
Agent Architecture Considerations for Real-Time Planning in Games
Jeff Orkin

Monolith Productions, Inc.
jorkin@blarg.net

Abstract

Planning in real-time offers several benefits over the
more typical techniques of implementing Non-Player
Character (NPC) behavior with scripts or finite state
machines. NPCs that plan their actions dynamically
are better equipped to handle unexpected
situations. The modular nature of the goals and
actions that make up the plan facilitates re-use,
sharing, and maintenance of behavioral building
blocks. These benefits, however, come at the cost of
CPU cycles. In order to simultaneously plan for
several NPCs in real-time, while continuing to share
the processor with the physics, animation, and
rendering systems, careful consideration must taken
with the supporting architecture. The architecture
must support distributed processing and caching of
costly calculations. These considerations have
impacts that stretch beyond the architecture of the
planner, and affect the agent architecture as a
whole. This paper describes lessons learned while
implementing real-time planning for NPCs for
F.E.A.R., a AAA first person shooter shipping for PC
in 2005.

Introduction

Planning in real-time is an alternative to the more common
techniques of modeling character behavior with scripts or
finite state machines (FSMs). Rather than traversing a
predefined graph of state transitions, a planning Non-
Player Character (NPC) searches for a sequence of actions
to satisfy some goal.

(Orkin 2004) details the three main benefits of
planning for game developers. NPCs that plan in real-time
are better equipped to handle unexpected situations. Goals
and actions provide modular building blocks of behavior
that are easier to share, re-use, and maintain. The planning
architecture provides separation between the data and
implementation that maps well to the workflow of game
development teams. These benefits, however, come at the
cost of CPU cycles.

In this paper, we discuss considerations that must be
taken into account when designing the agent architecture
for NPCs that plan in real-time. These considerations are
lessons learned over the past two years developing a
planning-based AI for F.E.A.R. (Monolith 2005a), a AAA
first person shooter shipping for PC in 2005.

In order for multiple NPCs to plan in real-time while
sharing the processor with the animation, rendering and

Copyright © 2004, American Association for Artificial Intelligence
(www.aaai.org). All rights reserved.

physics systems, NPCs need to minimize the number of
planner search iterations and keep precondition evaluations
as light weight as possible. We accomplished this by
distributing the processing of costly preconditions over
many frames, and caching results for the planner to inspect
on-demand. Distributed processing and caching have
impacts that extend far beyond the planner, affecting the
agent architecture as a whole. Planning in real-time
requires careful consideration of every aspect of the agent
architecture.

Gameplay Description

Core gameplay in F.E.A.R. involves combat with between
four and eight human, robotic, or supernatural enemies at a
time. The upper limit on the number of characters is bound
by the renderer. Humans form squads to advance in cover,
suppress and flank, and search in formation. Less-than-
human enemies work alone, cloaking, sticking to walls,
lunging from the shadows, and leaping into the ceiling to
ambush again. All of the combat behavior is performed by
NPCs planning actions to satisfy goals. Squads behaviors
are not directly implemented with the planner, but squads
delegate tasks to NPCs, which they accomplish by
planning actions. Squad members may autonomously
choose to satisfy a higher priority goal rather than
responding to the squad’s task. For instance, an NPC will
choose to run from a grenade to save his own life, rather
than holding position and laying suppression fire to cover
an ally.

Agent Architecture

Our agent architecture resembles the MIT Media Lab’s C4
(Burke et al. 2001). An agent is composed of a
blackboard, working memory, a handful of subsystems,
and some number of sensors. Sensors detect changes in
the world, and deposit these perceptions in dynamic
working memory. The planner uses these perceptions to
guide its decision-making, and ultimately communicates
instructions to subsystems through the blackboard.
Subsystems include the targeting, navigation, animation,
and weapons systems.

Sensors perceive external visible and audible stimuli,
as well as internal stimuli such as pain and desires. Some
sensors are event-driven while others poll. Event-driven
sensors are useful for recognizing instantaneous events like
sounds and damage. Polling works better for sensors that
need to extract information from the world. For example, a
sensor may generate a list of potential tactical positions.

All knowledge generated by sensors is stored in working
memory in a common format called a
WorkingMemoryFact.

The decision-making mechanism is the primary
difference between our architecture and C4, as we have
replaced C4’s “Action Tupples” with a real-time planner.
When the sensors detect significant changes in the state of
the world, the agent re-evaluates the relevance of his goals.
Only one goal may be active at a time. When the most
relevant goal changes, the agent uses the planner to search
for the sequence of actions that will satisfy the goal. The
planner validates action preconditions with
WorkingMemoryFacts. An action activates by setting
values on member variables of the blackboard.
Subsystems update at some constant rate, and change their
behavior according to instructions placed on the
blackboard. For example, the GotoTarget action sets a
new destination on the blackboard. The following update,
the navigation system responds by finding a path to the
new destination.

Distributed Processing

While searching for a sequence of actions to satisfy a goal,
the planner needs to validate each candidate action’s
preconditions. Some of these preconditions may be costly
to compute, relying on ray intersection or pathfinding
procedures. The planner needs to complete the entire
search within one frame without interrupting the overall
performance of the game, so it cannot afford to do costly
computations on-demand. Instead, we use sensors to
amortize the cost of these expensive computations over
many frames, and cache results in working memory.

An NPC may have any number of sensors. Each
sensor updates every frame if necessary, but many update
less frequently or only in response to an event. Sensors
perform ray intersection tests, pathfinding, and other
expensive operations such as sorting or analyzing tactical
positions. SensorSeeEnemy is an example of a sensor
that remains dormant until some visual stimuli arrives, at
which time the sensor performs a ray intersection test.
SensorNodeCombat is a sensor that polls the world
three times per second, searching for potential places to
hide or fire from covered positions. This sensor collects a
list of potentially valid nodes, and then sorts them based on
their distance from the NPC. Validity is based on radii
associated with the nodes that must contain the NPC’s
current target.

Initially, we only allowed NPCs to update one sensor
per agent update. This kept the processing load as light as
possible, but we discovered that this was too restrictive,
resulting in noticeably delayed reactions. We found a
better solution is to give the sensor’s update routine a
Boolean return value, and return true only if the sensor has
performed a significant amount of work. It is up to the

programmer to determine what fits this criterion. Each
frame, the NPC iterates over the sensors that do not need to
update every frame, and continues to allow sensors to
process until one returns true. All sensors that have an
update rate of 0.0 update every frame, so these sensors
generally perform lightweight operations.

In addition to evenly distributing the processing of
multiple tasks, we also use sensors to incrementally
process a single large task over many frames. When an
NPC discovers a threat along the path to his current tactical
destination, he crouches in place and re-evaluates possible
destinations. Each frame, the PassTarget sensor finds
the path to a known tactical position, and determines if the
path is clear from danger. This process is repeated every
frame until a safe route to a tactical position can be found.
Distributed processing of sensors allows us to add
intelligence to our NPCs that we could not previously
support, due to the prohibitive cost of computing multiple
paths per frame.

Constantly processing sensors certainly leads to more
total processing than a system relying on lazy evaluation,
but the overall load is more consistent and controlled.
Sensors provide the planner with a constant stream of up-
to-date data, eliminating the need for the planner to burden
the CPU with processing beyond what is required by the
search for a valid plan.

Caching

Sensors cache perceptions in working memory, in the form
of WorkingMemoryFacts. All types of knowledge are
stored in this common format. A WorkingMemoryFact
is a record containing a set of associated attributes.
Different subsets of attributes are assigned depending on
the type of knowledge the fact represents. We have ten
possible types of knowledge, including Character,
Object, Disturbance, Task, PathInfo, and
Desire Facts.

A Fact record contains a total of 16 member attributes.
The most commonly assigned attributes are the position,
direction, stimulus type, object handle, and update time.
Each attribute has an associated confidence value that
ranges from 0.0 to 1.0. Below is a pseudo-code
representation of a WorkingMemoryFact:

WorkingMemoryFact
{
 Attribute<Vector3D> Position

Attribute<Vector3D> Direction
Attribute<StimulusType> Stimulus
Attribute<Handle> Object

 Attribute<float> Desire
 ...
 float fUpdateTime
}

Where each Attribute looks like this:

Attribute<Type>
{
 Type Value
 float fConfidence
}

Confidence Values

The meaning of the confidence value associated with each
attribute varies widely, but is unified conceptually.
Confidence may represent an NPC’s current stimulation,
proximity to some object, or degree of desire. When
applied to the Stimulus attribute, confidence represents
how confident the NPC is that he is sensing some stimulus.
For example, the confidence of a Character Fact’s
Stimulus attribute indicates the current level of visual
stimulation that the NPC is aware of for this character.
The confidence associated with the Position attribute
represents the NPC’s confidence in this location as a
destination. A sensor that searches for tactical positions
uses the confidence value of the Position attribute to
indicate how close the node is to the NPC. The sensor
sorts the nodes by distance and normalizes the confidence
values to fall between 0.0 and 1.0. The node with the
highest positional confidence is the closest. The intensity
of an NPC’s Desire attribute is characterized by his
confidence that he is feeling this desire. The confidence
value of a Desire Fact’s Desire attribute indicates the
NPC’s current urge to satisfy some desire.

The planner can take advantage of the consistent
knowledge representation and associated confidence values
while validating preconditions. Working memory provides
generic query functions to search for a matching Fact, a
count of matching Facts, or a Fact with the maximum
positional or stimulus confidence. Using this consistent
interface, the planner can query working memory for the
nearest tactical position, or the most visible enemy.

Centralized Knowledge

Caching all knowledge in a consistent format does not
directly improve the efficiency of the planner, but rather
provides a means of a global optimization. Facts could be
hashed into bins based on the type of knowledge, or sorted
in some manner. At a minimum, the most recently or most
frequently accessed Fact could be cached for immediate
retrieval. We did not find linear searches through working
memory to be a performance bottleneck, so we did not
apply any optimizations. As the number of Facts scales, it
may be worthwhile to pursue query optimization.

Centralizing knowledge in working memory or on the
blackboard provides the NPC with a persistent context that
is often lost in FSM or scripted systems, as the NPC

transitions between states or scripts. For instance, if the
NPC eliminates a threat, he can immediately query
working memory to determine who to target next. If the
NPC stops climbing a ladder to fire at someone below, the
knowledge that he was in the process of climbing a ladder
persists on the blackboard. If knowledge is instead stored
in member variables of states or scripts, information is
often lost when an NPC’s behavior changes.

Garbage Collection

One notable issue that caching introduces is that of garbage
collection. Over the course of the game, working memory
fills up with Facts that may be no longer useful to the NPC.
It is unclear who is responsible for cleaning out irrelevant
facts. Some of our sensors take the C++ approach to
garbage collection, where the creator is responsible for
destroying the Facts that it deposited. For instance,
SensorNodeCombat clears existing Facts about tactical
positions from working memory before creating new ones.
This scheme does not work as well for sensors like
SensorHearDisturbance, which creates Facts for
each disturbance detected, and waits for the planner to
respond by sending the NPC to investigate, and then clear
Disturbance Facts upon completion. We left it in the
programmer’s hands to clean up Facts in different ways on
a case by case basis. A safer approach may be to assign an
expiration time to all Facts, and collect garbage
periodically. Subsystems could extend expiration times
where necessary.

Lightweight Planning

Outsourcing costly operations to sensors relieves the
planner of much of the processing burden while searching.
The planner’s search operation itself is the last obstacle in
reliably planning fast enough for real-time. We have taken
a number of steps to minimize the search space, and
optimize precondition validation.

We minimize the search space by placing strict
limitations on the representation of action preconditions
and effects. Preconditions and effects are represented
symbolically, as a fixed sized array of key-value pairs.
Appendix B contains a complete listing of our enumerated
symbols, which are paired with four byte values. The
value may be an integer, float, bool, handle, enum, or a
reference to another symbol. The planner uses the
precondition symbols to minimize the search space to only
those actions that have effects matching the preconditions
existing in the plan generated so far. In other words, the
search only takes potentially fruitful branches rather than
testing every combination of actions. Actions are stored in
a hash table sorted by the effect symbols, so the planner
can instantly find a list of candidates to satisfy some
precondition. One action may be referenced by multiple
hash table bins if it has multiple effects.

In addition to the symbolic preconditions, we further
prune the search tree with “context preconditions.”
Actions may optionally provide a context precondition
validation function of arbitrary code to prevent the action
from further consideration. This validation function is
where the planner queries values cached in working
memory, or on the blackboard. For example, an NPC
reacting to a disturbance checks his working memory to
determine which disturbances he is aware of. If the NPC
has detected a dangerous disturbance like an incoming
grenade, he will consider the ReactToDanger or
EscapeDanger actions, rather than the
InspectDisturbance or LookAtDisturbance
actions. All four of these actions have the symbolic effect
of setting the DisturbanceExists symbol to false.
An action may also have a context effect function, which
runs arbitrary code after the action completes execution.

The planner represents its view of the current state of
the world using the same array structure as that used to
represent symbolic preconditions and effects. This makes
it trivial to validate any precondition. We index the array
by the enumerated symbols, so we can instantly determine
if the planner believes that WeaponArmed is true, or
AtNode equals “node66” in the current world state.

Storing the symbols in a fixed sized array of key-value
pairs does restrict preconditions and world state
representation in several ways. First, we have no means of
describing who a symbol refers to. Next, preconditions are
limited to a conjunction of clauses. Each symbol may only
be used in one clause of an action’s complete precondition
expression. Finally, the total number of unique symbols
needs to be managed, to minimize memory consumption
since each node of the search tree contains a copy of the
state of the world determined so far.

In our initial prototype, we tried to support more
arbitrary precondition expressions, but were unable to get
the required performance. We thought it might be useful
to be able to express preconditions like:

((Bob AtNode “node33”) ^

(Joe AtNode “node43”)) V
(Bill AtNode “node99”)

Allowing variable numbers of clauses with repeated

symbols led to dynamic memory allocations and slower
precondition validation. With the fixed sized array
indexed by symbol, we get instant look-ups of any value.
Evaluating an arbitrary expression requires either
interpreting expressions at runtime, or walking compiled
expression trees. We developed strategies to work within
the limitations of a fixed array of symbols, and have not
found that these limitations to cause problems. It is
possible that the limitations may be more problematic for
other genres of games.

Our primary strategy for dealing with our limitations
is the adoption of an “agent centric” representation. All
symbols describe properties relative to the agent himself.
This relieves us from having to keep track of who is
associated with each symbol. An NPC does not need to
consider the health of every potential enemy inside the
planner. All that matters is finding a plan that satisfies
TargetIsDead. Subsystems are responsible for the
details. The target selection subsystem is responsible for
constantly identifying the current target out of the known
threats cached in working memory.

We deal with the limited total number of symbols by
keeping each symbol as general as possible. Many
symbols have evolved over the course of two years of
development as needed. For instance,
ReactedToDamage evolved from a Boolean symbol
into ReactedToEvent, which describes an enumerated
value for the event that the NPC reacted to.

Planning with A*

The planner conducts the actual search by running the A*
algorithm. Using A* allows us to leverage the wealth of
published optimizations developed for navigational path
planning (Higgins 2002). Plus, A* supports guiding the
search with heuristics and cost metrics. Our heuristic aims
to minimize the number of unsatisfied symbols in the goal
state. We apply a cost to actions to force A* to consider
more specific actions before more general ones. For
instance, try to AttackFromCover before the general
purpose Attack.

Our use of A* is easiest to describe with a brief
example. An NPC who wants to satisfy the KillEnemy
goal needs to formulate a plan that results in setting the
TargetIsDead symbol to true. All other symbols in the
goal state are initially unset, as they are irrelevant to
satisfying KillEnemy.

A* calculates the heuristic distance to the goal state as
1.0, because we have one unsatisfied symbol, and the
actual distance so far is 0.0. The planner finds two
candidate actions that have the effect of setting
TargetIsDead to true: Attack and
AttackFromCover. Both of these actions have a
precondition that WeaponLoaded is true, but this is
already the case, so this precondition symbol is ignored.
AttackFromCover has an additional precondition that
AtNodeType equals kNode_Cover.

When the planner computes the distances from these
candidate actions, both have an actual distance of 1.0, but
AttackFromCover has a heuristic distance of 1.0 while
Attack’s heuristic distance is 0.0. This is due to the
extra precondition symbol on AttackFromCover. The
planner validates the cheapest plan formulated so far, and
finds that the single Attack action is a valid plan for
satisfying the KillEnemy goal.

We would like NPCs look intelligent by preferring to
take cover before firing. Associating a cost with each
action makes this possible. By giving the generic Attack
action a cost of 5.0, while the other actions remain at the
default cost of 1.0, we can guide A* towards our preferred
plan. When we factor in the cost per action, the one step
Attack plan has an actual distance of 5.0, while the
actual distance of the two step plan GotoNode,
AttackFromCover is 2.0. The NPC will fire from
cover if possible.

Planning and Dynamic Behavior

The complexity added by distributed processing, caching,
and planning is only worthwhile if it results in noticeably
more dynamic behavior. NPCs that plan in real-time can
handle subtlety and dependencies, and the biggest benefit
comes from the ability to re-plan.

Subtlety

NPCs who detect that they are within the blast radius of
incoming grenades run away, or crouch and flinch. We
were surprised to find NPCs outside of the blast radius
turning their heads to watch the grenades land. We did not
intentionally implement this behavior. NPCs were trying
to satisfy the EscapeDanger goal, but found the actions
EscapeDanger and ReactToDanger were invalid
due to the distance from the NPC to the grenade. The NPC
found the next best candidate action,
LookAtDisturbance, to set the
DisturbanceExists symbol to false. This action was
intended for NPCs reacting to disturbance sounds, but
worked well as a reaction to distant flying grenades. These
nuances add depth to behavior, and fall out for free when
NPCs formulate their own plans in real-time.

Dependencies

The planner chains actions with other actions to satisfy
dependencies in the form of preconditions. Some of these
dependencies may originate from objects in the game
world. Invisible game objects placed by designers to
specify tactical positions may optionally have
dependencies on other objects. For instance, an NPC
needs to flip the table over before taking cover behind it.
The planner handles dependencies like this by chaining
additional actions. The final plan will look like this:

GotoNode(TableNode)
UseObject(Table)
GotoNode(NodeCover78)
AttackFromCover()

There is no limit to the number of dependencies that

can be chained. Perhaps an NPC will need to activate a

generator to turn on the power before operating a crane to
drop a cargo container that he can use for cover.

Re-Planning

Our final example of dynamic behavior puts all of the
pieces together while illustrating the power of re-planning.
An NPC’s SeeEnemy sensor detects a threat in a nearby
office, and adds a Character fact to working memory. The
target selection system responds to the new fact by
specifying a new target on the blackboard. The NPC re-
evaluates his goals, and selects KillEnemy as the most
relevant.

The NPC formulates a plan to GotoTarget and
Attack, using a melee weapon. While closing in on the
threat, the enemy slams the door to the office and blocks it
with his body. The closed door invalidates the path to the
target, in turn invalidating the GotoTarget action.

After re-evaluating his goals, the NPC determines that
TraverseLink is now the most relevant. He needs to
find a way to traverse the NavMeshLink containing the
door. He formulates a plan with a single action,
TraverseBlockedDoor. The NPC kicks the door, but
it still does not open. TraverseBlockedDoor has a
context effect function that records that the door is still
blocked in working memory.

The plan has completed, so the NPC once again re-
evaluates his goals. The TraverseLink goal is no
longer relevant due to the cached WorkingMemoryFact
indicating that the door in front of him is impassable. He
once again tries to satisfy the KillEnemy goal with the
plan GotoTarget and Attack. The path planner takes
into account the working memory fact indicating that the
door is impassable, and finds an alternate route. The NPC
runs around to the side of the office, dives through the
window, and attacks the enemy. Diving through the
window actually requires one more round of re-planning,
because the window is a NavMeshLink traversable with
the TraverseLink goal.

Future Work

Our experience applying real-time planning to games has
met or exceeded our goals. We have been able to produce
more dynamic behavior than previously possible with our
technology, while keeping the system modular,
maintainable, and reusable. In fact, we already have a
second game in development using the planning based AI
systems; Condemned for Xbox2 (Monolith 2005b). There
is plenty of room for improvement in future generations of
the system, however. Our planner has no scheduling
facility, so all ordering of actions has to be enforced
through more restrictive preconditions. This can lead to
less generic, reusable actions. We could benefit from the
introduction of a scheduler, enforcing orderings such as

DrawWeapon then GotoTarget, instead of
GotoTarget then DrawWeapon. We could also benefit
from adding a hierarchy to support compound actions.
There are situations where designers always want a
specific sequence of actions to occur, and it would be
much simpler to specify an unbreakable compound action
than to enforce a sequence of actions by chaining
preconditions and effects. Finally, we have only applied
planning to the actions of individual NPCs. In the future,
generating plans for squads of NPCs in real-time could
produce more dynamic, robust coordinated behaviors.

Appendix A: Symbols

kSymbol_AnimPlayed
kSymbol_AtNode
kSymbol_AtNodeType
kSymbol_AtTargetPos
kSymbol_DisturbanceExists
kSymbol_Idling
kSymbol_PositionIsValid
kSymbol_RidingVehicle
kSymbol_ReactedToWorldStateEvent
kSymbol_TargetIsAimingAtMe
kSymbol_TargetIsDead
kSymbol_TargetIsFlushedOut
kSymbol_TargetIsSuppressed
kSymbol_TraversedLink
kSymbol_UsingObject
kSymbol_WeaponArmed
kSymbol_WeaponLoaded

Appendix B: Actions

Animate
Attack
AttackFromNode
AttackFromVehicle
AttackGrenade
AttackGrenadeFromCover
AttackLunge
AttackMelee
AttackReady
BlindFireFromCover
DismountVehicle
DodgeRoll
DodgeShuffle
DrawWeapon
EscapeDanger
FlushOutWithGrenade
Follow
GetOutOfTheWay
GotoNode
GotoNodeOfType
GotoTarget
GotoValidPosition

HolsterWeapon
Idle
InspectDisturbance
InstantDeath
LookAtDisturbance
MountVehicle
ReactToDanger
Recoil
Reload
SuppressionFire
SurveyArea
TraverseBlockedDoor
TraverseLink
UseSmartObjectNode

References

AIISC of the AI SIG of the IGDA, http://www.igda.org/ai/

Higgins, D. 2002. How to achieve Lightning-Fast A*. AI
Game Programming Wisdom, 133-145. Hingham, Mass.:
Charles River Media.

Burke, R., Isla, D., Downie, M., Ivanov, Y., and Blumberg,
B. 2001. CreatureSmarts: The Art and Architecture of a
Virtual Brain. In Proceedings of the Game Developers
Conference, 147-166. San Jose, Calif.: International Game
Developers Association.

Mateas, M. and Stern, A. 2002. A Behavior Language for
Story-based Believable Agents. Working notes of Artificial
Intelligence and Interactive Entertainment. AAAI Spring
Symposium Series. Menlo Park, Calif.: AAAI Press.

Monolith Productions, Inc. 2005a. F.E.A.R.. Los Angeles,
Calif.: Vivendi Universal Games.

Monolith Productions, Inc. 2005b. Condemned.. San
Francisco, Calif.: Sega of America.

Nilsson, N. J. 1998. STRIPS Planning Systems. Artificial
Intelligence: A New Synthesis, 373-400. San Francisco,
Calif.: Morgan Kaufmann Publishers, Inc.

Orkin, J. 2003. Applying Goal-Oriented Action Planning
to Games. AI Game Programming Wisdom 2, 217-228.
Hingham, Mass.: Charles River Media.

Orkin, J. 2004. Symbolic Representation of Game World
State: Toward Real-Time Planning in Games. In AAAI
Challenges in Game AI Technical Report, 26-30. Menlo
Park, Calif.: AAAI Press.

Planning Domain Definition Language. 2002.
http://planning.cis.strath.ac.uk/competition/

