving their goals, agents need to reason about when and what to do under 

certain circumstances. 

 The foundation of the agent reasoning mechanism lies in the component called agent 

architecture. Agent architecture is the blueprint for building an agent just like a class in object-

oriented programming. Wooldridge referred to agent architecture as software architecture that is 

intended to support decision making process (Wooldridge, 2001). Maes described agent architecture 

as architecture that encompasses techniques and algorithms to support decomposing set of 

components and how these components interact (Maes, 1991). Agent architecture is the building 

block for creating an agent much like creating an object in a class. The agent architecture is the brain 

of the agent as it determines how the knowledge/information is represented in the agent. It also 

determines the action the agent should take based on its underlying reasoning/interpretation 

mechanism. Thus, different architectures used different representation approaches for their reasoning 

mechanism to solve a variety of problems. These architectures can be broadly categorized into three 

groups, the classical architecture, the cognitive architecture and the semantic agent architecture. The 

classical architectures include logic-based architecture, reactive architecture, BDI architecture, and 

hybrid architecture. The logic-based architecture is an agent architecture that uses symbolic 

representation for reasoning. The reactive agent architecture is a direct stimulus-response agent 

architecture. On the other hand, the BDI architecture is a deliberative agent architecture based on 

mental states characteristic such as belief, desire, and intention. The layered architecture is the hybrid 

of reactive and deliberative agent architecture. The cognitive architecture is based on cognitive 

sciences and the semantic agent architecture utilizes semantic technology. 
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The remainder of this paper describes the various agent architectures that can be used to build 

agent and multi-agent system. Section 2 discusses the logic-based architecture. The reactive agent and 

BDI architecture are discussed in Section 3 and 4 respectively. Section 5 describes the layered 

architectures whilst Sections 6 and 7 present an overview of cognitive architecture and semantic agent 

architecture. Finally, we conclude our discussed on agent architectures in Section 8. 

 

Logic-Based Architecture 

Logic-based architecture also known as the symbolic-based or deliberative architecture is one the 

earliest agent architecture that rests on the physical-symbol systems hypothesis (Newell & Simon, 

1976).  This classical architecture is based on the traditional artificial symbolic approach by 

representing and modeling the environment and the agent behavior with symbolic representation. 

Thus, the agent behavior is based on the manipulation of the symbolic representation. 

Agent’s role in this classical architecture may also be considered as theorem provers 

(Shardlow, 1990). The syntactical manipulation of the symbolic representation is the process of 

logical deduction or theorem proving. As an instance of theorem proving, the agent specifications 

outlines how the agent behaves, how the goals are generated and what action the agent can take to 

satisfy these goals. An example of logic-based architecture formalism is as follows: 

 Assume that the environment is described by sentences in L and the knowledge base that 

contains all the information regarding the environment KB = P(L) where P(L) is the set of 

possible environments.  

 For each moment of the time t, an agent’s internal state is represented by KB = {KB1, KB2, 

KB3... KBn} where KBi  KB. 

 The possible environment states are represented by S = {s1, s2, …}.  

 An agent's reasoning mechanism is modeled by a set of deduction rules, p which are the rules 

of inference.  

 An agent perception functions as see:S ->P.  

 The agent’s internal state is updated by a perception function where next:KB × P ->KB.  

 Thus, agent can choose an action from a set A = {a1, a2, …}, action:KB ->A which is defined 

in terms of deduction rules. The outcome of an agent’s actions is drawn via the function do 

where do:A × S ->S.  

 The decision making process is modeled through the rules of inference p, if a do:A can be 

derived, the A is returned as an action to be best performed, else if do:A cannot be derived, a 

special null action is returned.  

 

Vacuum cleaning example in (Russell & Norvig, 1995) illustrates the idea of logic-based 

architecture based on the specification above. The programmer has to encode the inference rules p in a 

way that enables the agent to decide what to do. Examples of this kind of classical agent architecture 
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approach include classical planning agent such as STRIPS (Fikes & Nilsson, 1971), IPEM (Ambros-

Ingerson & Steel, 1988), Autodrive (Wood, 1993), Softbots (Etzioni et al., 1994), Phoenix systems 

(Cohen et al., 1989), IRMA (Bratman et al., 1988), HOMER (Vere & Bickmore, 1990), and GRATE 

(Jennings, 1993). BDI architecture is also considered as the subset of logic-based architecture. 

However, due to its popularity and wide adoption of the architecture, the discussion on this particular 

architecture is detailed in Section 4.  

Although, the simplicity and elegance of logical semantics of the logic based architecture is 

attractive, there are several problems associated with this approach. Firstly, the transduction problem 

implies the problem of translating modeling into symbolic representation. It is difficult to translate 

and model the environment’s information into symbolic representation accurately for computation 

process especially complex environment. Secondly, it is also difficult to represent information in a 

symbolic form that is suitable for the agents to reason with and in a time constrained environment. 

Finally, the transformation of percepts input may not be accurate enough to describe the environment 

itself due to certain faults such as sensor error, reasoning error and etc. It is very difficult or 

sometimes impossible to put down all the rules for the situation that will be encountered by the agent 

in a complex environment since the deduction process is based on set of inference rules. The 

assumption in calculative rationality where the world does not change in a significant way while the 

agent is deliberating is not realistic. Assume that on time t1, agent tries to reason an optimal action for 

that particular time. However, the reasoning result may only be available at time t2 where the 

environment has already changed so much so that the optimal action for time t1 may not be an optimal 

action for time t2. Thus, due to the computational complexity of theorem proving over this approach, 

it is not appropriate for time constrained domain. 

Building agent in logic-based approach is viewed as a deduction process. An agent is encoded 

as a logical theory by using specification and the process of selecting the action is through deduction 

process that reduces the problem to a solution such as in theorem proving. An improvement version 

logic based approach has been carried out in (Amir & Maynard-Reid, 2004; Amir & Maynard-Reid, 

2000). In (Amir & Maynard-Reid, 2004) a logic-based AI architecture is implemented on Brooks' 

Subsumption architecture. In the implementation of this architecture, different layers of control is 

axiomatized in First-Order Logic (FOL), thus, independent theorem provers are used to derive each 

layer's output given its input. This architecture proved the versatility of the theorem provers which 

allow them to realize complex tasks, while keeping individual theories simple (Amir & Maynard-

Reid, 2000). 

 

Reactive Architecture 

Reactive agent architecture is based on the direct mapping of situation to action. It is different from 

the logic-based architecture where no central symbolic world model and complex symbolic reasoning 

are used. Agent responses to changes in the environment in a stimulus-response based. The reactive 
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architecture is realized through a set of sensors and effectors, where perceptual input is mapped to the 

effectors to changes in the environment. Brook's subsumption architecture is known as the best pure 

reactive architecture (Brooks, 1986). This architecture was developed by Brook who has critiqued on 

many of the drawbacks in logic-based architecture. Figure 1 illustrates an example of reactive 

architecture. The figure shows that each of the percept situation is mapped into an action which 

specifically responses to the percept situation. 

 

 

Figure 1: Reactive Architecture 

 

The key idea of subsumption architecture is that intelligent behaviour can be generated 

without explicit representations and abstract reasoning with symbolic AI technique (Brooks, 1991a; 

Brooks, 1991b). Intelligence is an emergent property of certain complex systems. Subsumption 

architecture is implemented in finite state machines with different layers connected to sensors that 

perceive the environment changes and map the action to be performed (Brooks, 1986). A set of task-

accomplishing behaviour are used in the decision making process. Each of the behaviour can be 

thought of as an individual function which maps changes in the environment with an action. Multiple 

behaviours that can be fired simultaneously is another characteristic of subsumption architecture. The 

subsumption architecture hierarchical structure represents different behaviours. The lowest layer in 

the hierarchy has the highest priority. Higher layer represent more abstract behaviour than the lower 

layer in the hierarchy. Complex behaviour is achieved through the combination of these behaviours. 

Figure 2 shows action selection in the layered architecture. In this layered architecture, the lower the 

layer the higher the priority. The lower layer will be the primitive behaviour and higher layer will 

represent a more abstract behaviour. 
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Figure 2: Action Selections in Layered Architecture 

 

The subsumption architecture is implemented in Steel’s study (Steels, 1990) for the mission 

to a distant planet to collect sample of rocks and minerals. A near-optimal performance can be 

obtained through simple adjustment and the solution is cheap in computing power and it is also 

robust. Chapman came up with similar approach to Brook’s work in (Chapman & Agre, 1986) and is 

referred to as the new abstract reasoning.  This approach is used in the celebrated PENGI system 

which simulated a computer game with central character control that can accomplish routine work 

with little variation (Agre & Chapman, 1987). Figure 3 shows a Pengo game in progress (Agre & 

Chapman, 1987).PENGI is a program written to play an arcade game called Pengo which is made up 

of a 2-Dmaze with unit-sized ice blocks. In this game, PENGI is programmed to move the Penguin in 

the game to avoid the bees attack and block slide to survive. 

 

Figure 3: Pengo Game in Progress 
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Another similar approach is the situated automata paradigm by Rosenschein and Kaelbling 

(Kaelbling, 1991; Kaelbling & Rosenschein, 1990; Rosenschein, 1985; Rosenschein & Kaelbling, 

1986). In this approach, the agent is specified in declarative terms such as beliefs and goals which are 

then compiled into a digital machine which satisfies this declarative specification. The digital machine 

can operate in a provably time-bounded fashion. Although the declarative terms are in beliefs and 

goals, the digital machine does not use any of the symbolic representation and hence, no symbolic 

reasoning actually occurred. The approach is also considered as reactive architecture as no symbolic 

reasoning actually occurred because the declarative terms has been compiled to a digital machine that 

reacts based on stimulus response. 

Another reactive architecture is introduced by Maes called the Agent Network Architecture. 

In this architecture, the agent acts as a set of competence modules (Maes, 1991; Maes, 1989; Maes, 

1990). These modules loosely resemble the behaviours of Brook’s subsumption architecture. Pre and 

post-conditions determine the activation of each module based on an activation level. This activation 

level is stated in real value to indicate the relevancy of the module in a particular situation. Agent 

network architecture is somewhat similar to the neural network architecture with different meaning of 

the node context. 

One of the advantages of reactive architecture is that it is less complicated to design and 

implement than logic-based architecture. An agent’s behaviour is computationally tractable. The 

robustness of reactive architecture against failure is another advantage. Complex behaviours can be 

achieved from the interaction of simple ones. The disadvantages of reactive architecture include (1) 

insufficient information about agent’s current state to determine an activation action due to modeling 

of environment available, (2) the processing of the local information limits the planning capabilities in 

long term or bigger picture and hence, learning is difficult to be achieved, (3) emergent behavior 

which is not yet fully understood making it even more intricate to engineer. Therefore, it is difficult to 

build task-specific agents and one of the solutions is to evolve the agents to perform certain tasks 

(Togelius, 2003). The work in this domain is referred to as artificial life. 

 

Belief-Desire-Intention (BDI) Architecture 

The BDI architecture is based on practical reasoning by Bratman’s philosophical emphasis on 

intentional stance (Bratman, 1987). Practical reasoning is reasoning toward actions - the process of 

figuring out what to do. This is different from the theoretical reasoning process as it derives 

knowledge or reaches conclusions by using one’s beliefs and knowledge. Human practical reasoning 

involves two activities namely deliberation and means-end reasoning. Deliberation decides what state 

of affairs needs to be achieved while means-end reasoning decides how to achieve these states of 

affairs. In BDI architecture, agent consists of three logic components referred as mental states/mental 

attitudes namely beliefs, desires and intentions. Beliefs are the set of information an agent has about 

the world. Desires are the agent’s motivation or possible options to carry out the actions. Intentions 
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are the agent’s commitments towards its desires and beliefs. Intentions are key component in practical 

reasoning. They describe states of affairs that the agent has committed to bringing about and as a 

result they are action-inducing. Forming the intentions is critical to an agent’s success. BDI 

architecture probably is the most popular architecture (Rao & Georgeff, 1991) and Practical 

Reasoning System (PRS) is one of the well known BDI architectures (Georgeff & Lansky, 1986). 

PRS is a framework for building real-time reasoning systems that can perform complex tasks in 

dynamic environments. PRS used procedural knowledge representation in describing how to perform 

a set of actions in order to achieve goal. This architecture is based on four key data structures: beliefs, 

desires, intentions and plans, and an interpreter (see Figure 4). Figure 4 shows the four key data 

structures of BDI architecture. 

In the PRS system, beliefs represent the information an agent has about its environment. 

Desires represent the tasks allocated to the agent corresponding to the goals that should be 

accomplished by agent. Intentions represent the agent's commitment towards the goals. Finally, plans 

specify some courses of action for the agent in order to achieve its intentions. The plans in the plan 

library are pre-compiled plan rather than instantaneously generated. The agent interpreter is 

responsible for updating beliefs from observations made from the environment, generating new 

desires (tasks) on the basis of new beliefs, and selecting from the subset of currently active desires to 

act as intentions. Lastly, the interpreter must select an action to perform the agent’s current intentions 

and procedural knowledge. 

 

 

 

Figure 4: Practical Reasoning Systems 
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Many agent frameworks have been implemented in BDI architecture including: 

 JAM, a hybrid intelligent agent architecture that draws upon the theories and ideas of the 

PRS, Structured Circuit Semantics (SCS), and Act Plan Interlingua (Huber, 1999). 

 JACK, a commercial platform for developing industrial and research purpose multi-agent 

application in Java (Howden et al., 2001).  

 dMARS is a platform for intelligent software agents that makes use of the belief–desire–

intention software model (BDI) for building complex, distributed, time-critical systems in 

C++ (d’Inverno et al., 1998).  

 

The advantages of BDI architecture are that the design of the architecture is clear and 

intuitive. The functional decomposition of the agent subsystem is clear and the BDI logic has formal 

logic properties that can be studied. However, with BDI architecture the question of how to efficiently 

implement the functionality in subsystem is not clear and so the agents need to achieve a balance 

between commitment (Rao & Georgeff, 1991) and reconsideration (Wooldridge & Parsons, 1998). If 

an agent did not stop to reconsider, it might be trying to achieve intention which is not achievable or 

no longer valid. If an agent reconsiders often, it might face the risk of not achieving them due to 

insufficient time working on the task. 

 

Layered (Hybrid) Architecture 

Layered (hybrid) architecture is an agent architecture which allows both reactive and deliberate agent 

behavior. Layered architecture combines both the advantages of reactive and logic-based architecture 

and at the same time alleviates the problems in both architectures. Subsystems are decomposed into a 

layer of hierarchical structure to deal with different behaviours. There are two types of interaction that 

flow between the layer namely horizontal and vertical. In the horizontal layer architecture, each layer 

is directly connected to the sensory input and action output (see Figure 5). Each layer is like an agent 

mapping the input to the action to be performed.  

TouringMachine is an example of horizontally layered agent architecture. The 

TouringMachine agent architecture consists of three activity-producing layers: a reactive layer R, a 

planning layer P, and a modeling layer M (Ferguson, 1992). These three layers operate concurrently 

and independently in mapping the perception into action (see Figure 6). Each of the layers has its own 

internal computation processing mechanism.  
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Figure 5: Horizontal Layer Architecture 

 

Figure 6: The TouringMachine Agent Control Architecture 

 

The advantage of horizontal layer architecture is that only n layers are required for mapping 

to n different types of behaviours. However, a mediator function is used to control the inconsistent 

actions between layer interactions. Another complexity is the large number of possible interactions 

between horizontal layers–m
n
 (where m is the number of actions per layer). 

Vertical layer architecture eliminates some of these issues as the sensory input and action 

output are each dealt with by at most one layer each (creating no inconsistent action suggestions). 

There are two types of vertical layered architectures namely one-pass and two-pass control 

architectures. In one-pass architecture, control flows from the initial layer that gets data from sensors 

to the final layer that generates action output (see Figure 7). In two-pass architecture, data flows up 

the sequence of layers and control then flows back down (see Figure 8).  
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Figure 7: Vertical layer architecture: one-pass               Figure 8: Vertical layer architecture: two-pass 

 

InteRRaP is an example of vertically two-pass agent architecture (Muller & Pischel, 1993). 

InterRRaP comprises of three control layers namely behavior layer, local planning layer and 

cooperative planning layer (see Figure 9). The behaviour layer is the lowest layer in InteRRap which 

responses reactively towards the world model. The local planning is the middle layer that uses 

planning knowledge for the routine planning to achieve the agent’s goal. Finally, the cooperative 

planning is the highest layer in InteRRaP that deals with the social interaction. The main difference 

between InteRRaP and TouringMachine is the interaction between layers. There are two types of flow 

control in InteRRaP which are the bottom up and top down. The bottom up activation deals with the 

lower layer which passes control to the higher layer when it cannot process the current situation. Top 

down execution deals with the higher layer which uses the action execution of the lower layer to 

achieve goals and tasks. There are two general functions that are implemented in each layer known as 

the situation recognition and goal activation function and planning and scheduling function. The 

situation recognition and goal activation function is responsible to map the knowledge base and 

current goals to a new set of goals. The planning and scheduling function is responsible for selecting 

which plans to execute, based on the current plans, goals and knowledge base of that layer. 
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Figure 9: InteRRap Architecture 

 

The main advantage of vertical layered architecture is the interaction between layers is 

reduced significantly to m
2
(n−1). The main disadvantage is that the architecture depends on its 

robustness, so if one layer fails, the entire system fails. 

 

Cognitive Architecture 

As stated in (Langley, 2004), there are several ways of constructing intelligent agents which are the 

software engineering approach, the multi-agent approach and the cognitive architecture approach. The 

cognitive architecture is based on the stream of cognitive science. The study of cognitive science 

focuses on the human cognition and psychology. The origin of cognitive architecture started with a 

specific class of architecture known as production systems (Neches et al., 1987; Newell, 1973) and 

evolves over time. ACT is one of the earliest cognitive architecture build for modeling human 

behavior (Anderson, 1976). The construction of intelligent agent using cognitive architecture focuses 

on the cognition part, the simulation and modeling of human behaviour. The cognitive architecture 

approach is said to be different from multi-agent approach in the following manners (Langley et al., 

2009): 

 cognitive architecture comes with a programming formalism to encode knowledge and 

associates it with its interpreter, 

 it has strong assumptions on the representation of knowledge and the processes that operate 

on them, 
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 it assumes a modular representation of knowledge,  

 it offers intelligent behavior at the systems level, rather than at the level of component 

methods designed for specialized tasks, and 

 it provides a unified approach in which a common set of representations and mechanisms 

reduces the need for such careful crafting. 

Cognitive architectures are used to construct intelligent system/agent that models human 

performance (Newell, 1990; Meyer & Kieras, 1997). Thisunderlying cognitive architecture should 

typically possess the characteristics of (Langley et al., 2009):  

 short and long-term memories for storing the agent’s beliefs, goals, and knowledge, 

 representation of memories and their organization, and 

 functional processes that operate on these structures. 

Memory and learning are the two important key components in developing cognitive 

architecture. The combination of these two components form a taxonomy of three main categories of 

cognitive agent architecture namely symbolic, emergent, and hybrid models (Duch et al., 2008) (see 

Figure 10).  Symbolic architecture is a classical AI top-down analytical approach that focuses on 

information processing by using high-level symbols or declarative knowledge. Examples of cognitive 

symbolic architecture are SOAR (Laird et al., 1987; Newell, 1990), EPIC (Meyer & Kieras, 1997), 

ICARUS (Langley, 2005). SOAR is a platform created to demonstrate general intelligence behaviour. 

The platform is based on symbolic representation which utilizes operator associated to problem space 

in production rules. This approach is referred as procedural long term knowledge. The platform has 

been used to develop many of the applications including expert system, intelligent control, and human 

behaviour interaction simulation. SOAR platform can also be viewed as a theory of general 

intelligence or as theory of human cognition. The architecture is based on human problem solving and 

unified theory of cognition. The theory of the architecture is that the unification of different theories 

or overlap theories without conflict can produce general intelligence behaviour with appropriate 

learning mechanism.  

A bottom-up approaches which differentiates it from the symbolic architecture is adopted in 

emergent architecture whereby low-level activation signals flowing through a network consisting of 

numerous processing units is used. IBCA (O'Reilly et al., 1999), Cortonis (Hecht-Nielsen, 2007), 

NuPIC (Hawkins & Blakeslee, 2004) are a few of the systems under the category of emergent 

architecture. IBCA is based on the working memory as controlled processing on how the components 

in brain dynamically interact with each other to bring about the cognition function. The emergent 

property of the dynamic interactions of the components contributes the working model of IBCA. 

There are several important components in IBCA and each has own specific function namely the 

posterior perceptual and motor cortex (PMC) which are responsible for the sensor and motor 

processing based on inference and generalization. The prefrontal cortex (PFC) is responsible for 
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dynamic and active memory and hippocampus (HCMP) is in charge of the rapid learning of arbitrary 

information. 

Hybrid architecture is the combination of the symbolic and emergent paradigms. Examples in 

this category of hybrid architectures are ACT-R (Anderson & Lebiere, 2003), CLARION (Sun & 

Alexandre, 1997; Sun et al., 2001) and LIOA (Franklin, 2006).  ACT-R is one of the earliest 

developed cognitive architecture which is based on the modeling of human behaviour. ACT-R is 

organized into of a set of modules namely, sensory module, motor module, intentional module and 

declarative module. Each module has a temporary storage which holds the short term memory. A 

long-term memory is achieved through the combination of these modules. The action selection is 

based on the utility calculation, in which the highest utility actions are selected.Figure 10 shows the 

taxonomy of cognitive architecture based on the two important design properties which are memory 

and learning. 

 

 

Figure 10: Taxonomy of Cognitive Architectures (Duch et al., 2008) 

 

Hybrid architecture is the combination of the symbolic and emergent paradigms. Examples in 

this category of hybrid architectures are ACT-R (Anderson & Lebiere, 2003), CLARION (Sun & 

Alexandre, 1997; Sun et al., 2001) and LIOA (Franklin, 2006).  ACT-R is one of the earliest 

developed cognitive architecture which is based on the modeling of human behaviour. ACT-R is 

organized into of a set of modules namely, sensory module, motor module, intentional module and 

declarative module. Each module has a temporary storage which holds the short term memory. A 

long-term memory is achieved through the combination of these modules. The action selection is 

based on the utility calculation, in which the highest utility actions are selected. Figure 10 shows the 

taxonomy of cognitive architecture based on the two important design properties which are memory 

and learning. 
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Conclusion 

Agent architecture is the key component to constructing agent. It acts as the brain and heart of the 

agent to reason and perform action based on its knowledge base. This paper provides the state of the 

art of agent architecture. It outlined four main agent architectures: logic, reactive, BDI and layered 

architecture. Apart from these four, the cognitive architecture which is based on the human behaviour 

is another architecture that is widely adopted in building multi-agent system. Many of the foundations 

of cognitive architecture rest on the theories in cognitive sciences domain. The adoption semantic web 

technology to enhance the cognitive architecture in analyzing human behaviour will be a very 

interesting area to explore.  Finally, the semantic technology adoption into agent architecture is also 

another interesting topic that should be studied as well. For future work, we would like to draw on 

these preliminary reviews to study the potential of a new agent architecture that uses semantic web 

technology to enable agent to process the information in a more meaningful way that will in turn 

improve its decision making which closely mimics the human reasoning process.  
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