{: SCISPACE

formerly Typeset

@ Open access « Journal Article - DOI:10.1080/088395199117487
Agent-based approach for manufacturing integration: The CIIMPLEX experience
— Source link [

Yun Peng, Tim Finin, Yannis Labrou, R.S. Cost ...+4 more authors

Published on: 01 Jan 1999 - Applied Artificial Intelligence (Taylor & Francis Group)

Topics: Enterprise information system, Enterprise software, Enterprise integration, System integration and
Manufacturing execution system

Related papers:

« A multi-agent system for enterprise integration

« MetaMorph: An adaptive agent-based architecture for intelligent manufacturing

« Agent-Based Systems for Intelligent Manufacturing: A State-of-the-Art Survey

» The Contract Net Protocol: High-Level Communication and Control in a Distributed Problem Solver

» Guest editor of the special issue on Integration and Information in Networked Enterprises

Share thispaper: @ ¥ M &

View more about this paper here: https:/typeset.io/papers/agent-based-approach-for-manufacturing-integration-the-
57augdny83

https://typeset.io/
https://www.doi.org/10.1080/088395199117487
https://typeset.io/papers/agent-based-approach-for-manufacturing-integration-the-57augdny83
https://typeset.io/authors/yun-peng-1on5xn8xz8
https://typeset.io/authors/tim-finin-1fyripw86u
https://typeset.io/authors/yannis-labrou-14fbnjylvu
https://typeset.io/authors/r-s-cost-4mlpzmogyx
https://typeset.io/journals/applied-artificial-intelligence-1nheptp2
https://typeset.io/topics/enterprise-information-system-2gvfxvjn
https://typeset.io/topics/enterprise-software-1r4ljdj3
https://typeset.io/topics/enterprise-integration-1051tza9
https://typeset.io/topics/system-integration-19c9olrs
https://typeset.io/topics/manufacturing-execution-system-3gh02uru
https://typeset.io/papers/a-multi-agent-system-for-enterprise-integration-4naivtf3fe
https://typeset.io/papers/metamorph-an-adaptive-agent-based-architecture-for-41i3kd5m4e
https://typeset.io/papers/agent-based-systems-for-intelligent-manufacturing-a-state-of-2f3i0ph89u
https://typeset.io/papers/the-contract-net-protocol-high-level-communication-and-237lqg0ddq
https://typeset.io/papers/guest-editor-of-the-special-issue-on-integration-and-29g8pf53oh
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/agent-based-approach-for-manufacturing-integration-the-57augdny83
https://twitter.com/intent/tweet?text=Agent-based%20approach%20for%20manufacturing%20integration:%20The%20CIIMPLEX%20experience&url=https://typeset.io/papers/agent-based-approach-for-manufacturing-integration-the-57augdny83
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/agent-based-approach-for-manufacturing-integration-the-57augdny83
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/agent-based-approach-for-manufacturing-integration-the-57augdny83
https://typeset.io/papers/agent-based-approach-for-manufacturing-integration-the-57augdny83

An Agent-Based Approach for Manufacturing I ntegration
- The CIIMPLEX Experience*

Y. Peng, T. Finin, Y. Labrou, R. S. Cost
Department of CSEE

University of Maryland Baltimore County
Baltimore, MD 21250

(ypeng finin, jklabroy, rcostl@cs.umbc.eglu

B. Chu, J. Long, W. J. Tolone
Department of Computer Science
University of North Carolina
Charlotte, NC 28223
(billchu, tolong jlong@uncc.edy

A. Boughannam
IBM Corporation
Boca Raton, FL 33431
(akram@us.ibm.con

Abbreviated title: Agents for manufacturing integration

Mailing addressfor proofs. Yun Peng
Department of Computer Science and Electrical Engineering
University of Maryland Baltimore County
1000 Hilltop Circle
Baltimore, MD 21250. USA

Acknowledgment. This work is supported in part by the Advanced Technology Progdaninistered by the
National Institute of Standards and Technology under the agreenmbén¥ WANB6H2000.

ABSTRACT

The production management system used by most manufacturers today isedropri
disconnected planning and execution processes, and lacks the support fpeiatelity and
collaboration needed for enterprise-wide integration. This SWoatbften prevents the
manufacturer from fully exploring market opportunities in a timilghion. To address this
problem, we are exploring an agent-based approach to intelligent enterfgggatian. In this
approach, a set of agents with specialized expertise can be quickly assembled tibhhislp w
gathering of relevant information and knowledge, to cooperate with eachautthevith other
parts of the production management system and humans to arrive atdeunsipns in dealing
with various enterprise scenarios. The proposed multi-agent system,irigcited architecture
and implementation, are presented and demonstrated through an example intsgeat#wio

involving real planning and execution software systems.

1. Introduction

The production management system used by most of today’s manufactusassscoha set of
separate application softwares, each for a different part of the planning, suieduld
execution processes (Vollmaret, al., 1992)". For example, Capacity Analysis (CA) software
determines a Master Production Schedule that sets long-terdugbion targets. Enterprise
Resource Planning (ERP) software generates material and resource planslirgceeftware
determines the sequence in which shop floor resources (people, machines),rattgrare used
in producing different products. Manufacturing Execution System (ME&8ks real-time status

of work in progress, enforces routing integrity, and repatei/material claims. Most of these

#In the rest of the paper, these planning and execution applicatiomsoftystems are referred to as P/E
applications.

P/E applications are legacy systems developed over years. Although each of these software
systems performs well for its designated tasks, they are not equipped ® ¢t@mglex business
scenarios (Bermudez, 1996, Jennings al., 1996, Tennebauret al, 1993). Typically, such
scenarios involve coordination of several P/E applications to respond to exdevirahment
changes (price fluctuations, changes of requests from customers and suppliers, ete@jraid int
execution dynamics within an enterprise (resource changes, mismatches betweamdplan
execution, etc.). Timely solutions to these scenarios are crucial to agildgatiaring, especially

in the era of globalization, automation, and telecommunication ({§Qut992). Unfortunately,

these scenarios are primarily handled by human managers, and the responses are @fteh slow
less than optimal.

The Consortium for Intelligent Integrated Manufacturing Planning-Execu{fl@hMPLEX),
consisting of several private companies and universities, was form&g9 with matching
funds from the National Institute of Standards and Technology of the U. S.|fgdeeanment.

The primary goal of the consortium is to develop technologiesnfelligent enterprise-wide
integration of planning and execution for manufacturing (€hwal, 1996). Our vision of a
successful integrated P/E system for manufacturing would has the followingeteat

1) Interoperability. Heterogeneous P/E applications from different vendors are able to
operate together as integrated parts of the system.

2) Integration. Software tools and infrastructures to support integrasis hot covered by
existing P/E applications are provided. In particular, the integrated solshionld
support runtime dynamic coordination in dealing with unexpected events.

3) Distributed. Resources such as software and data are allowed to be physically or logically

distributed.

4) Openness. The user shall be able to select and change different applicationssand tool

easily and with little additional integration cost.

One approach to an integrated P/E system might be to rewrite all application softavare in
monolithic integrated planning-execution system capable of handliigreseeable scenarios.
This approach is judged to be unfeasible because of high development and meéntess, and
the closed-ness and inflexibility of such monolithic eps$ (Hammer, 1996). Conventional
object-oriented distributed systems also seem inadequate because they work at tbé level
objects, and thus lack the support for abstraction at higher levels (Jeginaig4998).

Instead, CIIMPLEX has adopted as one of its key technologespproach of intelligent
software agents, and is developing a multi-agent system (MAS) for esgemptegration. In
sharp contrast to traditional software programs, software agents are programdptimetopée
solve problems by collaborating with other software agents and otheraesanrthe network
(Bradshaw,et al., 1998, Composition Research Group, 1997, Jennatgal., 1998, Nwana,
1996, Parunaket al., 1997). For instance, individual agents can be designed to perform data
collection and analysis of plans and schedules and to keep constant vigil againstmaismat
among these plans and schedules at different levels of abstractiormantotrizons. Other
agents can be designed to resolve the conflicts either by themselves ordmataor with
human managers and analysts. Personal assistant agents can be designed tomassist h
managers/analysts. Still other agents can be created to provide lggéemss with better
communication and coordination capabilities so they can more effectwelyerate with each
other and with other agents. Moreover, MAS, as a society of autonomous agents, islynherent
open and distributed, and inter-agent communication capability provides théiadsseans for

agent collaboration.

The environment of the CIIMPLEX consortium is different from acadeom&nted research
laboratories. Most of the companies in the consortium are P/E applisatsbem vendors and
users. This situation gives us the opportunity to work witlhweald P/E systems (rather than
imagined toy problems) and appreciate the complexity of realistindgssiscenarios. On the
other hand, the agent-based approach, as a relatively immatim®logy which has not yet
reached the industrial strength, understandably receives only guarded enthbgiasome
members in the consortium. They are more concerned with integratibe BfE systems, using
more mature technologies, to better handle normal or expected business scefario
immediate priority is thus not to design and develop a complete agent shsteimdgrates all
aspects of manufacturing planing and execution, but to develop one timited in scope but
reliable and scalable, and clearly adds commercial value to the end user. In atldtimitial
prototype agent systems must have minimum interference with the normkabfvexisting P/E
applications.

Based on these considerations, we have decided to concentrate on those P/E scedarios wh
represent exceptions to the normal or expected business processes and whose resoluéisn involv
several P/E applications. For example, consider the scenario involvingyaadeghe shipment
date on a purchased part from a supplier. This event may cause one of the following possible
actions: (a) the manufacturing plan is still feasible, atioa is required; (b) order substitute
parts; (c) reschedule; or, (d) reallocate available material. To deieeixception and determine
which of these actions to take, different applications (e.g., MES, ERP, CA, aedu&xah and
possibly human decision-makers must be involved. Examples of atiilar scenarios include a

favored customer’s request to move ahead the delivery date for one of its ordexshiaem

breakdown being reported by MES, a crucial operation having its processing rate decreased from

the normal rate, to mention just a few.

Figure 1 about here

Figure 1 illustrates at a conceptual level how an exception (e.g., a shipfreeqmurchased
part is delayed) should be handled by an integrated system. The decslale mecides, with
the instruction from a human or an analysis module, what constitutesxaaption. The
monitoring module determines what data is to be monitored to detect suchiasepid
conducts actual monitoring of the data stream. When notiffethd> monitoring module of the
occurrence of an exception, the decision module makes appropriate decsimsultation with
other P/E applications and the analysis module. The decision (e.g., a requsshéealute) will
then be carried out by the designated P/E application(s). Note that what canatitiebeception
and how to monitor it is a dynamic decision which cannot be specified pritretgplan
execution. For example, a factory may not normally consider a deldypohent of an ordered
part exceptional unless the delay is greater than five days. However, if & peutial for an
order of a preferred customer or the inventory of a part is below a dldeshen a delay of
greater than three days may become an exception. To make the situatiocomplieated, an
action taken to address one exception may trigger another exception to occurréschedule
to handle the delay of shipment of one part may delay the delivery dateimportant order for
which the respective sales representative needs to be notified).

To provide an integrated solution to the above outlined scenariode sisphey are, is by no
means a trivial undertaking. First of all, a set of agents of specialized expertiséoneed

developed to provide functions, such as those performed by the analydide mdecision

modules, and monitoring modules in Figure 1, which are not covered hyf &imy existing P/E
applications. As integration tasks, these functions fall in the “white space” betthesn P/E
applications. Secondly, a reliable and flexible inter-agent commuoncatirastructure needs to
be developed to allow agents to effectively share information, knowledge, arcsemhirdly,
some means to support interaction with P/E applications, which wilb@agentified at this
stage, needed to be provided. And finally, a mechanism for the runtime catiabf all these
pieces also needs to be developed.

In this paper, we describe our experience of developing an agent-based systiwa fo
CIIMPLEX project. The rest of this paper is organized as follows. In theseetion, we briefly
describe the software agent technologies that are relevant to the task of mangfactur
integration. Sections Three and Four form the core of this paper, where wprdssnt the
proposed multi-agent system’s architecture, and then its work through an exaemdeio that
involve real P/E applications. Section Five evaluates our approach and corhpeétksother,
related work. Section Six concludes the paper with discussions of ongoikgovexpand the

agent system, along with the directions for future research.
2. Multi-Agent System and Agent Collaboration

There is currently no consensus on the definition of software agents or of ageh®gnam
people go so far as to suggest that any piece of software or object that can pesfognific
given task is an agent. However, the prevailing opinion is that an agergxmiayt, to varying
extent, three important general characteristiesttonomy adaptation, and cooperation
(Genesereth and Katchpel, 1994, Nwana, 1996). By “autonomy” we mean that agenteinave t
own agenda of goals and exhibit goal-directed behavior. They are not simplyegbatican be

pro-active and take initiatives, as they deem appropriate. Adaptation immiesgénts are

capable of adapting to the environment, which includes other agents and humaangees)
learn from the experience in order to improve themselves in a chamgimgonment.
Cooperation and coordination among agents is probably the most impledtinie of MAS

(Nwana, 1996). Unlike those stand-alone agents, agents in many A% information,

knowledge, and tasks among themselves, and collaborate with each other ve achienon
goals. The intelligent properties of a MAS is not only reflectedhayexpertise of individual
agents but also by the emergent behavior of the entire collection.

Cooperation and coordination of agents in a MAS requires agents to b® alvlderstand
each other and to communicate with each other effectively. The infrasérticitl supports agent
cooperation in a MAS is thus seen to include at least the following key components:

* A common agent communication language (ACL) and protocol,

* A common format for the content of communication, and

* A shared ontology.

In CIIMPLEX we take theKnowledge-Sharing-EffoltKSE) approach toward achieving the
infrastructure needed for agent cooperation (Ra&tdl., 1992). Three component technologies
developed by the KSE are adopted. They are (a) Knowledge Query Manipulation deangua
(KQML) as a communication language and protocol; (b) Knowledge Interchamgeat(KIF)
as the format of the communication content; and (c) the concept of a shared)ynitolwhat
follows we briefly describe these three components and justify their seleititimes context of
manufacturing integration environment.

2.1. KQML
KQML is a message-based ACL (Fingh al., 1993, 1998), and it considers each message not

only contains the content but also the attitude or “intention” the sendeoridmat content. For

instance, consider that AgeAtsends the following statement as the content of a message to
AgentB:

“the processing rate of operation 1 at machine X is greater than 5.”
AgentA, in different circumstances, may have different intentions algistatement. Agem
may simplytell B that this statement is true in its own databaseskrifthis statement is true in
B's database; or attaches some other intention to this statement. KQMidesrav formal
specification for representing the intentions of messages through a setdfipedperforma-
tivesused in the messages. A subset of KQML performatives that are particularly rédeoan
agent system includesk-one, tell, advertise, subscribe, recommend-one, error, sorry, etc.

A KQML message is thus divided into three layers: the content layer, the woocation
layer, and the message layer. The content layer bears the actual content of the mmessage
language chosen by the sending agent. The communication layer encodes a set ofddhtures t
message to describe the lower level communication parameters, such as the idéwiseatier
and recipient, and a unique identifier tag associated with the communication. Tlagerlager
encodes the message, including its intention (by a chosen performtiezeontent language
used, and the ontology. The structured syntax of KQML messages is based @mcedal
parenthesis list whose first element is the performative and theresdte parameters in the form
of keyword/value pairs. The following is an example of an actual KQMLsaggssent by agent
“joe” to agent “stock-server”, inquiring about the price of a share of IBM stock whereaPx is
uninstantiated variable. The reader is referred to (Fetia)., 1993) for the detailed description
of KQML specifications.

(ask-one
language KIF

:content (Price IBM ?x)
:sender joe

‘receiver stock-server
‘reply-with <a unique string as the tag of this message

)
2.2.KIF

Although KQML allows agents to choose their own content language,bierisficial for all
agents within one MAS to exchange most if not all of their messagesdrigla seutral format.
One obvious advantage of adopting a common content format is efficlestgad of many-to-
many format conversion, each agent only needs to convert the contennwdgbage between its
own internal representation and the common format. KIF (Kedgé Interchange Format), due
to its rich expressive power and simple syntax, is probably the modywikxl neutral message
content format for agent communication.

KIF is a prefix version of First Order Predicates Calculus (FOPC) widnsions to support
non-monotonic reasoning and definitions (Genesewtlal., 1992). The language description
includes both specifications for its syntax and for its semanticsdd3e§OPC expressions of
facts and knowledge, KIF also supports extra-logical expressions stiohsasfor the encoding
of knowledge about knowledge and of procedukds. is currently the subject of an ANSI

standardization study.
2.3. Shared ontology

Sharing the content of formally represented knowledge requires mora foamalism (such as

KIF) and a communication language (such as KQML). Individual agents, as aotonhentities
specialized for some particular aspects of problem solving in a MAS, may hawrermifinodels

of the world in which objects, classes and properties of objects of the world may be
conceptualized differently. For example, the same object may be naffegdrdly (“machine-

id” and “machine-name” for machine identification in the databases of twdsag&he same

10

term may have different definitions in different agents' inferepresentations (“salary-rate,”
referring to hourly rate in one agent and annual rate in another). Aflgrendi taxonomies may
be conceptualized from different perspectives by individual agents.

Therefore, to ensure correct mutual understanding of the exchanged messayssnage
also agree on the model of the world, or at least that part of the world abouttidychre
exchanging information with each other. In the terminology efadpent community, agents must
share a common ontology (Paéit,al.,1992). An ontology for a domain is a conceptualization of
the world in terms of the objects, qualities, distinctions and relationshipsn ¢hatidomain. A
shared or common ontology refers to an explicit specification of theogital commitments of
a group of agents. Such a specification should be an objective (i.e., irdblprettside of the
agents) description of the concepts and relationships that the agents use to interaechvi
other, with other programs such as legacy business applicatiahsyidgmhumans. A shared

ontology can be in the form of a document or a set of machine interpretabfeapecs.
2.4. Agent collaboration

With a common communication language, a common content language, and a shdoggy,onto
agents can communicate with each other in the same manner, in the same syntatky Hed

same understanding of the world. In addition to these three essential ingreskiené common

service agents are often used in a MAS to make agent collaboration maemteéffid effective.

One type of a service agent is thgent Name ServgANS). The ANS, similarly to thevhite
pagephone book, serves as the central repository of the contact addresses for all involised agen
l.e., it maintains an address table of all registered agents, accessible through theyagkatis

names. Newly created agents must register with the ANS their names, contact addresses and

possibly other information by sending to the ANS a message with thematiegregister (As

11

a presumption, every agent in the system must know how to corga8ii®.) The ANS maps
the symbolic name of a registered agent to its contact address when requested by other agents.
Another type of a service agent is tRecilitator Agent(FA), which provides additional
services to other agents. A simple FA iBraker Agent(BA) which provides a "yellow pages"
type service. It registers services offered and requested by individuas agehdynamically
connects available services to requests whenever possible. Agents registeavaiiable
services by sending BA messages with the performatdxertise and request services by
sending to the BA messages with brokering performatives suchcasmmend-oneln both
cases, the description of the specific service is in the content of the message. Inta aeply
recommend-onenessage the BA will send the symbolic name of an agent which has advertised
as being able to provide the requested service at the Baargrif such request cannot be met

by current advertisers.
3. CIIPLEX Agent System Architecture
In this section, we describe the MAS architecture that supports inter-agent cooperdtien i

CIIMPLEX project, emphasizing on the agent communication infrastruckigeire 2 below

gives the architecture of CIIMPLEX enterprise integration with MAS as an ineegpairt

Figure 2 about here

At the current stage of the project, the entire P/E integration archiggstcomposed of two
parts: the P/E application world and the agent world, and supported by two separate
communication infrastructures. Although these legacy P/E applications havebeinuy
agentified, they have been wrapped with &Ri/hich provide them with limited communication

capability (Chu,et al., 1998). Different transport mechanisms (e.g., MQ Series of IBM and

12

VisualFlow of Envisionit) are under experimentation as communication infcagtes for the
wrapped P/E applications. These mechanisms are persistent, but only supportpst-
determined communication patterns.

In the agent world, besides the service agents ANS and BA, several other typeséegent
useful for enterprise integration. For example, data-mipargimeter-estimation agents are
needed to collect, aggregate, interpolate and extrapolate the raw transaction dakanofetel
(shop floor) activities, and then to make this aggregated information laeaita higher level
analyses by other agents. Event monitoring agents monitor, detectptifigdabout abnormal
events that need to be attended. Th®MPLEX Analysis Agent§CAA) evaluate disturbances to
the current planned schedule and recommend appropriate actions to address each disturbance.
And the Scenario Coordination AgentéSCA) assist human decision making for specific
business scenarios by providing the relevant context, including filtef@anetion, actions, as
well as workflow charts.

All these agents uses the KQML as the agent communication language, and use a subset of
KIF that supports Horn clause deductive inference as the content language. 5G@RbBen as
the low-level transport mechanism for agent-to-agent communicati@nsfared ontology is an
agreement document established by the P/E application vendors and users and otheiirpartne
the consortium. The agreement adopts the format oBtieness Object Docume(BOD)
defined by theOpen Application GroufOAG). BOD is also used as the message format for
communication among P/E applications such as MES and ERP, and between agents and
applications. A special service agent, called Gaweway Agen(GA), is created to provide
interface between the agent world and the application world. GA’s functions,gaatbar

things, include making connections between the transport mechanismsbétvgeen TCP/IP

13

and MQ Series) and converting messages between the two different formats (KQMItKIF
BOD).

The agent system architecture outlined above is supported by the agent nicatiotu
infrastructure calledackaldeveloped by the consortium (Cadtal, 1998). As indicated by the
name,JACKAL is written in JAVA to supportAgent Communication using th&KQML Agent
communicationLanguage. The decision to select JAVA as the implementation language was
based mainly on its inter-platform portability, its networkiagilities, and its support for multi-

thread programming. The next two subsections provide detailed descripdiackad.
3.1. Conversation policiesin Jackal

KQML itself only defines the syntax of the language. However, a good, werkabhantics is
imperative for conducting coherent conversation among agentsuppmrs both syntactic and
semantic aspects of the language, Jackal takes a semantic interpretation of KQM Lafoou,(L
1996, Labrou and Finin, 1997) and realizes part of it as a set of conversation .policies

The conversation policies are procedures which, based on the performatives involved,
specify how a conversation (consisting of a sequence of messages) is to stadee¢d,pand to
terminate. For example, a conversation started wildsironemessage will terminate as soon as
the sender receives a proper reply. (Possible replies incluglecsirmessage, indicating that the
format of the message is incorrects@ry message, indicating that the receiver cannot provide
an answer to the question;tall message whose content contains an answer to the given
guestion; or amntell message which retracts a previteis message). A conversation started by
a message with performatigebscribewould have a different policy. When Ageitstarts such
a conversation with Ager, the conversation remains open wihkeeping listening for new

messages fro that satisfy the subscription criterion.

14

Conversation policies chosen for Jackal can be described usbegteaministic Finite
Automata(DFA) model. In this model, each conversation starts with a state &IRT, and
ends with a state callegr OP. A conversation moves from one state to another according to the
given state transition diagram. Figure 3 shows examples of the DFAisKesneandsubscribe

conversations.

Figure 3 about here

3.2. An overview of Jackal’s design
Jackal was designed to provide comprehensive functionality, while presentingla isi@gace
to the user. Thus, although Jackal consists of roughly seventy distisseglaall user

interactions are channeled through one class, hiding most details of teengngation.

Figure 4 about here

Figure 4 presents the principal Jackal components, and the basic messageopgththiar
system. We will first discuss each of the components, and then, toailkusteir interaction,
trace the path of a message through the system.

3.2.1. Jackal components

The Intercom class is the bridge between the agent application and Jackal. It controls startu
and shutdown of Jackal, provides the application with access to internal s)etimdses
common data structures, and plays a supervisory role to the communicati@ssrunture.
Agents create and use an instancénbércom, rather than extending an agent shell. This gives

us great flexibility for the design and implementation of other partsecégent.

15

Jackal runs a@ransport Module for each communication protocol it uses. The current
Jackal implementation includes a module for TCP/IP, and users can create additidnsm
for other protocols. Th&ransport Module is responsible for message transmission and receipt.

Messages received by tlsitchboard must be directed to the appropriate places in the
Conversation Space. This is the role of thélessage Handler. Messages are associated with
current (logical) threads based on their ID (the value of the "rephy-wr "in-reply-to"” field).

This directs their assignment to ongoing conversations when possille.sutch assignment can
be made, a new conversation appropriate to the message is started.

Conversation protocols, described above, are "run" as independent threalifgoeg
conversations. This allows for easy context management, whileidpr@vconstraints on
language use and a framework for low level conversation management.

The Distributor is a Linda-like (Carriero and Gelertner, 1989} shared memory space
(concenptually like a blackboard), which serves to match messages with requests for messages.
This is the sole interface between the agent and the message traffic. Its édticadlows for
comprehensive specification of message requests. Requesters are retsgagtgeeues, and
receive all return traffic through these queues. Requests for messages are based on some
combination of message, conversation or thread 1D, and syntactic foeyp&rmit actions such
as removing an acquired message from the blackboard or marking it as read only. ityA prior
setting determines the order of matching. Requests can be set to paesisitéty, or terminate
after a certain number of matches.

A service here is any thread; this could be a Jackal service, or threads within thisatient
The only thing that distinguishes among threads is the request priorityuskeey System, or

Jackal, threads choose from a set of higher priorities than agent threads, but eaeh aHevel

16

within its own pool. Jackal reserves the highest and lowest priorities for sedireeting
messages out of the agent and for those cleaning the blackboard, respectively.

The Switchboard acts as an interface between fheansport Modules and the rest of
Jackal. It must facilitate the intake of new messages, which it gafteen theTransport
Modules, and carry out send requests from the application. The latter is a fairly categli
procedure, since it has multiple protocols at its disposalShiehboard must formulate a plan
for the delivery of a message, with the aid of thddress Cache, and pursue it for an
unspecified period of time, without creating a bottleneck to message traffic.

The problem of agent naming arises in any multi-agent sysdemaming scheme, called
KNS is developed in Jackal. KNS is a hierarchical scheme similgpirih t9® DNS. A fully-
gualified agent name (FQAN) is a sequence of period-separated agent names (esgedubil
The sequence denotes registrations between agents. Agents can register togatimetetn{s,
and can maintain multiple identities to represent roles in thei-agént system. Multiple
registrations for an agent become a network of aliases for that agent. If oeebeaomes
inaccessible, another can be identified to fill the gap. Moreover, sincesaggntmaintain
multiple contact information for each name, agents can change locatidrisaave forwarding
arrangements for messages while they migrate. In this way, dynamip ¢wamation is
supported. KNS can easily be extended to support collaborating, mobile Kp&dlking agents
using a variety of transport protocols. In such case, the final segment ind BEQAways an
URL (e.g., phil.cs.http://www.umbc.edu), providing unique, static location infeemdor the
base of an agent registration chain.

The Address Cache holds agent addresses in order to defray lookup costs. It is a multi-

layered cache supporting various levels of locking, allowing it tosiggohigh availability.

17

Unsuccessful address queries trigger underlying KNS lookup mechanisms, while bmiasg
to only one individual listing. Jackal supports KNS transparently thrangimtelligent address

cache.
3.2.2. M essage Path

Having described the various components of Jackal, we will trace the path of a received message
and the corresponding reply, using the numbered arcs in Figure 4 for reference.

The message is first received by a connection thread witAinaasport Module ([1] in
Figure 4), is processed in thessage Handler, and transferred directly to the input queue of
either a waiting or a new conversation [2]. A unique thread manages each conversadon. Th
target conversation awakens, takes the message from its input queue [3], and triescw itslvan
DFA accordingly. If accepted, the message is entered intdiseibutor [4], an internal
blackboard for message distribution. Tistributor [5] in turn tries to match the message with
any pending requests in order of a specified priority. Ideally, a nmtictund, and the message
is placed in the appropriate queue or queues [6]. This is the point at which the agent gasns acce
to the message flow; through services attending to the blackboard.

Once the requesting service thread picks the message out of its queue [7], it presumably
performs some action, and may send [8] a reply or a new message; we assume it does. Jackal
arranges for reply requests to be placed intoOtseributor before messages are sent, when
appropriate. The message is directed intoGbmeversation Space, and traces the same path as
the previous incoming message [9,10] to Dietributor. The message is captured by the
Switchboards outbound message request [11]. T®witchboard removes the new message

from its queue and assigns it to an idle send thread [12]; thissr@ssbme overhead, but allows

18

sends to proceed concurrently, avoiding bottlenecks due to variation in deliwesy tirhe send
thread uses the appropridteansport M odule to transmit the message.

Figure 5 depicts the typical design of an agent using Jackal for agent communication. A
main thread serves primarily to start and direct Jackal and a collection of service thraehls. E
service thread interacts with the Distributor to send and receive messages, andllpotetti
the main thread and other service threads as well. Each service thread takes some basic role
within the agent, such as processing all broker requests, or logging all masdigdo an

archival agent.

Figure 5 about here

4. An Application Example

In this section, we demonstrate how the CIIMPLEX agent system suppeitiganit enterprise
integration through a simple business scenario involving some reafaoaming management

application software systems.
4.1. The scenario

The scenario selected, calleprdcess rate chan§eand depicted in Figure 6, occurs when the
process time of a given operation on a given machine is reduced signjfitantl its normal
value. When this type of event occurs, different actions need to be taken baedtgpe of
operation and the severity of the rate reduction. Some of the actionsentakeln automatically
according to the given business rules, and others may involve humaiorecSome actions
may be as simple as recording the event in the logging file, and somerothebe complicated

and expensive as requesting such as a rescheduling based on the changed operdiiwa rat

19

real P/E application programs, namely the FactoryOp (a MES by IBM) and MOOPHi{@ Fi

Scheduler by Berclain), are used in this scenario.

Figure 6 about here

4.2. The agents

To support managing this scenario, we need mechanisms fimiltdveing activities:

Collect in real-time information concerning operation completion catgith from MES.
Compute and constantly update the process rate from the collected information.

Detect and notify the appropriate parties if the current rate change constitutes a
significant reduction.

Decide appropriate actions to handle the rate change.

Carry out the actions

A collection of agents is assembled to support the chosen scenario. Adisef agents speak

KQML, and are supported by Jackal. Besides the three service agents ANS, BA, ar GA, t

multi-agent system also includes the following special agents.

The Process Rate AgelPRA) is both a mining agent and a monitoring agent for shop-
floor activities. As a mining agent, PRA requests and receives the messages containing
transaction data of operation completion from GA. The data originates=aotoryOp in

the BOD Format, and is converted into KIF format by GA. PRA aggregates the
continuing stream of operation completion data and computes the current notkan an
standard deviation of the processing time for each operation. It also makes the aggregated

data available for other agents to access. As a monitoring agent, PRA receivethéfom

20

agents the monitoring criteria for disturbance events concerning processing khtes an
notifies the appropriate agents when such events occur.

The Scenario Coordination AgerfSCA) sets the rate monitoring criterion, receives the
notification for the rate change, and decides, in consultation with hdet@sion-makers,
appropriate action(s) to take for the changed rate. One of the actions wooldeheést
MOOPI to reschedule if it is determined that the rate charadesnthe existing schedule
impossible to meet. This request is sent from SCA as a KQML message to &, itvh

is converted into the BOD format. Details of the internal logit algorithms of the SCA
that handle the “rate change” scenario are reported elsewhere (Tadlahel 998).

The Directory Assistance Agen(DA) is an auxiliary agent responsible for finding
appropriate persons for SCA when the latter needs to consult human deGgiens-nt

also finds the proper mode of communication to that person.

The Authentication Assistance AgdiitA) is another auxiliary agent used by SCA. It is
responsible for conducting authentication checks to see if a person in interaction wit

SCA has proper authority to make certain decisions concerning the scenario.

4.3. The predicates

Three KIF predicates of multiple arguments are defined. These predicates, OP-COMPLETE,

RATE, and RATE-CHANGE, are used to compose the contents of messages betwegimagent

processing the process rate change scenario.

The OP-COMPLETE predicate contains all relevant information exoimy a completed

operation, including P/E-Application-id, machine-id, operatignsicrting and finishing time-

stamps, and quantity. The process time for this operation can then be computedifigrdnce

between the finishing and starting time stamps, divided by the quantity.

21

The RATE predicate contains all relevant information concerning the current average rate
a particular operation at a particular machine with a particular product. Hratiop rate is
represented by its mean and standard deviation over a period of time. RATE instances are
computed and constantly updated by PRA, based on a stream of instances caitgr@éi-
COMPLETE obtained from GA.

The RATE-CHANGE predicate contains all the information needed to constB@Dathat
tells MOOPI a significant rate change has occurred and a re-scheduleobadee new rate is
called for. In particular, it contains the operation rate used to compuiithent schedule and
the new rate. It is the responsibility of the rate change SCA to compose an instdnecRAT E-
PREDICATE and send it to GA when it deems necessary to request MOOPI for a re-schedule,
based on the process rate change notification from PRA and coosultdtih human decision
makers.

Additional predicates and more complicated KIF expressions are needed when ddaling wi

more complicated scenarios.
4.4. Agent collaboration and the message flow in the agent system

Figure 7 depicts how agents cooperate with one another to resolve the rate chamge, soel
sketches the message flow in the agent system. For clarity, ANS and its connectitey to
agents are not shown in the figure. The message flow employed to estamtisbtmms between

SCA and DA and AA (brokered by BA) is also not shown.

Figure 7 about here

Each of these agents needs information from others to perform its designate&aabksf

them may also have information others need. Since there is no pre-determiimtergtat

22

connection among agents, the broker agent (BA) plays a crucial role imidgtig establishing
communication channel for agents’ information exchange.

Advertising to BA.
GA advertises that it can provide OP-COMPLETE predicate. It ath@rtises to be able to

accept RATE-CHANGE predicate. PRA advertises that it has current process rates available for
some operations in the form of RATE predicate. The following is ample ofadvertise

message from GA to BA.

(advertise
:sender GA
receiver BA

reply-with ~ <a unique string as the tag of thisagess
:content (subscribe :content (ask-one :¢q@ERCOMPLETE ?x1 ... ?xn))))

Requesting recommendation from BA.
PRA asks BA to recommend an agent that can provide OP-COMPLETEgiegdand will
receive the recommendation of GA in a respondeigmessage. Similarly, SCA asks BA to
recommend an agent that can provide RATE predicate and receives PRA in resaisseasks
BA to recommend an agent that can accept RATE-CHANGE predicate and receives GA in
response. The following is an example@fommend-onenessage from PRA.
(recommend-one
:sender PRA
‘receiver BA
:reply-with <a unique string as the tag of this messa
:content (subscribe :content (ask-one :contBAC@MPLETE ?x1 ...7?7xn))))
In response, BA sends the followitgjl message to PRA.
(tell
:sender: BA
‘receiver PRA

iin-reply-to <the tag of the message to whichntegsage responds>
:content (GA))

23

Upon the recommendation from BA, an agent can then obtain the needed imoroyagending
askor subscribemessages to the recommended agent.
Monitoring/notification
When SCA knows from BA that PRA has advertised that it can provide the currerforat
certain operation, it may send PRA the followsupscribemessage.
(subscribe
:sender SCA
‘receiver PRA
:reply-with <a unique string as the tag of this message>
language = KQML
:content (ask-one
language KIF
:content (and (RATE ... ?mean ...) (< ?mean 50))))
With this message, SCA tells PRA that it is interested in receiving ndanges of RATE
predicate whenever the mean value of the new rate is less than 50. @¢tisaff turns PRA to
a process rate monitor with the "mean < 50" as the monitor criterion. Whenever the newly

updated rate satisfies this criterion, PRA immediately notifie& B sending it aell message

with the new rate’s mean and standard deviation.
5. Evaluation

The prototype agent system outlined in the previous section has been installédisaBtiBa

Raton CIIMPLEX integration center where a host of P/E application systemsdimgl

FactoryOp and MOORPI, is running. The system has been tested successfullychiteetare of

this system can easily be applied to handle other types of P/E exception sceoar@i&niple,

we have recently assembled another agent system to manage a different exceptica 8t

which some BOD's sent to an application are out of sequence and need to be re-synchronized.
Additional experiments have been conducted to test tlabifity and scalability of Jackal.

In the experiments Jackal is seen to be able to support up to 42 agents in a ring le [dTsing

24

machine (until the machine runs out of memory), and a message takesrage of 0.3 second
to traverse the entire ring. Jackal is also see to easily handle messages dddarfeeslargest
ones we have tested are binary image data of half megabytes.

In summary, the prototype system achieves the following, whichdismussed in the

beginning of this paper, are essential for manufacturing planing and exdntegnation.

1) Specialized agents (e.g., PRA, MA, and SCA) are built to providgifurality needed to
manage P/E exceptions in manufacturing. These agents fill the white space in between
legacy P/E application systems.

2) Jackal, the inter-agent communication infrastructure, is feliabd scalable. It is also
easy to use in developing individual agents because it imposes minimufarartee
between communication and other agent functions.

3) Conversation policies implemented in Jackal realize, to some e#tenbelief-desire-
intention (BDI) model intended by KQML. These policies can be used to cenfor
semantically correct agent-to-agent conversations.

4) The brokering agent (BA) provides necessary support for flexible agegett-a
collaboration. The gateway agent (GA) provides the interface between thewayteht
and the application world. They together make runtime collaboratiomgumal modules
possible.

5) Ontological support (i.e., the BOD definitions), although very lichigg this moment,
enables collaboration between agents and legacy P/E systems.

Comparing with some existing work of others, our work is moceded on particular needs

of CIIMPLEX integration environment. Works such as ZEUS (Nwanhal., 1998), dMARS

based on Procedural Reasoning System (Georgeff and Lansky, 1987), ADEPT (Jenalngs

25

1996) and RETSINA (Sycarat al., 1996) attempts to provide generic agent construction
environment and toolkits or general agent architecture. Our work can be seen a$ anpo@b
solution, although some techniques from this work, such as Jackal, can be used as a general-
purpose communication infrastructure for KQML-speaking agents.

We do not impose an unified architecture for all of our agents. Besides thacetén
Jackal, each agent is free to choose its own internal structure. Currently, we adercansi
Linda-like shared memory or lightweight blackboard architecture for intra-ég@miponent-to-
component) interaction.

There are great deal of research activities in developing agent systems for mangfactairi
other business applications. Examples of such systems include ADEPFTAQJENnning®t al,
1996) for business management, COOL for supply chain managemebti¢@anu and Fox,
1996), AMBEI for manufacturing integration (Shet al., 1998), to mention just a few. A
distinguishing characteristic of our work is that we explicitly deal watd tegacy P/E systems.
Although some others discuss legacy systems in principle (Jenmdd¥@oldridge, 1998, Shen
et al.,1998), these legacy systems are seldom included in the actual implementatio

Another major difference between our work and some others lies on theheveggént
collaboration is achieved. COOL (Barbuceanu and Fox, 1996) emphasizes théevdgh
coordination by negotiation and extends KQML to support the specificatioonversations for
negotiatior: ABMEI (Shenet al., 1998) uses a network of mediators whose main purpose is to
resolve heterogeneity between subsystems. Agents in theirmsygieesumably have the

knowledge of what agents to contact when certain needs arise, while in our system agents do n

Like the conversation policies in our system, COOL’s conversati@nalso defined using DFA’s. The difference
is that their conversations specify negotiation conventions and ouersations implement intended semantics
for KQML performatives based on speech act theory. In other words, they differant levels of abstraction,
and for different purposes, their’s is for specifying what it wéllamd ours for insuring what it should be.

26

assume knowledge of what others can do. Each agent advertises services it can provide and
announces what services it needs. The service requests match advertises by the broker agents,
and the communication between the matched pairs then follows. The OpenAkgeitecture

(OAA) (Martin et al., 1998) goes further to use a powerful facilitator to coordinate agents
activities in a system. The facilitator works like a planner. Based on the daigavktored, it is

able to decompose a task received from an agent to subtasks, delegate subtasks to appropriate
agents, and monitor and coordinate the executions of these subtasks. A drawback of I@8A is t

the facilitator is also the communication center. All agents must coinate via the facilitator,

while in our system, agents can communicate directly to each other after the lorokaiches.
6. Conclusion

In this paper we presented a multi-agent system that is capable of suppotéltigent
integration of manufacturing planning and execution, especially in mandgngxteptions in
business scenarios. With this approach, a set of software agents with specialized expdréise ca
quickly assembled to help gather relevant information and knowledg® andperate with each
other, and with other management systems and human manageralgstsaim order to arrive

at timely decisions in dealing with various enterprise scesafihis system has been tested
successfully with a real manufacturing scenario involving real legde$ Bhd scheduler.

The work presented here represents only the first step of our effort toward agent-based
enterprise integration for manufacturing planning and execution. Fumésgarch and
experiments are needed to extend the current work and to address its shortcomingghAltho
KQML does not impose many constraints and requirements on the interctlrgrof agents, it
may be beneficial to have a common framework for the agent’s instroature within a single

agent system. We are currently considering a lightweight blackboard architeatigecko a

27

framework, which, among other advantages, may provide flexibility for agestruction, agent
component re-usability and plug-and-play. Another research directaer wonsideration is to
increase the functionality of the broker agent and make it more intelligeatBA in our current
implementation can only conduct brokering activities at the level of predid<ésthe help of
a machine interpretable common ontology and an inference engine,imhelligent brokering
can be developed to work with object hierarchies and to make intelligeioesh@he current
ontological support is very limited. It only provides definitions afieus BOD's and constraints
of BOD fields to insure data consistency. We are currentlyndiig the ontology to include
deductive rules for additional interrelations between differédDB and BOD fields to support
more complicated business scenarios. Work is also under way ntfyidenore complex
enterprise scenarios which require non-trivial interastiasith more legacy systems, and their

solutions represent significant added values to the manufacturing produetiagyement.

28

References

1. Barbuceanu, M. and Fox, M.S. The Architecture of an Agent Building Shdlhtelligent
Agents 11,1037, Berling: Springer Verlag, 235-250.

2. Bermudez, J. 1996. Advanced Planning and Scheduling Systems: Just a Fad or a
Breakthrough in Manufacturing and Supply Chain Managenieafidrt on Manufacturing,
Advanced Manufacturing Resear&gston, MA. December.

3. Bradshaw, J., Dutfield, S., Benoit, P. and Woolley, J. 1998. KA0oS: Towarthdustrial-
Strength Open Agent Architecture. To appealSoftware Agent8radshaw, J.M. (Ed),
Boston: MIT Press.

4. Carriero, N. and Gelertner, D. 1989. Linda in Cont&ACM, 32(4), 444-458.

5. Chu, B., Tolone, W. J., Wilhelm, R., Hegedus, M., Fesko, J., Finin, T., Peng, ¥s, Jon
Long, J., Matthews, M. Mayfield, J., Shimp, J., and Su, S. 1996. Integratingfétauring
Softwares for Intelligent Planning-Execution: A CIIMPLEX Perspectin Plug and Play
Software for Agile Manufacturing, Proceedings of SPIEol. 2913. Boston, MA, pp. 96-
108.

6. Chu, B., Long, J., Matthews, M., Barnes, J., Sims, J., Hami¥., and Lambert, R. 1998.
FAIME: An Object-Oriented Methodology for Application Plug-aRthy. Journal of

Object-Oriented Programmin@o appear).

7. Tolone, W.J., Chu, B., Long, J., Finin, T., and Peng, Y. 1998. Supporting Hateaactions
within Integrated Manufacturing Systems. To appearniernational Journal of Agile

Manufacturing.

29

10.

11.

12.

13.

14.

15.

16.

Compositional Research Group, 1996. Caltech Infosheres Project. Avaikble

http://www.infospheres.caltech.edu

Dourish, P. Bellotti, V. 1992. Awareness and Coordination in Shared Yao&s' In
Proceedings ACM 1992 Conference on Computer-Supported Cooperative Work: Sharing
Perspectives (CSCW %2Toronto, November, 107-114.

Finin, T., Weber Jet al 1993. Draft Specification of the KQML Agent Communication

Language. June. Available lattp://www.cs.umbc.edu/kgml/kgmispec/spec.html

Finin, T., Labrou, Y., and Mayfield, J. 1998. KQML as an agent commumicé&inguage.

To appear inSoftware Agent8radshaw, J.M. (Ed.). Boston: MIT Press.

Genesereth, M., Fikes, Bt al 1992. Knowledge Interchange Format, Version 3.0 Reference
Manual. Technical Report, Computer Science Department, Stanford University.
Genesereth, M. and Katchpel, S. 1994. Software Ag€aisimunication of the ACM7(7):
48-53.

Georgeff, M. R. and Lansky, A. L. 1987. Reactive Reasoning and PlanniRgodeedings

of AAAI Seattle, WA. 677-682.

Hammer, M. 1996.Beyond Reengineering: How the Process-Centered Organization Is
Changing OuMWork and Our Livesdarpercollins.

Jennings, N. R. Faratin, P., Norman, T.QJBrien, P., Wiegand, M. E., Voudouris, C., Alty,

J. L., Miah, T., and Mamdani, E. H. 1996. ADEPT: Managing Business RBascéssing
Intelligent Agents. InProceedings of BCS Expert Systems ConferghS& Track).

Cambridge, UK.

30

17.

18.

19.

20.

21.

22.

23.

24.

Jennings, N. R. and Wooldridge, M. J. 1998. Applications of Intelligent AgémtAgent
Technologies: Foundations, Applications, and MarkktsR. Jennings and M. J. Wooldridge
(eds.) (To appear)

Labrou, Y. 1996.Semantics for an Agent Communication Languddepublished Ph.D.
Dissertation, Department of Computer Science and Electrical Engineeringgr&ityivof
Maryland Baltimore County, August.

Martin, D.L., Cheyer, A.J., and Moran, D.B. 1998. Building DistrdaliSoftware Systems
with the Open Agent Architecture. Proceedings of the Practical Application of Intelligent
Agents and Multi-Agent Systerhsndon, UK. 355-376.

Nwana, H.S. 1996. Software Agents: An OverviéMre Knowledge Engineering Review,
Vol 11 (3).

Nwana, H.S., Ndumu, D.T., and Lee, L.C. 1998 ZEUS: An Advanced Tool-Kit for
Engineering Distributed Multi-Agent Systems.Rroceedings of the Practical Application of
Intelligent Agents and Multi-Agent Systefnsndon, UK. 377-392.

Parunak, H.V.D., Baker, A., and Clark, S. 1997. AARIA Agent Architecture: Anmila

of Requirements-Driven Agent-Based System Design. Availalbigat/www.aaria.uc.edu

Patil, R., Fikes, R., Patel-Schneider, P., McKay, D., Finin, T., Gruberand Neches, R.
1992. The DAPA Knowledge Sharing Effort: Progree ReportPrinciples of Knowledge
Representation and Reasoning: Proc. Of the Third International Conference on Knowledge
Representation (KR'92)B. Neches, C. Rich, and W. Swartout (eds.). Dan Mateo, CA:
Morgan Kaufmann, November.

Shen, W. Xue, D., and Norrie, D.H. 1998. Agent-Based Manufacturing Enterprise

Infrastructure for Distributed Inte3grated Intelligent Manufaioty Systems. IfProceedings

31

of the Practical Application of Intelligent Agents and Multi-Agent Systémsdon, UK.
533-550.

25. Sycara, K., Pannu, A., Williamson, M., and Zeng, D. 1996. Distributed i¢reetl Agents.
|IEEE Expert 11(6), 36-46.

26. Tennenbaum, M., Weber, J., and Gruber, T. 1993. Enterprise limegraessons from
Shade and Pact. Enterprise Integration ModelingC. Peter (ed.). Boston: MIT Press.

27.Vollmann, T., Berry, W. and Whybark, D. 19%anufacturing Planning and Control

Systemdrwin: New York.

32

Figure Captions

Figure 1. A manufacturing integration example: handling exceptions
Figure 2. CIIMPLEX integration architecture
Figure 3. DFA state-diagrams for selected KQML conversations
(a) ask-oneconversation
(b) subscribeconversation
Figure 4. An overview of Jackal
Figure 5. A Jackal agent skeleton
Figure 6. The “process rate change” scenario

Figure 7. The agent system for “process rate change” scenario

33

P/E
Application

Application

Monitoring Module

Deter mine data
source
Establish dataflow

M onitor

monitoring specs

P/E
Application

Application

Decision M odule

Notification of

v

exception

Figure 1

* Set monitoring
specs

¢ Determine actions
when exception
occurs

P/E

Request/

“notification

A

consyltation

\

authorization

Analysis Module

* Severity of
exception

* Feasbhility of
proposed action

Human
Interface
Module

Customer
Response

PPET

CIIMPLEX Integration Infrastructure

A

y
Gateway
Agent

A

A

CIIMPLEX Agent Communication Infrastructure

A A A A A A
y y y y y y
ANS BA Monitoring Data CIIMPLEX Scenario
Agent mining Analysis Coordinatior]
Agent Agent Agent
Figure 2.

35

(tell)

(untell)

(@)

(b)

Figure 3.

36

® Internet

N

Address

15 Cache

r\
A 0@

14
Switchboard

\
Transport
Modules

Jackal 3.0in a Nutshdll

Intercom

13

Ej = Message Queue = Java Thread

Figure 4

37

Conversatio
Space

/ Distributor E

—p =Message Path

"0'/

Services

Thread Service Thread

Intercom Distributor
Jackal

Transport Interfac

Figure 5.

38

1.Msg for operation
FactoryOp >

People

3. Informing people (email,
pager, cell phone) and
human decision.

Specify monitoring
criteria

Completion (BOD)

agent

Rate monitoring

2.

Inform rate change:
KQML/KIF

agent

Rate coordination

l

4. Request re-schedule
Msg (BOD)

MOOPI

Figure 6.

39

FactoryOp

GA-IN
QlIJeue

Lo-o»

BODs from applications

M OOPI

BA

GA A

GA-OUT
Queue

< - - -

BODs to applications

PRA

advertise bscribe

tdl tell

advertise recommend-one
g

tell >
ommend-one subscribe

tell

tell

SCA
AA
Figure 7.

