

TRANSACTIONS ON SCIENCE AND TECHNOLOGY 2014. Vol. 1, No 1, pp 18-35 DECEMBER 2014 /18

Agent Architecture: An Overview

Kim On CHIN
1*

, Kim Soon GAN
2
, Rayner ALFRED

3
, Patricia

ANTHONY
4

& Dickson LUKOSE
5

1,2,3
Center of Excellence in Semantic Agent, Faculty of Computing and Informatics,

Universiti Malaysia Sabah, Jalan UMS, 88400 Kota Kinabalu, Sabah, MALAYSIA.
4
Department of Applied Computing, Faculty of Environment, Society and Design,

Lincoln University, Christchurch, NEW ZEALAND.
5
Artificial Intelligence Center, MIMOS Berhad,

Technology Park Malaysia, Bukit Jalil, Kuala Lumpur, MALAYSIA.

*Corresponding author: kimonchin@ums.edu.my, Tel: +6088-320000, Ext: 3086

Received: 20 Aug 2014

Revised: 30 Aug 2014

Accepted: 2 Sept 2014

Online: 30 Dec 2014

Keywords:

Agent; Multi-Agent; Agent

Architecture; Semantic Web

Technology

A b s t r a c t

Agent architecture has been one of the core components in building an

agent application. Agent architecture is considered as the functional brain

of an agent in making decision and reasoning to solve problem and

achieving goals. This paper reviews some of the existing agent

architectures such as logic-based architecture, reactive architecture, BDI

architecture, hybrid architecture, cognitive architecture, and semantic

architecture. The purpose of this study is to identify distinctive features of

the different types of agent architectures and how they are implemented to

solve real world problems.

Introduction

The advancement of the Internet technology has increased the need for distributed, concurrent,

heterogeneous and dynamic application systems. Agent technology is a new paradigm suitable for

developing such systems that situates and operates in a dynamic and heterogeneous environment.

What exactly is an agent? To date, there is no widely accepted definition of what an agent is. In this

study, an agent is referred to as an autonomous software entity that is situated in some environment

where it can monitor and response to changes proactively or reactively by itself or through

communication with other agents to persistently achieve certain goal/task on behalf of user or other

agents (Wooldridge, 2009). An agent possesses certain distinct characteristics such as (Wooldridge &

Jennings, 1995).

 Autonomous: the ability to operate without the direct intervention of human and control over

its internal state.

 Social: the ability to interact with human and other agents.

 Reactive: the ability to perceive changes in the environment and response to it in a timely

fashion.

 Proactive: the ability to show goal directed behavior.

Other characteristics that an agent might have include mobility, benevolent, trustworthiness,

rationality, and learning capability. Mobility is the ability to travel between different hosts in a

computer network. Benevolent is the characteristic agent will always perform what it is asked to do.

TRANSACTIONS ON SCIENCE AND TECHNOLOGY 2014. Vol. 1, No 1, pp 18-35 DECEMBER 2014 /19

Trustworthiness is the characteristic agent will not deliberately communicate false information.

Rationality is the characteristic agent will always never to prevent its goals being achieved. Learning

capability is the ability to adapt itself to fit its environment and to the desires of its users. In a complex

system, an agent may not exist alone in an environment as they may be multiple agents that are

situated in the same environment. Multi-agent system is the study of systems that are made up of

multiple heterogeneous software entity (agents) that interact with each other (Wei B, 1999; Shoham &

Leyton-Brown, 2008). In a multi-agent system environment, agents may have common or conflicting

goal to be achieved (Yu et al., 2010; Durfee & Rosenschein, 1994). The interaction between agents

can happen directly or indirectly. Direct communication is achieved through channel such as message

passing whilst indirect communication is achieved through affecting the environment and sense by

other agents (Genesereth & Ketchpel, 1994; Maes, 1997). Normally, agents that have common goal in

a multi-agent system will cooperate in order to achieve the goal (Doran et al., 1997; Pozna et al.,

2011). In the case of agents with conflicting goals, the agents will compete against each other to

obtain resources for personal goal attainment (Leyton-Brown , 2003). In order for agents to cooperate

and coordinate in achieving their goals, agents need to reason about when and what to do under

certain circumstances.

 The foundation of the agent reasoning mechanism lies in the component called agent

architecture. Agent architecture is the blueprint for building an agent just like a class in object-

oriented programming. Wooldridge referred to agent architecture as software architecture that is

intended to support decision making process (Wooldridge, 2001). Maes described agent architecture

as architecture that encompasses techniques and algorithms to support decomposing set of

components and how these components interact (Maes, 1991). Agent architecture is the building

block for creating an agent much like creating an object in a class. The agent architecture is the brain

of the agent as it determines how the knowledge/information is represented in the agent. It also

determines the action the agent should take based on its underlying reasoning/interpretation

mechanism. Thus, different architectures used different representation approaches for their reasoning

mechanism to solve a variety of problems. These architectures can be broadly categorized into three

groups, the classical architecture, the cognitive architecture and the semantic agent architecture. The

classical architectures include logic-based architecture, reactive architecture, BDI architecture, and

hybrid architecture. The logic-based architecture is an agent architecture that uses symbolic

representation for reasoning. The reactive agent architecture is a direct stimulus-response agent

architecture. On the other hand, the BDI architecture is a deliberative agent architecture based on

mental states characteristic such as belief, desire, and intention. The layered architecture is the hybrid

of reactive and deliberative agent architecture. The cognitive architecture is based on cognitive

sciences and the semantic agent architecture utilizes semantic technology.

TRANSACTIONS ON SCIENCE AND TECHNOLOGY 2014. Vol. 1, No 1, pp 18-35 DECEMBER 2014 /20

The remainder of this paper describes the various agent architectures that can be used to build

agent and multi-agent system. Section 2 discusses the logic-based architecture. The reactive agent and

BDI architecture are discussed in Section 3 and 4 respectively. Section 5 describes the layered

architectures whilst Sections 6 and 7 present an overview of cognitive architecture and semantic agent

architecture. Finally, we conclude our discussed on agent architectures in Section 8.

Logic-Based Architecture

Logic-based architecture also known as the symbolic-based or deliberative architecture is one the

earliest agent architecture that rests on the physical-symbol systems hypothesis (Newell & Simon,

1976). This classical architecture is based on the traditional artificial symbolic approach by

representing and modeling the environment and the agent behavior with symbolic representation.

Thus, the agent behavior is based on the manipulation of the symbolic representation.

Agent’s role in this classical architecture may also be considered as theorem provers

(Shardlow, 1990). The syntactical manipulation of the symbolic representation is the process of

logical deduction or theorem proving. As an instance of theorem proving, the agent specifications

outlines how the agent behaves, how the goals are generated and what action the agent can take to

satisfy these goals. An example of logic-based architecture formalism is as follows:

 Assume that the environment is described by sentences in L and the knowledge base that

contains all the information regarding the environment KB = P(L) where P(L) is the set of

possible environments.

 For each moment of the time t, an agent’s internal state is represented by KB = {KB1, KB2,

KB3... KBn} where KBi KB.

 The possible environment states are represented by S = {s1, s2, …}.

 An agent's reasoning mechanism is modeled by a set of deduction rules, p which are the rules

of inference.

 An agent perception functions as see:S ->P.

 The agent’s internal state is updated by a perception function where next:KB × P ->KB.

 Thus, agent can choose an action from a set A = {a1, a2, …}, action:KB ->A which is defined

in terms of deduction rules. The outcome of an agent’s actions is drawn via the function do

where do:A × S ->S.

 The decision making process is modeled through the rules of inference p, if a do:A can be

derived, the A is returned as an action to be best performed, else if do:A cannot be derived, a

special null action is returned.

Vacuum cleaning example in (Russell & Norvig, 1995) illustrates the idea of logic-based

architecture based on the specification above. The programmer has to encode the inference rules p in a

way that enables the agent to decide what to do. Examples of this kind of classical agent architecture

TRANSACTIONS ON SCIENCE AND TECHNOLOGY 2014. Vol. 1, No 1, pp 18-35 DECEMBER 2014 /21

approach include classical planning agent such as STRIPS (Fikes & Nilsson, 1971), IPEM (Ambros-

Ingerson & Steel, 1988), Autodrive (Wood, 1993), Softbots (Etzioni et al., 1994), Phoenix systems

(Cohen et al., 1989), IRMA (Bratman et al., 1988), HOMER (Vere & Bickmore, 1990), and GRATE

(Jennings, 1993). BDI architecture is also considered as the subset of logic-based architecture.

However, due to its popularity and wide adoption of the architecture, the discussion on this particular

architecture is detailed in Section 4.

Although, the simplicity and elegance of logical semantics of the logic based architecture is

attractive, there are several problems associated with this approach. Firstly, the transduction problem

implies the problem of translating modeling into symbolic representation. It is difficult to translate

and model the environment’s information into symbolic representation accurately for computation

process especially complex environment. Secondly, it is also difficult to represent information in a

symbolic form that is suitable for the agents to reason with and in a time constrained environment.

Finally, the transformation of percepts input may not be accurate enough to describe the environment

itself due to certain faults such as sensor error, reasoning error and etc. It is very difficult or

sometimes impossible to put down all the rules for the situation that will be encountered by the agent

in a complex environment since the deduction process is based on set of inference rules. The

assumption in calculative rationality where the world does not change in a significant way while the

agent is deliberating is not realistic. Assume that on time t1, agent tries to reason an optimal action for

that particular time. However, the reasoning result may only be available at time t2 where the

environment has already changed so much so that the optimal action for time t1 may not be an optimal

action for time t2. Thus, due to the computational complexity of theorem proving over this approach,

it is not appropriate for time constrained domain.

Building agent in logic-based approach is viewed as a deduction process. An agent is encoded

as a logical theory by using specification and the process of selecting the action is through deduction

process that reduces the problem to a solution such as in theorem proving. An improvement version

logic based approach has been carried out in (Amir & Maynard-Reid, 2004; Amir & Maynard-Reid,

2000). In (Amir & Maynard-Reid, 2004) a logic-based AI architecture is implemented on Brooks'

Subsumption architecture. In the implementation of this architecture, different layers of control is

axiomatized in First-Order Logic (FOL), thus, independent theorem provers are used to derive each

layer's output given its input. This architecture proved the versatility of the theorem provers which

allow them to realize complex tasks, while keeping individual theories simple (Amir & Maynard-

Reid, 2000).

Reactive Architecture

Reactive agent architecture is based on the direct mapping of situation to action. It is different from

the logic-based architecture where no central symbolic world model and complex symbolic reasoning

are used. Agent responses to changes in the environment in a stimulus-response based. The reactive

TRANSACTIONS ON SCIENCE AND TECHNOLOGY 2014. Vol. 1, No 1, pp 18-35 DECEMBER 2014 /22

architecture is realized through a set of sensors and effectors, where perceptual input is mapped to the

effectors to changes in the environment. Brook's subsumption architecture is known as the best pure

reactive architecture (Brooks, 1986). This architecture was developed by Brook who has critiqued on

many of the drawbacks in logic-based architecture. Figure 1 illustrates an example of reactive

architecture. The figure shows that each of the percept situation is mapped into an action which

specifically responses to the percept situation.

Figure 1: Reactive Architecture

The key idea of subsumption architecture is that intelligent behaviour can be generated

without explicit representations and abstract reasoning with symbolic AI technique (Brooks, 1991a;

Brooks, 1991b). Intelligence is an emergent property of certain complex systems. Subsumption

architecture is implemented in finite state machines with different layers connected to sensors that

perceive the environment changes and map the action to be performed (Brooks, 1986). A set of task-

accomplishing behaviour are used in the decision making process. Each of the behaviour can be

thought of as an individual function which maps changes in the environment with an action. Multiple

behaviours that can be fired simultaneously is another characteristic of subsumption architecture. The

subsumption architecture hierarchical structure represents different behaviours. The lowest layer in

the hierarchy has the highest priority. Higher layer represent more abstract behaviour than the lower

layer in the hierarchy. Complex behaviour is achieved through the combination of these behaviours.

Figure 2 shows action selection in the layered architecture. In this layered architecture, the lower the

layer the higher the priority. The lower layer will be the primitive behaviour and higher layer will

represent a more abstract behaviour.

 Prece
pt 1

Actio
n 1

Prece
pt 2

Actio
n 2

Prece
pt 3

Actio
n 3

Prece
pt 4

Actio
n 4

Environment

Perception

Mapping

TRANSACTIONS ON SCIENCE AND TECHNOLOGY 2014. Vol. 1, No 1, pp 18-35 DECEMBER 2014 /23

Figure 2: Action Selections in Layered Architecture

The subsumption architecture is implemented in Steel’s study (Steels, 1990) for the mission

to a distant planet to collect sample of rocks and minerals. A near-optimal performance can be

obtained through simple adjustment and the solution is cheap in computing power and it is also

robust. Chapman came up with similar approach to Brook’s work in (Chapman & Agre, 1986) and is

referred to as the new abstract reasoning. This approach is used in the celebrated PENGI system

which simulated a computer game with central character control that can accomplish routine work

with little variation (Agre & Chapman, 1987). Figure 3 shows a Pengo game in progress (Agre &

Chapman, 1987).PENGI is a program written to play an arcade game called Pengo which is made up

of a 2-Dmaze with unit-sized ice blocks. In this game, PENGI is programmed to move the Penguin in

the game to avoid the bees attack and block slide to survive.

Figure 3: Pengo Game in Progress

Layer 3

Layer 2

Layer 1 I O

TRANSACTIONS ON SCIENCE AND TECHNOLOGY 2014. Vol. 1, No 1, pp 18-35 DECEMBER 2014 /24

Another similar approach is the situated automata paradigm by Rosenschein and Kaelbling

(Kaelbling, 1991; Kaelbling & Rosenschein, 1990; Rosenschein, 1985; Rosenschein & Kaelbling,

1986). In this approach, the agent is specified in declarative terms such as beliefs and goals which are

then compiled into a digital machine which satisfies this declarative specification. The digital machine

can operate in a provably time-bounded fashion. Although the declarative terms are in beliefs and

goals, the digital machine does not use any of the symbolic representation and hence, no symbolic

reasoning actually occurred. The approach is also considered as reactive architecture as no symbolic

reasoning actually occurred because the declarative terms has been compiled to a digital machine that

reacts based on stimulus response.

Another reactive architecture is introduced by Maes called the Agent Network Architecture.

In this architecture, the agent acts as a set of competence modules (Maes, 1991; Maes, 1989; Maes,

1990). These modules loosely resemble the behaviours of Brook’s subsumption architecture. Pre and

post-conditions determine the activation of each module based on an activation level. This activation

level is stated in real value to indicate the relevancy of the module in a particular situation. Agent

network architecture is somewhat similar to the neural network architecture with different meaning of

the node context.

One of the advantages of reactive architecture is that it is less complicated to design and

implement than logic-based architecture. An agent’s behaviour is computationally tractable. The

robustness of reactive architecture against failure is another advantage. Complex behaviours can be

achieved from the interaction of simple ones. The disadvantages of reactive architecture include (1)

insufficient information about agent’s current state to determine an activation action due to modeling

of environment available, (2) the processing of the local information limits the planning capabilities in

long term or bigger picture and hence, learning is difficult to be achieved, (3) emergent behavior

which is not yet fully understood making it even more intricate to engineer. Therefore, it is difficult to

build task-specific agents and one of the solutions is to evolve the agents to perform certain tasks

(Togelius, 2003). The work in this domain is referred to as artificial life.

Belief-Desire-Intention (BDI) Architecture

The BDI architecture is based on practical reasoning by Bratman’s philosophical emphasis on

intentional stance (Bratman, 1987). Practical reasoning is reasoning toward actions - the process of

figuring out what to do. This is different from the theoretical reasoning process as it derives

knowledge or reaches conclusions by using one’s beliefs and knowledge. Human practical reasoning

involves two activities namely deliberation and means-end reasoning. Deliberation decides what state

of affairs needs to be achieved while means-end reasoning decides how to achieve these states of

affairs. In BDI architecture, agent consists of three logic components referred as mental states/mental

attitudes namely beliefs, desires and intentions. Beliefs are the set of information an agent has about

the world. Desires are the agent’s motivation or possible options to carry out the actions. Intentions

TRANSACTIONS ON SCIENCE AND TECHNOLOGY 2014. Vol. 1, No 1, pp 18-35 DECEMBER 2014 /25

are the agent’s commitments towards its desires and beliefs. Intentions are key component in practical

reasoning. They describe states of affairs that the agent has committed to bringing about and as a

result they are action-inducing. Forming the intentions is critical to an agent’s success. BDI

architecture probably is the most popular architecture (Rao & Georgeff, 1991) and Practical

Reasoning System (PRS) is one of the well known BDI architectures (Georgeff & Lansky, 1986).

PRS is a framework for building real-time reasoning systems that can perform complex tasks in

dynamic environments. PRS used procedural knowledge representation in describing how to perform

a set of actions in order to achieve goal. This architecture is based on four key data structures: beliefs,

desires, intentions and plans, and an interpreter (see Figure 4). Figure 4 shows the four key data

structures of BDI architecture.

In the PRS system, beliefs represent the information an agent has about its environment.

Desires represent the tasks allocated to the agent corresponding to the goals that should be

accomplished by agent. Intentions represent the agent's commitment towards the goals. Finally, plans

specify some courses of action for the agent in order to achieve its intentions. The plans in the plan

library are pre-compiled plan rather than instantaneously generated. The agent interpreter is

responsible for updating beliefs from observations made from the environment, generating new

desires (tasks) on the basis of new beliefs, and selecting from the subset of currently active desires to

act as intentions. Lastly, the interpreter must select an action to perform the agent’s current intentions

and procedural knowledge.

Figure 4: Practical Reasoning Systems

Belief
s

Plan
Librar

y

Goals Intent
ions

Interpreter

Se
ns
or

Ac
tu
at
or

TRANSACTIONS ON SCIENCE AND TECHNOLOGY 2014. Vol. 1, No 1, pp 18-35 DECEMBER 2014 /26

Many agent frameworks have been implemented in BDI architecture including:

 JAM, a hybrid intelligent agent architecture that draws upon the theories and ideas of the

PRS, Structured Circuit Semantics (SCS), and Act Plan Interlingua (Huber, 1999).

 JACK, a commercial platform for developing industrial and research purpose multi-agent

application in Java (Howden et al., 2001).

 dMARS is a platform for intelligent software agents that makes use of the belief–desire–

intention software model (BDI) for building complex, distributed, time-critical systems in

C++ (d’Inverno et al., 1998).

The advantages of BDI architecture are that the design of the architecture is clear and

intuitive. The functional decomposition of the agent subsystem is clear and the BDI logic has formal

logic properties that can be studied. However, with BDI architecture the question of how to efficiently

implement the functionality in subsystem is not clear and so the agents need to achieve a balance

between commitment (Rao & Georgeff, 1991) and reconsideration (Wooldridge & Parsons, 1998). If

an agent did not stop to reconsider, it might be trying to achieve intention which is not achievable or

no longer valid. If an agent reconsiders often, it might face the risk of not achieving them due to

insufficient time working on the task.

Layered (Hybrid) Architecture

Layered (hybrid) architecture is an agent architecture which allows both reactive and deliberate agent

behavior. Layered architecture combines both the advantages of reactive and logic-based architecture

and at the same time alleviates the problems in both architectures. Subsystems are decomposed into a

layer of hierarchical structure to deal with different behaviours. There are two types of interaction that

flow between the layer namely horizontal and vertical. In the horizontal layer architecture, each layer

is directly connected to the sensory input and action output (see Figure 5). Each layer is like an agent

mapping the input to the action to be performed.

TouringMachine is an example of horizontally layered agent architecture. The

TouringMachine agent architecture consists of three activity-producing layers: a reactive layer R, a

planning layer P, and a modeling layer M (Ferguson, 1992). These three layers operate concurrently

and independently in mapping the perception into action (see Figure 6). Each of the layers has its own

internal computation processing mechanism.

TRANSACTIONS ON SCIENCE AND TECHNOLOGY 2014. Vol. 1, No 1, pp 18-35 DECEMBER 2014 /27

Figure 5: Horizontal Layer Architecture

Figure 6: The TouringMachine Agent Control Architecture

The advantage of horizontal layer architecture is that only n layers are required for mapping

to n different types of behaviours. However, a mediator function is used to control the inconsistent

actions between layer interactions. Another complexity is the large number of possible interactions

between horizontal layers–m
n
 (where m is the number of actions per layer).

Vertical layer architecture eliminates some of these issues as the sensory input and action

output are each dealt with by at most one layer each (creating no inconsistent action suggestions).

There are two types of vertical layered architectures namely one-pass and two-pass control

architectures. In one-pass architecture, control flows from the initial layer that gets data from sensors

to the final layer that generates action output (see Figure 7). In two-pass architecture, data flows up

the sequence of layers and control then flows back down (see Figure 8).

TRANSACTIONS ON SCIENCE AND TECHNOLOGY 2014. Vol. 1, No 1, pp 18-35 DECEMBER 2014 /28

Figure 7: Vertical layer architecture: one-pass Figure 8: Vertical layer architecture: two-pass

InteRRaP is an example of vertically two-pass agent architecture (Muller & Pischel, 1993).

InterRRaP comprises of three control layers namely behavior layer, local planning layer and

cooperative planning layer (see Figure 9). The behaviour layer is the lowest layer in InteRRap which

responses reactively towards the world model. The local planning is the middle layer that uses

planning knowledge for the routine planning to achieve the agent’s goal. Finally, the cooperative

planning is the highest layer in InteRRaP that deals with the social interaction. The main difference

between InteRRaP and TouringMachine is the interaction between layers. There are two types of flow

control in InteRRaP which are the bottom up and top down. The bottom up activation deals with the

lower layer which passes control to the higher layer when it cannot process the current situation. Top

down execution deals with the higher layer which uses the action execution of the lower layer to

achieve goals and tasks. There are two general functions that are implemented in each layer known as

the situation recognition and goal activation function and planning and scheduling function. The

situation recognition and goal activation function is responsible to map the knowledge base and

current goals to a new set of goals. The planning and scheduling function is responsible for selecting

which plans to execute, based on the current plans, goals and knowledge base of that layer.

TRANSACTIONS ON SCIENCE AND TECHNOLOGY 2014. Vol. 1, No 1, pp 18-35 DECEMBER 2014 /29

Figure 9: InteRRap Architecture

The main advantage of vertical layered architecture is the interaction between layers is

reduced significantly to m
2
(n−1). The main disadvantage is that the architecture depends on its

robustness, so if one layer fails, the entire system fails.

Cognitive Architecture

As stated in (Langley, 2004), there are several ways of constructing intelligent agents which are the

software engineering approach, the multi-agent approach and the cognitive architecture approach. The

cognitive architecture is based on the stream of cognitive science. The study of cognitive science

focuses on the human cognition and psychology. The origin of cognitive architecture started with a

specific class of architecture known as production systems (Neches et al., 1987; Newell, 1973) and

evolves over time. ACT is one of the earliest cognitive architecture build for modeling human

behavior (Anderson, 1976). The construction of intelligent agent using cognitive architecture focuses

on the cognition part, the simulation and modeling of human behaviour. The cognitive architecture

approach is said to be different from multi-agent approach in the following manners (Langley et al.,

2009):

 cognitive architecture comes with a programming formalism to encode knowledge and

associates it with its interpreter,

 it has strong assumptions on the representation of knowledge and the processes that operate

on them,

TRANSACTIONS ON SCIENCE AND TECHNOLOGY 2014. Vol. 1, No 1, pp 18-35 DECEMBER 2014 /30

 it assumes a modular representation of knowledge,

 it offers intelligent behavior at the systems level, rather than at the level of component

methods designed for specialized tasks, and

 it provides a unified approach in which a common set of representations and mechanisms

reduces the need for such careful crafting.

Cognitive architectures are used to construct intelligent system/agent that models human

performance (Newell, 1990; Meyer & Kieras, 1997). Thisunderlying cognitive architecture should

typically possess the characteristics of (Langley et al., 2009):

 short and long-term memories for storing the agent’s beliefs, goals, and knowledge,

 representation of memories and their organization, and

 functional processes that operate on these structures.

Memory and learning are the two important key components in developing cognitive

architecture. The combination of these two components form a taxonomy of three main categories of

cognitive agent architecture namely symbolic, emergent, and hybrid models (Duch et al., 2008) (see

Figure 10). Symbolic architecture is a classical AI top-down analytical approach that focuses on

information processing by using high-level symbols or declarative knowledge. Examples of cognitive

symbolic architecture are SOAR (Laird et al., 1987; Newell, 1990), EPIC (Meyer & Kieras, 1997),

ICARUS (Langley, 2005). SOAR is a platform created to demonstrate general intelligence behaviour.

The platform is based on symbolic representation which utilizes operator associated to problem space

in production rules. This approach is referred as procedural long term knowledge. The platform has

been used to develop many of the applications including expert system, intelligent control, and human

behaviour interaction simulation. SOAR platform can also be viewed as a theory of general

intelligence or as theory of human cognition. The architecture is based on human problem solving and

unified theory of cognition. The theory of the architecture is that the unification of different theories

or overlap theories without conflict can produce general intelligence behaviour with appropriate

learning mechanism.

A bottom-up approaches which differentiates it from the symbolic architecture is adopted in

emergent architecture whereby low-level activation signals flowing through a network consisting of

numerous processing units is used. IBCA (O'Reilly et al., 1999), Cortonis (Hecht-Nielsen, 2007),

NuPIC (Hawkins & Blakeslee, 2004) are a few of the systems under the category of emergent

architecture. IBCA is based on the working memory as controlled processing on how the components

in brain dynamically interact with each other to bring about the cognition function. The emergent

property of the dynamic interactions of the components contributes the working model of IBCA.

There are several important components in IBCA and each has own specific function namely the

posterior perceptual and motor cortex (PMC) which are responsible for the sensor and motor

processing based on inference and generalization. The prefrontal cortex (PFC) is responsible for

TRANSACTIONS ON SCIENCE AND TECHNOLOGY 2014. Vol. 1, No 1, pp 18-35 DECEMBER 2014 /31

dynamic and active memory and hippocampus (HCMP) is in charge of the rapid learning of arbitrary

information.

Hybrid architecture is the combination of the symbolic and emergent paradigms. Examples in

this category of hybrid architectures are ACT-R (Anderson & Lebiere, 2003), CLARION (Sun &

Alexandre, 1997; Sun et al., 2001) and LIOA (Franklin, 2006). ACT-R is one of the earliest

developed cognitive architecture which is based on the modeling of human behaviour. ACT-R is

organized into of a set of modules namely, sensory module, motor module, intentional module and

declarative module. Each module has a temporary storage which holds the short term memory. A

long-term memory is achieved through the combination of these modules. The action selection is

based on the utility calculation, in which the highest utility actions are selected.Figure 10 shows the

taxonomy of cognitive architecture based on the two important design properties which are memory

and learning.

Figure 10: Taxonomy of Cognitive Architectures (Duch et al., 2008)

Hybrid architecture is the combination of the symbolic and emergent paradigms. Examples in

this category of hybrid architectures are ACT-R (Anderson & Lebiere, 2003), CLARION (Sun &

Alexandre, 1997; Sun et al., 2001) and LIOA (Franklin, 2006). ACT-R is one of the earliest

developed cognitive architecture which is based on the modeling of human behaviour. ACT-R is

organized into of a set of modules namely, sensory module, motor module, intentional module and

declarative module. Each module has a temporary storage which holds the short term memory. A

long-term memory is achieved through the combination of these modules. The action selection is

based on the utility calculation, in which the highest utility actions are selected. Figure 10 shows the

taxonomy of cognitive architecture based on the two important design properties which are memory

and learning.

TRANSACTIONS ON SCIENCE AND TECHNOLOGY 2014. Vol. 1, No 1, pp 18-35 DECEMBER 2014 /32

Conclusion

Agent architecture is the key component to constructing agent. It acts as the brain and heart of the

agent to reason and perform action based on its knowledge base. This paper provides the state of the

art of agent architecture. It outlined four main agent architectures: logic, reactive, BDI and layered

architecture. Apart from these four, the cognitive architecture which is based on the human behaviour

is another architecture that is widely adopted in building multi-agent system. Many of the foundations

of cognitive architecture rest on the theories in cognitive sciences domain. The adoption semantic web

technology to enhance the cognitive architecture in analyzing human behaviour will be a very

interesting area to explore. Finally, the semantic technology adoption into agent architecture is also

another interesting topic that should be studied as well. For future work, we would like to draw on

these preliminary reviews to study the potential of a new agent architecture that uses semantic web

technology to enable agent to process the information in a more meaningful way that will in turn

improve its decision making which closely mimics the human reasoning process.

Acknowledgements

This project is funded by the Ministry of Higher Education, Malaysia under FRG0303-TK-1-2012.

References

Agre, P. & Chapman, D. 1987. PENGI: An implementation of a theory of activity. In Proceedings of the Sixth

National Conference on Artificial Intelligence (AAAI-87), 268-272, Seattle, WA.

Ambros-Ingerson, J. & Steel, S. 1988. Integrating planning, execution and monitoring. In: Proceedings of the

Seventh National Conference on Artificial Intelligence (AAAI-88), 83-88, St. Paul, MN.

Amir, E. & Maynard-Reid, P. 2000. Logic-based subsumption architecture: Empirical evaluation, in

Proceedings of the AAAI Fall Symposium on Parallel Architectures for Cognition.

Amir, E. & Maynard-Reid, P. 2004. Logic-based subsumption architecture. Artificial Intelligence, 153:167-237.

Anderson, J. 1976. Language, Memory and Thought. Hillsdale, NJ: Erlbaum Associates.

Anderson, J. R. & Lebiere, C. 2003. The Newell test for a theory of cognition. Behavioral and Brain Science 26:

587-637.

Berges, I., Bermúdez, J., Goñi, A. & lllarramendi, A. 2008. Semantic Web Technology for Agent

Communication Protocols, The Semantic Web: Research And Applications Lecture Notes in Computer

Science, Volume 5021/2008:5-18.

Berners-Lee, T. 1999. Weaving the Web. Orion Business, London.

Berners-Lee, T., Hendler, J. & Lassila, O. 2001. The Semantic Web. Scientific American, May 2001, 28-37.

Bratman, M. E. 1987. Intentions, Plans, and Practical Reason. Harvard University Press: Cambridge, MA.

Bratman, M. E., Israel, D. J. & Pollack, M. E. 1988. Plans and resource-bounded practical reasoning.

Computational Intelligence 4:349-355.

Brooks, R. A. 1986. A robust layered control system for a mobile robot. IEEE Journal of Robotics and

Automation, 2(1):14-23.

Brooks, R. A. 1991a. Intelligence without reason. In Proceedings of the Twelfth International Joint Conference

on Artificial Intelligence (IJCAI-91), 569-595, Sydney, Australia.

Brooks, R. A. 1991b. Intelligence without representation. Artificial Intelligence, 47:139-159.

TRANSACTIONS ON SCIENCE AND TECHNOLOGY 2014. Vol. 1, No 1, pp 18-35 DECEMBER 2014 /33

Chapman, D. & Agre, P. 1986. Abstract reasoning as emergent from concrete activity. In Georgeff, M. P. and

Lansky, A. L., editors, Proceedings of the Reasoning About Actions &Plans, 411-424. Morgan

Kaufmann Publishers: San Mateo, CA.

Cohen, P. R., Greenberg, M. L., Hart, D. M. & Howe, A. E. 1989. Trial by fire: Understanding the design

requirements for agents in complex environments. AI Magazine 10(3): 32-48.

Comuzzi, M., Kritikos, K., & Plebani, P. 2009. A Semantic Based Framework for Supporting Negotiation in

Service Oriented Architectures. IEEE Conference on Commerce and Enterprise Computing, 2009.

CEC '09, 137-145, 20-23 July.

d’Inverno, M., Kinny, D., Luck, M. & Wooldridge, M. 1998. A Formal Specification of dMARS. In Singh,

M.P., Rao, A.S. and Wooldridge, M. (eds), Intelligent Agents IV: Proceedings of the Fourth

International Workshop on Agent Theories, Architectures, and Languages, 155–176, Springer.

Doran, J. E., Franklin, S., Jennings, N. R. & Norman, T. J. 1997. On Cooperation in Multi-Agent Systems. The

Knowledge Engineering Review, 12(3): 309-314.

Duch, W., Oentaryo, R. J. & Pasquier, M. 2008. Cognitive Architectures: Where do we go from here? In

Proceedings of the 2008 conference on Artificial General Intelligence, Pei Wang, Ben Goertzel, and

Stan Franklin (Eds.). 122-136. IOS Press, Amsterdam, Netherland.

Durfee, E. H. & Rosenschein, J. S. 1994. Distributed problem solving and multiagent systems: Comparisons and

examples. In Klein, M. editor, Proceedings of the 13th International Workshop on DAI, 94-104,

LakeQuinalt, WA.

Erdur, R. C. & Seylan, I. 2008. The design of a semantic web compatible content language for agent

communication. Expert Systems 25(3): 268-294.

Etzioni, 0. Lesh, N. & Segal, R. 1994. Building softbots for UNIX. In: Etzioni, 0. (ed.) Software Agents-Papers

from the 1994 Spring Symposium (Technical Report SS-94-03), 9-16, AAAI Press.

Ferguson, I. A. 1992. TouringMachines: An Architecture for Dynamic, Rational, Mobile Agents. PhD thesis,

Clare Hall, University of Cambridge, UK.

Fikes, R. E. & Nilsson, N. 1971. STRIPS: A new approach to the application of theorem proving to problem

solving. Artificial Intelligence, 5(2): 189-208.

Franklin, S. 2006. The LIDA architecture: Adding new modes of learning to an intelligent, autonomous,

software agent. In Proceeding of the International Conference on Integrated Design and Process

Technology. San Diego, CA.

Genesereth, M. R. & Ketchpel, S. P. 1994. Software Agents. Communications of the ACM, Vol. 37, No. 7: 48-

53.

Georgeff, M. P. & Lansky, A. L. 1986. Reasoning About Actions & Plans. Proceedings of the 1986 Workshop.

Morgan Kaufmann Publishers: San Mateo, CA.

Hawkins, J. & Blakeslee, S. 2004. On intelligence: How a New Understanding of the Brain will Lead to the

Creation of Truly Intelligent Machines. Times Books.

Hecht-Nielsen, R. 2007. Confabulation Theory: The Mechanism of Thought. Springer.

Howden, N., Ronnquist, R., Hodgson, A. & Lucas, A. 2001. JACK Intelligent Agents – Summary of an Agent

Infrastructure. In Proceedings of the 5th International Conference on Autonomous Agents.

Huber, M. 1999. JAM: A BDI-Theoretic Mobile Agent Architecture. In Proceedings of the 3rd International

Conference on Autonomous Agents, 236–243, New York, NY.

Jennings, N. R. 1993. Specification and implementation of a belief desire joint-intention architecture for

collaborative problem solving. Journal of Intelligent and Cooperative Information Systems, 2(3):289-

318.

Kaelbling, L. P. 1991. A situated automata approach to the design of embedded agents. SIGART Bulletin,

2(4):85-88.

Kaelbling, L. P. & Rosenschein, S. J. 1990. Action and planning in embedded agents. In Maes, P., editor,

Designing Autonomous Agents, 35-48. The MIT Press: Cambridge, MA.

Laird, J. E., Rosenbloom, P. S., & Newell, A. 1987. Soar: An architecture for general intelligence. Artificial

Intelligence 33: 1-64.

TRANSACTIONS ON SCIENCE AND TECHNOLOGY 2014. Vol. 1, No 1, pp 18-35 DECEMBER 2014 /34

Langley, P. 2004. An cognitive architectures and the construction of intelligent agents. In Proc. Workshop on

Intelligent Agent Architectures, 82. Stanford, CA.

Langley, P. 2005. An adaptive architecture for physical agents. In Proc. of the 2005 IEEE/WIC/ACM Int. Conf.

on Intelligent Agent Technology. Compiegne, France: IEEE Computer Society Press, 18-25.

Langley, P., Laird, J. E. & Rogers, S. 2009. Cognitive architectures: Research issues and challenges. Cognitive

Systems Research 10(2): 141-160.

Leyton-Brown, K. E. 2003. Resource Allocation in Competitive Multiagent Systems. Ph.D. Dissertation.

Stanford University, Stanford, CA, USA.

Neches, R., Langley, P., & Klahr, D. 1987. Learning, development, and production systems. In D. Klahr, P.

Langley, & R. Neches (Eds.), Production system models of learning and development. Cambridge,

MA: MIT Press.

Newell, A. 1973. Production systems: Models of control structures. In W. G. Chase (Ed.), Visual information

processing. New York: Academic Press.

Newell, A. 1990. Unified Theories of Cognition: Harvard University Press.

Newell, A. & Simon, H. A. 1976. Computer science as empirical enquiry. Communications of the ACM 19: 113-

126.

Maes, P. 1989. The dynamics of action selection. In Proceedings of the Eleventh International Joint Conference

on Artificial Intelligence (IJCAI-89), 991-997, Detroit, MI.

Maes, P. 1990. Situated agents can have goals. In Maes, P., editor, Designing Autonomous Agents, pages 49-70.

The MIT Press: Cambridge, MA.

Maes, P. 1991. The agent network architecture (ANA). SIGART Bulletin, 2(4):115-120.

Maes, P. 1997. On Sofware Agents: Humanizing The Global Computer," Internet Computing, IEEE, vol.1, no.4:

10-19.

Meyer, D. E. & Kieras, D. E. 1997. A computational theory of executive cognitive processes and multiple-task

performance: Part 1. Basic mechanisms. Psychological Review, 104(1):3-65.

Muller, J. P. & Pischel, M. 1993. The Agent Architecture InteRRaP: Concept and Application, DFKI

Saarbrucken.

Munir, M., Mathieu, V., Thomas, M. & Stefan, B. 2011. A Layered Manufacturing System Architecture

Supported with Semantic Agent Capabilities. In Atilla, E., Mamadou, K. & Mehmet, O. Semantic

Agent Systems: Studies in Computational Intelligence., 215-242, Springer Berlin pp

O'Reilly, R. C., Braver, T. S. & Cohen J. D. 1999. A biologically-based computational model of working

memory. In A. Miyake & P. Shah (Eds.), Models of Working Memory. 375-411, Cambridge University

Press

Pozna, C., Precup, R. E., Kovacs, J. & Foldesi, P. 2011. Cooperation in multiagent systems. 9th International

Symposium on Intelligent Systems and Informatics (SISY). IEEE. 195-200. Sept.

Rao, A. S. & Georgeff, M. P. 1991. Modeling rational agents within a BDI-architecture. In Fikes, R. and

Sandewall, E., editors, Proceedings of Knowledge Representation and Reasoning (KR&R-91), 473-

484. Morgan Kaufmann Publishers: San Mateo, CA.

Rosenschein, S. 1985. Formal theories of knowledge in AI and robotics. New Generation Computing, 345-357.

Rosenschein, S. & Kaelbling, L. P. 1986. The synthesis of digital machines with provable epistemic properties.

In Halpern, J. Y., editor, Proceedings of the 1986 Conference on Theoretical Aspects of Reasoning

About Knowledge, 83-98. Morgan Kaufmann Publishers: San Mateo, CA.

Russell, S. & Norvig, P. 1995. Artificial Intelligence: a Modem Approach. Prentice-Hall, Englewood Cliffs, NJ.

Sadaf, A., Amal, T., Amna, B. & Sergio, C. 2009. Semantic Agent Oriented Architecture for Researcher

Profiling and Association (SemoRA). IEEE/WIC/ACM International Joint Conferences on Web

Intelligence and Intelligent Agent Technologies. vol.3, 559-562, 15-18 Sept.

Shardlow, N, 1990. Action and agency in cognitive science. Master's thesis. Department of Psychology,

University of Manchester, Oxford Road, Manchester MI3 9PL, UK.

Shoham, Y. & Leyton-Brown, K. 2008. Multiagent Systems - Algorithmic, Game-Theoretic, and Logical

Foundations. Cambridge University Press.

TRANSACTIONS ON SCIENCE AND TECHNOLOGY 2014. Vol. 1, No 1, pp 18-35 DECEMBER 2014 /35

Steels, L. 1990. Cooperation between distributed agents through self organization. In Demazeau, Y. and Müller,

J.-P., editors, Decentralized AI - Proceedings of the First European Workshop on Modelling

Autonomous Agents in Multi-Agent Worlds (MAAMAW-89), pages 175-196. Elsevier Science

Publishers B.V.: Amsterdam, Netherlands.

Sun, R. & Alexandre, F. 1997. Connectionist symbolic integration. Hillsdale, NJ: Erlbaum.

Sun, R., Merrill, E. & Peterson, T. 2001. From implicit skills to explicit knowledge: A bottom-up model of skill

learning. Cognitive Science, 25(2): 203-244.

Togelius, J. 2003. Evolution of the layers in a subsumption architecture robot controller. Dissertation for the

Master of Science. University of Sussex

Vere, S. & Bickmore, T. 1990. A basic agent. Computational Intelligence 6:41-60.

WeiB, G. (ed.). 1999. Multi-Agent Systems. MIT Press, Cambridge, MA.

Wooldridge, M. 2001. Introduction to Multiagent Systems. 1
st
 Edition. John Wiley & Sons, Inc., New York,

NY, USA.

Wooldridge, M. 2009. An Introduction to Multiagent Systems. 2
nd

 Edition. John Wiley & Sons, Inc., New York,

NY, USA.

Wooldridge, M. & Jennings, N. R. 1995. Intelligent agents: theory and practice. The Knowledge Engineering

Review, 10(2): 115-152

Wooldridge, M & Parsons, S. 1998. Intention Reconsideration Reconsidered. In Proceedings of the 5th

International Workshop on Intelligent Agents V, Agent Theories, Architectures, and Languages

(ATAL '98), Jörg P. Müller, Munindar P. Singh, and Anand S. Rao (Eds.). Springer-Verlag, London,

UK, UK, 63-79.

Wood, S. 1993. Planning and Decision Making in Dynamic Domains. Ellis Horwood.

Yu, C.H., Werfel, J. & Nagpal, R. 2010. Collective decision-making in multi-agent systems by implicit

leadership. In Proceedings of the 9th International Conference on Autonomous Agents and Multiagent

Systems: volume 3 - Volume 3 (AAMAS '10), Vol. 3. International Foundation for Autonomous

Agents and Multiagent Systems, Richland, SC, 1189-1196.

Zhai, S. P. 2011. A semantic negotiation model for service property value between service agents. 3rd

International Conference on Advanced Computer Control (ICACC), 552-556, 18-20 Jan.

