
SOCA (2008) 2:219–238
DOI 10.1007/s11761-008-0033-4

ORIGINAL RESEARCH PAPER

Agent-based communities of web services:
an argumentation-driven approach

Jamal Bentahar · Zakaria Maamar · Wei Wan ·
Djamal Benslimane · Philippe Thiran ·
Sattanathan Subramanian

Received: 7 August 2007 / Revised: 17 August 2008 / Accepted: 22 September 2008 / Published online: 1 November 2008
© Springer-Verlag London Limited 2008

Abstract The objective of this paper is to discuss how to
sustain the growth of Web services through the use of com-
munities. A community aims at gathering Web services with
the same functionality independently of their origins, loca-
tions, and functioning. To make Web services more respon-
sive to the environment in which they run and to be more
flexible when managing communities, Web services are asso-
ciated with software agents enhanced with argumentation
capacities. This type of agents persuade and negotiate with
other peers for the sake of letting their respective Web ser-
vices reach their goals in an efficient way. Associating Web
services with this type of agents allows them to select good
communities and allow the communities to host the good
Web services and to select the best ones for composite sce-
narios. Furthermore, this provides satisfactory solutions for
three open problems: starvation (Web services refuse all the
possibilities of joining communities), competition-free (Web
services accept joining any community without being selec-
tive), and unfairness (always the same Web services members

J. Bentahar (B)
Concordia University, Montreal, Canada
e-mail: bentahar@ciise.concordia.ca

Z. Maamar
Zayed University, Dubai, United Arab Emirates

W. Wan
Concordia University, Montreal, Canada

D. Benslimane
Claude Bernard Lyon 1 University, Lyon, France

P. Thiran
University of Namur, Namur, Belgium

S. Subramanian
INRIA Saclay-Île-de-France, Île-de-France, France

of a community are selected out of many others to participate
in composite scenarios). In addition, the paper presents a for-
mal and computational persuasive and negotiation protocol
to manage the attraction and retainment of Web services in
the communities and their identification for composite ser-
vices.

Keywords Community of Web services · Agents ·
Argumentation theory

1 Introduction

1.1 Motivations

Recent years have seen an increasing interest in Web ser-
vices. Indeed, they provide a suitable framework for deve-
loping largely-scale and loosely-coupled business processes.
As the Web service technology is widely used for business
applications and the number of developed Web services
through the Internet continues to grow, the needs for dis-
covering and engaging these Web services in more complex
and complete business solutions are stressed out, leading to
very rich settings for market competition. In [8], Bui and
Gacher argue that although Web services are heterogeneous,
the functionalities (e.g.HotelBooking) they offer are suf-
ficiently well-defined and homogeneous enough to allow for
market competition to happen. For example, the US National
Digital Forecast Database XML Web Service (http://www.
weather.gov/xml) and the US National Weather Service Fore-
cast Office (http://www.srh.noaa.gov/mfl) propose each wea-
ther forecast-related Web services.

In this context, we proposed, along with other resear-
chers, the notion of communities of Web services to gather
Web services having the similar functionalities into special

123

http://www.weather.gov/xml
http://www.weather.gov/xml
http://www.srh.noaa.gov/mfl

220 SOCA (2008) 2:219–238

structures [4,27,30,31,43]. Despite the exhaustive list of
standards and specifications [23] (e.g. WSDL, SOAP, UDDI,
WS-*) and projects on Web services [12,24,30,34], there
is a lack of proper research that looks into the following
community-related issues:

1. How to specify and represent communities of Web ser-
vices in compliance with the existing standards and spe-
cifications?

2. How to initiate, set up, and dismantle a community of
Web services? Who would be in charge of managing
a community? And, how to specify and manage Web
services in a community?

3. What kind of policies should guarantee the consistency
of communities of Web services?

4. How to make a Web service select the community that
suits it better? How to convince a Web service to stay
longer in a community? And, how to eject a Web service
from a community for misbehavior?

5. How to select a community member Web service out of
many other members of the same community to take part
of a given business scenario?

The aforementioned list of issues are open problems in the
current research and development trend in the field of Web
services. A promising way to address these problems and
conduct research in this domain is making Web service more
reactive and responsive to the environment in which they
reside. Web services are still restricted to process users’ or
peers’ requests without considering their internal execution
states, or even questioning if they would be rewarded (e.g.
will a Web service be privileged over other peers during
selection?) for processing these requests [25]. In addition,
some still consider Web services as passive components that
react upon request only, which reduces and probably pre-
vents their participation opportunities in complex business
scenarios [7].

To make Web services more reactive to their environments
and to allow them to interact more flexibly for the growing
needs of business applications, we adopt the idea of empowe-
ring them with extra capabilities through the use of software
agents. Briefly, software agents are autonomous entities, able
to take initiatives in order to satisfy some goals [20]. In addi-
tion, agents are associated with metaphors and techniques
that make them appropriate for designing, implementing,
and verifying complex, distributed systems such as electro-
nic trading and distributed business systems. Different for-
mal logics can be used to specify and implement agents like
epistemic, doxastic, and deontic [33,44]. The combination of
Web services and software agents seems appealing and has
already been studied in different research projects. In [22],
Li et al. propose an agent framework to model and deve-
lop dynamic service-oriented operations. In [11], Dale et al.

develop an evening organizer by combining Web services and
agents. In [1] Baldoni et al. propose a logic programming-
based approach to face the problem of automatic selection
and composition of Web services. In this approach, Web
services are viewed as software agents, communicating by
predefined and sharable interaction protocols. A reasoning
mechanism for performing the tasks of selection and com-
position of Web services in a way that is personalized w.r.t.
the user request is provided. Last but not least, Maximilien
and Singh present a multi-agent model for Web services and
define catalogs of architectural styles for service-oriented
architectures [28]. In this model, Web services are charac-
terized as autonomous, policy-driven agents. By modeling
Web services as agents, the authors augment the interaction
sessions of Web services as interactions between and among
service provider agents and service consumer agents, which
captures a richer set of dynamic and autonomic interaction
styles.

1.2 Contributions

The way we model and specify communities of Web services
in this paper goes beyond the simple exercise of combining
Web services and software agents. We aim at letting Web ser-
vices initiate and engage in flexible interaction sessions based
on their knowledge, interests, requirements, and needs. These
sessions could be related to the community to join, the com-
position scenario to take part in, the peers to team up with, just
to cite a few. This would shed the light on a new generation
of Web services, which we label as argumentative Web ser-
vices. Argumentative Web services will have the capability to
argue, persuade, and negotiate with peers using a dialectical
process when they want to affirm or disavow conclusions to
convey to peers. For example, an argumentative Web service
can persuade another Web service to join its community by
exposing the advantages of being a member of such a com-
munity. Moreover, beyond a simple acceptance or rejection
decision, an argumentative Web service can engage in more
sophisticated interactions to negotiate the joining contract’s
clauses before making such a decision. Argumentative Web
services are then services with more capabilities to reason
about the commitments they could have in a community or
before joining such a community.

This highlights an important contribution of the paper,
which is providing sufficient solutions for problems that
classical Web services cannot resolve. These problems are:
(1) starvation, which means that without being argumenta-
tive, Web services can refuse all the invitations of joining
communities if the offers are less than the expectations; (2)
competition-free, which means that non argumentative Web
services can accept joining any community without being
selective; and (3) unfairness, which means that always the
same Web services members of a community are selected

123

SOCA (2008) 2:219–238 221

out of many others to participate in composite scenarios.
The third problem can happen with non-argumentative Web
services because when a decision should be taken to select
a Web service for a composition after a call for proposals,
Web services that are members of a community always bid
with the same proposal, so the winner is always the same.
When Web services are argumentative, negotiating joining
offers and participation possibilities are possible. Further-
more, since Web services within a community can interact
and coordinate, replacing each other if some execution pro-
blems arise is possible, which increases the system reliability.
These benefits are implemented through an argumentation-
based protocol for persuasion and negotiation that Web ser-
vices can use in their interactions. We notice here that this
protocol does not have to be integrated into existing Web ser-
vices standards for the following reason. The protocol will
empower the functioning of the agents that act on behalf of
Web services. What is needed here is just linking software
agents to Web services without affecting the way these Web
services are already designed and deployed.

A community of argumentative Web services is not simply
a society of software agents that come together in order to
collaborate and achieve some common goals [35]. Although
Web services in a community can, to a certain extent, colla-
borate in some situations, they generally compete to partici-
pate in composition scenarios since they all offer the same
functionality but in a different set-up. Current approaches
to design and develop Web services cannot handle this type
of competition and argumentative agents are one more time
appropriate for supporting Web services’ operations. In such
a competition setting, Web services should argue and pro-
vide evidences supporting the fact that they are better than
others.

1.3 Paper’s organization

The rest of this paper is structured as follows. In Sect. 2,
we present the architecture of Web services communities,
discuss the underlying management operations, and show
through concrete scenarios the advantages of using argu-
mentative Web services for these management operations.
In Sect. 3, we introduce the argumentative agents we use
to specify Web services and manage their respective com-
munities. In Sect. 4, we present the argumentation-based
framework for these communities and propose a persuasive
negotiation protocol that Web services use to manage com-
munities. In Sect. 5, we discuss the formal properties of the
protocol along with its computational complexity. In Sect. 6,
we present the system implementation along with some expe-
rimental results. Finally we conclude in Sect. 7. In the rest
of this paper, argumentative Web service and argumentative
software agent are used interchangeably.

2 Communities of Web services

2.1 Definitions and architecture

In Longman Dictionary, community is “a group of people
living together and/or united by shared interests, religion,
nationality, etc.” In the field of Web services, Benatallah et al.
[4] define community as a collection of Web services with
a common functionality independently of who provide them
and how they function. Medjahed and Bouguettaya [31]
consider community as a means to organize Web services
that share the same domain of interest. Our definition goes
beyond Web services gathering and considers community as
a means to provide the description of a desired functiona-
lity (e.g. FlightBooking) without explicitly referring to
any concrete Web service (e.g. EKFlightBooking) that
will implement this functionality at run-time [26]. The defi-
nitions that Benatallah et al. and Medjahed and Bouguettaya
suggest do not emphasize the dynamic nature of communi-
ties. A community should be able for instance to attract and
retain the best Web services, to negotiate with the Web ser-
vices the clauses of the membership contract, and to expel the
Web services that do not fulfill their performance commit-
ments. Examples of membership contract’s clauses include
initial rewards a community grants a Web service, partici-
pation rate by time unit a community guarantees to a Web
service, leaving conditions and penalties, benefits a Web ser-
vice is subject to after each participation in a composite sce-
nario, etc. Current Web services’ standards do not support
these examples of operations, which shows the rationale of
having argumentative agents acting on behalf of Web services
and the communities they populate.

The development of communities of Web services offers
some direct benefits to system designers in terms of accele-
rating the discovery process of Web services and enhancing
Web services reliability at run-time [6].

1. The discovery process is now shifted to a higher level
by targeting communities and not Web services. Cur-
rent discovery practices are tied up to Web services and
require screening several registries like UDDI or ebXML
upon which Web services’ descriptions are posted. These
practices have proven to be tedious and require special
techniques in terms of semantics and security
[2,9,37]. In a composition scenario, the new discovery
process would start by identifying appropriate commu-
nities according to users’ needs and then, selecting from
the identified communities the respective Web services to
implement the required functionalities at run-time. This
two-step process is almost similar to what Jureta et al.
discuss in [21]. They suggest organizing Web services
into service centers, which are specialized in delive-
ring complete business-solutions based on Web services

123

222 SOCA (2008) 2:219–238

composition. Contrarily to communities that are
component Web services-centric, service centers are
composite Web services-centric.

2. The reliability of Web services is enhanced and even
sustained at run-time by allowing peers in a community
to substitute each other without initiating the discovery
process of other similar Web services from scratch, i.e.
looking for communities and then for Web services [43].
If a Web service fails, the pool of replacement Web ser-
vices, which have the same functionality like the failed
one, is limited to the community hosting these Web ser-
vices.

Figure 1 represents the architecture we developed to
manage communities of Web services [27]. The components
of this architecture include providers of Web services, UDDI
registries (or any type of registry like ebXML), providers
of Web services, and communities. A community is dyna-
mic by nature. It is established and dismantled according
to specific scenarios and protocols discussed in Sect. 2.2.
UDDI registries receive advertisements of Web services from
providers. Two communities of Web services are shown in
Fig. 1. They could offer for example FlightBooking and
CarBooking functionalities, respectively. A master com-
ponent always leads a community. The master component
could itself be implemented as a Web service for compa-
tibility purposes with the rest of Web services that popu-
late the community. These Web services are now denoted as
slaves and have in common the functionality of the commu-
nity to which they belong. Within the same community, slave
Web services compete to participate in composition scena-
rios since they all implement the same functionality but in
a different setting (e.g. different execution price, different
response time).

One of the responsibilities of the master Web service is to
attract Web services to sign up in its community using mul-
tiple types of rewards like better exposure to users during
the discovery process, high probability of participation in
composite scenarios, and benefits after each participation
(Sect. 2.2). As a result, the master Web service screens the
UDDI registries on a regular basis, so that it stays informed
about the latest Web services’ advertisements posted on these
UDDI registries. Furthermore, a new Web service can contact
the master Web service of a given community to express its
interest in being part of this community based on the simila-
rity that exists between its functionality and this community’s
functionality. An extra responsibility of the master Web ser-
vice in a community is to nominate the slave Web service that
will participate in a composite Web service. To this end and as
suggested in [26], the master Web service runs the contract-
net protocol [42] by sending all slave Web services a call for
bids. This call for bids always comes along with the non-
functional (i.e. QoS) criteria that the user sets for selecting

Web services like response time and execution cost [32].
Prior to getting back to the master Web service, the slave
Web services assess their status [25] and check their capa-
cities of meeting these criteria. Only the slave Web services
that are interested in bidding reply back to the master Web
service. This latter screens all the bids before choosing the
best one, e.g. a slave Web service’s execution cost and reliabi-
lity meeting the user’s requirements. The winning slave Web
service is notified and then it gets ready for execution when
requested. The rest of the slave Web services that expressed
interest but were not selected, are notified as well. However,
if several slave Web services are selected because they offe-
red the same bid, more sophisticated mechanisms are needed
to choose one of them. Various solutions can be adapted for
instance random selection, voting [39], or negotiation [45].

In a Web services community, the designation of a mas-
ter Web service occurs in two different ways. The first way,
which we choose in our work, is to have a dedicated Web
service play the master role during the time being of a com-
munity. As a result, the master Web service never partici-
pates in compositions. The second way is to identify a slave
Web service from the list of slave Web services that already
populate a community. This identification could happen on
a voluntary basis or after running election among the slave
Web services. To keep the paper self-contained, additional
details on master Web service designation are not provided.

2.2 Management

The management of a community of Web services revolves
around the following questions: how to develop (dismantle)
a new (existing) community, how to attract new Web services
to be enrolled in an existing community, and how to retain
existing Web services in a community? All these manage-
ment operations are regulated through conversation sessions
that argumentative Web services initiate.

2.2.1 Community of Web services development

A community is initially deployed to gather Web services
with a similar functionality. This deployment is designer-
driven and occurs in two steps. The first step is to define
the functionality (e.g. FlightBooking) of the commu-
nity by binding to a specific ontology [19]. This binding is
crucial since providers of Web services use different
terminologies to describe the functionality of their
respective Web services. For example, FlightBoo- king,
FlightReservation, and AirTicketBooking are
all about the same functionality. The description of a Web
service’s functionality needs to be mapped onto the descrip-
tion of the functionality of the community using a specific
ontology (i.e. ontology consists of concepts, axioms, rela-
tions, and instances).

123

SOCA (2008) 2:219–238 223

Fig. 1 Architecture of an
environment of several
independent communities of
Web services

 SW- retsaM 1

Slave-WS1iSlave-WS11

Community1

 SW- retsaM 2

Slave-WS2jSlave-WS21

Community2

UDDI
registries

 secivres beW fo sredivorP
Advertisements

 secivres beW fo sredivorP
Advertisements

Interactions Interactions

Interactions
Consultations

Interactions

The second step in establishing a community is to deploy
the master Web service of the community so that it takes over
the multiple responsibilities we listed in Sect. 2.1. Some of
these responsibilities include inviting Web services to sign
up in its community and checking the credentials of Web ser-
vices before they are admitted in its community. Credentials
could be related to QoS (latency, execution time, privacy and
security mechanisms, reliability, integrity, etc.), interaction
protocols, interoperability, etc. Credential checking is critical
to the reputation of a community as this boosts the security
level in a community and enhances the trustworthiness level
of a master Web service towards its slave Web services [17].

Dismantling a community of Web services is designer-
driven as well that happens upon request from the master
Web service. If this latter notices that the number of Web
services in the community is less than a certain threshold
and the number of participation requests in composite Web
services that arrive from users over a certain period of time
is less than another threshold, then the community will be
dismantled. Both thresholds are set by the designer. A slave
Web service that is ejected from a community is invited to
join other communities subject to assessing the similarities
between functionalities.

2.2.2 Web services attraction and retention

Attracting new Web services to a community and retaining
the existing Web services in a community fall one more time
under the responsibilities of the master Web service. We poin-
ted out how a community of Web services could disappear if
the number of residing Web services drops below a certain
threshold. On the one hand, attracting Web services drives the
master Web service to regularly consult the different UDDI
registries looking for new Web services. These latter could
have recently been posted on an UDDI registry or have seen
their description changed. Changes in a Web service’s des-
cription raise challenges since a Web service may no longer
be appropriate for a community. As a result, this Web ser-
vice is invited to leave the community. When a candidate

Web service is identified in an UDDI registry according to
its functionality, the master Web service interacts with this
candidate. The purpose is to persuade the candidate Web ser-
vice to register with its community. An argument that is used
during this interaction is the high rate of participation of the
existing Web services in composition scenarios, which is a
good indicator of the visibility of a community to the external
environment. Other arguments include short response-time
in handling users’ requests, and efficiency of the security
mechanisms against malicious Web services.

On the other hand, retaining Web services in a community
for a long period of time is a good indicator of the following
elements:

– Although the Web services in a community are in com-
petition, they expose a cooperative attitude. For instance,
Web services are not subject to attacks from peers in the
community. This backs the security argument that the
master Web service uses to attract new Web services.

– A Web service is to a certain extent satisfied with its parti-
cipation rate in composite Web services. This satisfaction
rate is set by the provider of the Web service. In addition,
this is inline with the participation-rate argument that the
master Web service uses to attract new Web services.

– Web services are aware of peers in the community that
could replace them in case of failure with less impact
on the ongoing composite Web services in which they
participate.

Web services attraction and retention shed the light on
a third scenario. It is about Web services that are asked to
leave a community. A master Web service could issue such
a request upon assessment of the following criteria:

– The Web service has a new functionality, which does not
perfectly match the functionality of the community.

– The Web service is unreliable. In different occasions, the
Web service failed to participate in composite Web ser-
vices due to recurrent operation problems.

123

224 SOCA (2008) 2:219–238

– The credentials of the Web service were “beefed up” to
enhance its participation opportunities in compositions.
Ouzzani and Bouguettaya report that a Web service may
not always fulfill its advertised QoS parameters due to
various fluctuations related for example to the network
status or resource availability [36]. Therefore, some dif-
ferences between advertised and delivered QoS values
occur. However, large differences indicate that the Web
service is suffering a performance degradation and might
not be able to sustain its advertised QoS.

2.3 Motivations behind argumentative Web services

Having discussed the management operations of a commu-
nity of Web services, we provide hereafter some concrete sce-
narios that demonstrate the rationale of having argumentative
Web services. In the architecture of Fig. 1, each master/slave
Web service is associated with an argumentative agent that
acts on its behalf. This should make Web services respond
in a proper way to the various situations they could encoun-
ter at run-time. This association does not mean that agents
from different service providers will reside and run on the
same agent platform, but they can be deployed locally. The-
refore, they can interact with others through Web services
based message delivery and they can be easily re-configured
without bothering distributed service advertisements.

Web services can initiate conversations with their peers
before they decide to join/remain in/leave a community or
participate in a composition scenario. These conversations
could be based on previous ones and thus, can be used to rea-
sons over them during persuasion and negotiation. Traditio-
nal Web services lack such reasoning capacities. As a result,
their actions are very limited in reaction to the events happe-
ning in their environment. To illustrate the aforementioned
discussion, let us consider the following two scenarios:

1. In the first scenario, the master Web service of a com-
munity identifies an appropriate Web service (in terms
of functional and non-functional properties) in an UDDI
and would like to invite it to its community. Let us assume
that the following arguments are used to make the
invitation attractive: (i) initial “monetary” reward the
master suggests to the Web service if it accepts, and (ii)
participation-rate range by time unit that the master pro-
mises to the Web service. To illustrate these arguments,
figures are used such as InitialReward = 100 and
ParticipationRate ∈ [10, 20]. In case of a non-
argumentative Web service that is implemented as a set
of hard-coded rules, it will either accept or refuse the
membership offer. A rule of type InitialReward ≤
140 ∧ ParticipationRate /∈ [18, 25] ⇒ Ref use
I nvi tation, (where ∧ and ⇒ stand for “and” and “then”,
respectively) will make the Web service refuse the offer.

This simple example sheds the light on a “starvation”
problem where a Web service will automatically turn
down all the invitations because of the gap between the
offers and its expectations. To handle this scenario, the
designer of the Web service has to review the rules.
Moreover, the Web service can continue refusing offers
even though they are close to the limits imposed by
the designer as the following rule illustrates: Initial
Reward ≤ 101 ∧ ParticipationRate /∈ [10, 20]
⇒ Ref useI nvi tation. If the thresholds are low
enough and interval ranges are large enough to avoid this
“starvation” problem (i.e. InitialReward ≤ 70 ∧
ParticipationRate /∈ [4, 30]), then the Web ser-
vice will accept the first offer even if it deserves a much
better offer considering its outstanding QoS. Accepting
any offer, without being selective, will create a
“competition-free” environment between Web services.
Plus, there will be no distinction between “good” and
“poor” Web services. Finding a trade-off solution in order
to avoid the “starvation” and “non-competitiveness” pro-
blems is not straightforward when rules that dictate the
operations of Web services are rigid and hard-coded.
If Web services were argumentative, they could address
the “starvation” problem. They could consider previous
interactions with different masters and review (e.g. lowe-
ring) their expectations according to the available offers.
Moreover, they could manage the “non-competitiveness”
problem by reasoning over different offers and negotia-
ting them with the master in order to maximize their
benefits.
In the aforementioned scenario, the number of arguments
(i.e. InitialReward and ParticipationRate)
was limited to two, only. In real life, multiple argu-
ments could be used, such as contract duration, depar-
ture conditions, QoS to maintain (mean response time
(latency), execution time, transaction time, throughput,
pricing policy, privacy and security mechanisms, reliabi-
lity, integrity, etc.), reputation of the community,
availability, etc. In such a scenario, the use of hard-
coded rules will accentuate the “starvation” and “non-
competitiveness” problems. Contrarily, argumentative
Web services could smoothly engage in negotiation ses-
sions for the sake of achieving better agreements. The-
refore, rewards could be subject to the QoS that Web
services provide. For example, if a Web service’s res-
ponse time was short, and its reliability was high, then
the reward should be high.

2. In the second scenario, the focus is on composition. We
mentioned that the master Web service uses the contract-
net protocol to select the Web service that will parti-
cipate in a composite Web service (Sect. 2.1). On the
one hand, in case of non-argumentative Web services,
these ones will always provide the same bids based on

123

SOCA (2008) 2:219–238 225

their hard-coded rules every time a similar call for bids is
received. Therefore, the same Web service, or the same
set of Web services, will be selected. This will lead to
another problem namely “unfairness” since other Web
services will automatically be discarded. In addition, if
many Web services submit the same bid (e.g. same QoSs
and same fares), the non-argumentative master will select
one of them either randomly or by voting. This mode of
selection has several drawbacks. Although voting insures
fairness versus random selection, implementing it with
competitor and “selfish” Web services is proved to be
inefficient [13]. Furthermore, using random and voting
selection without giving Web services room to interact
with each other will deprive them from collaboration. As
a result, they cannot replace each other if some problems
arise in run-time.
On the other hand, i.e. with argumentative Web services,
the “unfairness” problem can be addressed by changing
the biding strategies if after a while Web services finds
out that their bids continue to be unselected compared
to what other peers provide. The selection problem can
then be fixed by allowing argumentative Web services
to negotiate their participation with each other. An argu-
ment to use in this negotiation is resource and benefit
sharing. As an outcome example of the negotiation, one
of them is selected subject to selecting the other one next
time.

Empowering Web services with argumentation capabili-
ties comes with its own set of challenges. For instance, the
high computational complexity of argumentation-based rea-
soning and decision making procedures (as reported in [38])
might affect the performance of Web services. To address
this challenge, we show in Sect. 5 that the use of a restricted
logical language for instance Horn logic, and simple logical
rules should be enough to implement the operations related
to community management such as attraction, retention, and
selection.

3 Argumentative agents

Prior to explaining the use of argumentation to manage Web
services communities, an overview of this theory is deemed
appropriate.

Argumentation is defined as a dialectical process for the
interaction of different arguments for and against some
conclusions [18,41]. Argumentation can help multiple agents
make decisions, interact rationally, convince and negotiate
with peers by relying on reasons that lead into conclusions
[16]. Furthermore, argumentation can assist agents to inter-
nally perform their reasoning when they control and require
access to resources and services.

At the architectural level, agents using argumentation
(called argumentative agents) are BDI agents augmented with
additional capabilities that make them more autonomous.
Indeed, such agents can argue about their beliefs and goals,
and build and evaluate arguments before making decisions.
To be able to negotiate, BDI (non-argumentative) agents use
static and predefined protocols and game theory-based tech-
niques. Predefined protocols are not flexible and they can
be used only for basic interactions where the outcomes are
deterministic, and using game theory assumes, among other
things, that agents have unbounded computational resources,
have complete knowledge of the outcome space, and are opti-
mizers of utility in the sense of rational-choice theory. From
a computational perspective, these are unrealistic assump-
tions for automatic negotiation. Agents can also use an heu-
ristic approach for negotiation. Such an approach will try
to maximize the utility of each agent by making iterative
concessions until an agreement is achieved. However, such
a solution can be used only for simple, one issue negotia-
tion. For multi-issue negotiations involving several parame-
ters, an heuristic approach cannot guarantee achieving an
agreement satisfying both agents. This is because multi-issue
negotiation needs more sophisticated reasoning capabilities
to reason about different combinations. Another limit of heu-
ristic approaches is the fact that agents’ strategies are rigid
and cannot be changed when new information becomes avai-
lable. In fact, negotiation takes place when there is a conflict
and agents are willing to collaborate in order to achieve an
agreement. Argumentation seems a natural solution since by
providing arguments that justify the offers, there is a high
chance of achieving an agreement resolving the conflict. In
Sect. 5.1, we prove that if such an agreement is theoreti-
cally possible considering the union of the agents’ knowledge
bases, then by using a suitable argumentation protocol, this
agreement will always be achieved. This solution can be used
for simple as well as complex negotiation. For the purpose of
managing communities of Web services, multi-issue nego-
tiations are most likely to happen particularly when nego-
tiating the joining contract involving several terms such as
the initial reward, participation rate in composite scenarios,
benefits gained after each participation, contract duration,
leaving conditions and penalties, etc. For this reason, argu-
mentation seems to be the most suitable solution for this type
of negotiation.

Several argumentation theories and frameworks have been
proposed in the literature like [6,10,41]. An argumentation
system essentially includes a logical language L, a defini-
tion of the argument concept, a definition of the attack rela-
tion between arguments, and a definition of the accepta-
bility of arguments. The use of a logical language enables
argumentative agents to use a logic-based reasoning in order
to effectively reason about arguments in terms of inferring
and justifying conclusions, and attacking and defending

123

226 SOCA (2008) 2:219–238

arguments. The attack relation is based on a contrary relation,
which is not necessarily symmetric. For example, a contrary
of the fact that “the response time of the Web service falls
into the interval [2 ms, 10 ms]” is “the response time of this
Web service is in [8 ms, 14 ms].” A contrary of a formula p
is denoted by p̄. The logical negation ¬ is an example of the
contrary relation. Hereafter, we define the concepts that will
be used in the framework for managing communities of Web
services (� stands for classical inference and → for material
implication):

Definition 1 (Argument) Let Γ be a knowledge base with
no deductive closure. An argument is a pair (H, h) where h
is a formula of L and H a subset of Γ such that: (i) H is
consistent, (i i) H � h, and (i i i) H is minimal, so that no
subset of H satisfying both (i) and (i i) exists. H is called
the support of the argument and h its conclusion.

Example 1 Let Γ = {a, b, t, a∧b → c, c∧d → m,¬m, r,
¬a, r → d, t → ¬c}.
({a, b, a ∧b → c, r, r → d, c∧d → m}, m) is an argument
supporting m.

Definition 2 (Attack relation) Let AT be a binary relation
between arguments, and (H, h) and (H ′, h′) be two argu-
ments. (H ′, h′) AT (H, h) iff H ′ � h̄ or ∃x : H � x and
h′ ≡ x̄ . In other words, an argument is attacked if and only
if there exists an argument that contradicts its conclusion or
an element of its support.

Example 2 Considering the same Γ as in Example 1, the
argument: ({t, t → ¬c},¬c) attacks the argument ({a, b, a∧
b → c, r, r → d, c ∧ d → m}, m) since ({a, b, a ∧ b →
c, r, r → d, c∧d → m} � c. Also the argument ({¬m},¬m)

attcks the argument ({a, b, a ∧ b → c, r, r → d, c ∧ d →
m}, m).

An argument is acceptable if it belongs to an acceptable
set of arguments. A set of arguments is acceptable if it is
conflict free (there is no two arguments in the set such that
one attacks the other) and defends all its elements against all
the attackers (see [15] for more details about the different
acceptability semantics).

4 Persuasive negotiation protocol for communities
of Web services

4.1 Formal foundation

The characteristics of argumentation-based agents discus-
sed in Sect. 3 make them suitable for modeling dynamic and
proactive Web services. The primary added value is to let Web
services interact and argue with each other before joining and
settling down afterwards in a community. They will be able

to reason about and compare different joining offers in order
to maximize their benefits. For example, Web services can
select the best community in terms of reputation and get the
best reward and the best participation rate. In addition, they
can maximize their performance within the community by
negotiating with peers the participation conditions in com-
posite scenarios. They can share participation benefits and
collaborate by sharing resources and replacing each other if
some problems arise at run-time [3]. In fact, as discussed
in Sect. 2.3, argumentative Web services provide solutions
to the “starvation,” “non-competitiveness,” “unfairness,” and
“selection” problems, which cannot be resolved using tradi-
tional Web services equipped with rigid, hard-coded rules.

Our argumentative agents act as representatives to Web
services, reason on their behalf, and identify situations that
maximize their profits (e.g. participation-rate increase) and
minimize their expenses (e.g. resource consumption
decrease). Metadata describing Web services in terms of
contents and features are represented within the state of the
agents. Web services within communities are connected
through a communication network so that they can interact
and share resources to reach some joint goals.

In this section, we present a persuasive negotiation pro-
tocol that allows argumentative Web services to negotiate
the contract of joining a community and their participation
in composite scenarios. We present first the general proto-
col form and then illustrate its instantiation for a scenario
about joining a community. To reason about Web services and
communities, argumentative agents are equipped with know-
ledge, beliefs, and argumentation capabilities. The agent of
a Web service AgW S knows all details on its Web service in
terms of functionality, QoS, (mean response time, execution
time, transaction time, throughput, reliability, integrity, etc.),
and any other relevant details. The knowledge base of AgW S

is denoted by K B(AgW S). An argumentative Web service
can also have beliefs towards other Web services whether in
the same community or in other communities. Descriptions
of these Web services, their functionalities, QoS, and trust
are examples of these beliefs. As explained in the previous
section, the agent’s argumentation system is built upon the
agent’s beliefs and knowledge.

In [38], Parsons et al. prove that argumentation reasoning
procedures based on languages expressed in the first order
logic or even propositional logic are computationally intrac-
table. For communities of Web services, a restricted language
such as Horn logic is enough to represent agents’ beliefs and
to develop their reasoning capacities. Horn logic is expres-
sed in terms of propositional Horn clauses. Such a clause is a
disjunction of literals with at most one positive literal ¬p1 ∨
¬p2 ∨ · · · ∨ ¬pn ∨ c (also written as implication p1 ∧ p2 ∧
· · · ∧ pn → c). A propositional Horn formula is a conjunc-
tion of propositional Horn clauses. These clauses could be
restricted to be definite where each clause has exactly one

123

SOCA (2008) 2:219–238 227

positive literal. A propositional definite Horn formula is a
conjunction of propositional definite Horn clauses. This res-
triction is of a particular interest in modeling argumentative
reasoning, since formulas of type p1 ∧ p2 ∧· · ·∧ pn → c are
adequate to describe interrelationships between premises and
conclusions. This could be used to support positive literals.
For example, the master Web service can have an argument
supporting the conclusion that the community it is leading
has a good reputation, which can be represented as follows:
NWS = High ∧ NUR = High ∧ NSC = High ∧ NLW =
Low → Reputation = Good where NWS stands for Number
of current Web Services in the community, NUR for Num-
ber of Users’ Requests the community receives by time unit,
NSC for Number of Successful Compositions by time unit to
which the community’s Web services participate, and NLW
for Number of Leaving Web services. Also, a slave Web ser-
vice can have an argument supporting the fact that it deserves
a better offer, which can be represented as follows: R =
V1 ∧ R_Cx = V2 ∧ V2 ≥ V1 ∧ QoS = Good → DR ≥ V1

where R stands for the Reward offered by the community
the Web service is negotiating with, R_Cx for the Reward
another Community (called Cx) already offered to this Web
service, and DR for Deserved Reward. In other words, when
negotiating with a given community, if an argumentative Web
service has a good QoS and already received a competitive
offer from another community, then it has an argument to ask
for a better offer. In addition, for Web services, there is no
need to suppose that the knowledge bases are inconsistent.
The reason is that the size of these knowledge bases are gene-
rally small enough, so that checking the consistency when a
new belief is added becomes doable in a linear time.

4.2 General specification

To be able to persuade an argumentative Web service to join
a community or to remain in a community, and to nego-
tiate the participation in a given composite scenario along
with the outcome of the contract-net protocol, the master
and slave argumentative Web services use persuasive nego-
tiation techniques based upon their argumentation abilities.
Hereafter, we specify a Horn logic-based protocol to use for
these persuasion and negotiation activities. This protocol is
specified as a combination of a set of initiative/reactive dia-
logue games. Dialogue games can be thought of as interac-
tion games in which each Web service plays a move in turn
by performing utterances according to a pre-defined set of
rules [29]. Dialogue games have the advantage of being
more flexible than classical protocols such as FIPA-ACL
protocols.1 Indeed, a dialogue game can be specified as a
combination of small conversation policies that Web services
can combine by reasoning over them using a set of logical

1 http://www.fipa.org.

rules [5]. From a logical point of view, game moves are
considered as communicative acts that argumentative Web
services perform. Formally, we define a protocol for argu-
mentative Web services as follows:

Definition 3 (Protocol) A protocol Pr for argumentative
Web services is a tuple 〈C,D〉 where C is a finite set of allo-
wed communicative acts and D is a set of dialogue games.

The allowed communicative acts in our persuasive negotia-
tion protocol are: Open, Accept, Refuse, Make-Offer, Chal-
lenge, Justify, and Attack. Open is a special communicative
act used to open the protocol. The type of a communicative
act refers to its name, for example Accept is a communica-
tive act of type Accept . We define a dialogue game in our
protocol as follows:

Definition 4 (Dialogue game) Let C Ai (AgW S1 , AgW S2 , p)

be a communicative act of type i performed by an argumen-
tative Web service AgW S1 and sent to another argumentative
Web service AgW S2 about a content p, and C Ai j (AgW S2 ,

AgW S1 , p′) be the communicative act of type j with content
p′ that depends on the communicative act of type i . A dia-
logue game Dg is a conjunction of rules, where each rule
identifies one possible communicative act that a Web service
can use as a reply when receiving a communicative act from
another Web service if a given condition Ci j is satisfied. This
conjunction is specified as follows:
∧

0< j≤n

(
C Ai (AgW S1 , AgW S2 , p) ∧ Ci j

⇒ C Ai j (AgW S2 , AgW S1 , p′)
)

where ⇒ is the implication symbol for dialogue game rules,
and n is the number of allowed communicative acts that
AgW S2 can perform after receiving a communicative act from
AgW S1 .

We use the symbol ⇒ instead of → to distinguish the impli-
cation in the dialogue game rules from the one used in Horn
formulas. In this definition, content p could be a Horn for-
mula or an argument expressed in Horn clauses. Ci j is expres-
sed in terms of the possibility of generating an argument from
the argumentation system.

The formula p � Arg_Sys(AgW S) expressed in Horn lan-
guage L denotes the fact that a Horn propositional formula
p can be generated from the AgW S’s argumentation system
denoted by Arg_Sys(AgW S). The formula ¬(p � Arg_Sys
(AgW S)) indicates the fact that p cannot be generated from
AgW S’s argumentation system. For example, if the master
Web service AgMW S_Cx of a community Cx has an argu-
ment for the fact that the reputation of its community is good,
this will be represented by:

Reputation_Cx = Good � Arg_Sys(AgMW S_Cx)

A Horn propositional formula p can be generated from an
argumentative Web service’s argumentation system, if this

123

http://www.fipa.org.

228 SOCA (2008) 2:219–238

Web service can build an argument supporting p using its
argumentation system. The following is an example of a dia-
logue game, in which a master Web service AgMW S1_Cx of
a community Cx invites a Web service AgW S2 to join the
community.

Example 3
Open(AgMW S1_Cx , AgW S2 , p)

∧ (¬(Reputation_Cx = Poor � Arg_Sys(AgW S2))

∧(Joining_Commitment = f alse� Arg_Sys(AgW S2))
)

⇒ Accept (AgW S2 , AgMW S1_Cx , p)

where p = I nvi tation_ f or_Joining_Cx

In this example, AgW S2 accepts the invitation because it
does not have any argument supporting the fact that the
reputation of the community is “poor” and it has an argu-
ment that it is not committed to join any other community
(Joining_Commitment = f alse). Accepting the invita-
tion does not mean that AgW S2 commits to join the commu-
nity, but only a negotiation of the joining contract can start.

4.3 Argumentative dialogue games for communities of Web
services

In our persuasive negotiation protocol for argumentative Web
services, we distinguish three types of dialogue games
(Fig. 2): Entry game, Chaining games, and T ermination
game. The Entry game enables conversation opening and
setting up. The Chaining games make it possible to conti-
nue the conversation by combining several dialogue games.
The persuasive negotiation protocol includes four chaining
dialogue games: Offer game, Challenge game, Attack game
and J ustifica-tion game. The conversation terminates when
the exit conditions are satisfied (T ermination game).

4.3.1 Entry game

General form

The Entry game allows Web services to initiate conversa-
tions. For example, if a master Web service decides to invite
a new Web service registered in a given UDDI to be a member
of its community, this master will trigger an Entry game with
invitation to join the community as subject. If the new Web
service accepts, then the master can suggest rewards to the
Web service if its final decision is to join the community. If
the Web service refuses the invitation, the protocol termi-
nates. A Web service can turn down invitations if it is not
interested in a community (e.g. low participation-rate of exis-
ting Web services, or decided to join another community).
Within a same community, a Web service can invite other
Web services to negotiate their participation in a composite
Web service. This occurs, as mentioned in Sect. 2, when
several agents provide the same “winning” bid following the

Entry game
Chaining games

Termination game

Fig. 2 Types of dialogue games

master Web service’s call for bids. The master asks one of
the winnings to invite others for negotiation. The negotia-
tion starts upon receiving and accepting this invitation. We
specify the Entry game as follows:
(
Open(AgW S1 , AgW S2 , p) ∧ C1

⇒ Accept (AgW S2 , AgW S1 , p)
)

∧(
Open(AgW S1 , AgW S2 , p) ∧ C2

⇒ Ref use(AgW S2 , AgW S1 , p)
)

where:

C1 = (p � Arg_Sys(AgW S2))∨¬(¬p � Arg_Sys(AgW S2))

C2 = ¬p � Arg_Sys(AgW S2)

Proposition p is expressed in the logical language L using
a shared ontology. This proposition indicates an invitation to
start a conversation. If the invited Web service has an argu-
ment in favor of p or does not have any argument against p,
it accepts the invitation. Otherwise, it refuses. For example,
if a new Web service is not interested in joining a community
due to previous unsuccessful experiences in this community,
a refusal is sent to the master Web service. If a Web service
believes that the community’s configuration is efficient (i.e.
good reputation and high participation rate), and no commit-
ment is made to join any other community, then it will accept
the invitation. The following example instantiates the Entry
game with respect to this invitation scenario.

Example 4(
Open(AgMW S1_Cx , AgW S2 , p)

∧ (
(Reputation_Cx = Good � Arg_Sys(AgW S2))

∧(Participation_Rate_Cx = High�Arg_Sys(AgW S2))

∧ (Joining_Commitment= f alse � Arg_Sys(AgW S2))
)

⇒ Accept (AgW S2 , AgMW S1_Cx , p)
)

∧ (
Open(AgMW S1_Cx , AgW S2 , p)

∧ (
(Reputation_Cx = Poor � Arg_Sys(AgW S2))

∨ (Participation_Rate_Cx=Low � Arg_Sys(AgW S2))

∨ (Joining_Commitment=true � Arg_Sys(AgW S2))
)

⇒ Ref use(AgW S2 , AgMW S1_Cx , p)
)

where p = I nvi tation_ f or_Joining_Cx

4.3.2 Offer game

General form

Once the Entry game is accepted, the initiator argumentative
Web service starts by making an offer. In the case of inviting
a new Web service to join a community, the offer contains the
initial rewards that the master offers to the new Web service
and the advantages of being a member of this community.

123

SOCA (2008) 2:219–238 229

In the case of persuading an existing Web service to remain
in the community, the offer could include increases in the
rewards. In the case of negotiating a participation in a com-
posite Web service, the offer contains the rewards that the
initiator will give to the other Web service after the compo-
sition, for example, a part of the rewards this initiator will
obtain after its participation. Let p and q be two Horn formu-
las representing offers (contents of an Offer communicative
act). The notation p � q indicates the fact that these two
offers are for the same object. We specify the Offer game as
follows:
(
Make-Offer(AgW S1 , AgW S2 , p) ∧ C1 ⇒
Accept (AgW S2 , AgW S1 , p)

)

∧(
Make-Offer(AgW S1 , AgW S2 , p) ∧ C2 ⇒

Challenge(AgW S2 , AgW S1 , p′)
)

∧(
Make-Offer(AgW S1 , AgW S2 , p) ∧ C3 ⇒

Attack(AgW S2 , AgW S1 , (H,¬p′))
)

∧(
Make-Offer(AgW S1 , AgW S2 , p) ∧ C4 ⇒

Make-Offer(AgW S2 , AgW S1 , q)
)

∧(
Make-Offer(AgW S1 , AgW S2 , p) ∧ C5 ⇒

Refuse(AgW S2 , AgW S1 , p)
)

where

C1 = p � Arg_Sys(AgW S2)

C2 = ∃p′ ⊆ p :
¬(p′ � Arg_Sys(AgW S2)) ∧ ¬(¬p′ � Arg_Sys(AgW S2))

C3 = ∃p′ ⊆ p :
(H � Arg_Sys(AgW S2)) ∧ (H,¬p′) AT (p, p)

C4 = p � q ∧ q � Arg_Sys(AgW S2)

C5 = ¬(C1 ∨ C2 ∨ C3 ∨ C4)

By definition, Attack(AgW S2 , AgW S1 , (H,¬p′)) means that
AgW S2 asserts argument (H,¬p′) to attack a part or the
whole offer proposed by AgW S1 . The generation of a set of
formulae H from AgW S2 is defined as follows:

H � Arg_Sys(AgW S2)
�= ∀hi ∈ H hi � Arg_Sys(AgW S2)

When an argumentative Web service receives an offer, it
accepts it if it has a supporting argument for it, challenges
a part of it if it has no argument for or against this part,
attacks if it has an argument against the offer, and/or makes a
counter offer if it can generate such a counter-offer from its
knowledge base using its argumentation system. The content
of an attack could also be a counter-offer. If none of these
conditions is satisfied, the addressee refuses the offer. For
example, an argumentative Web service can refuse an offer
if it has already accepted a different offer made by another
master Web service about the same subject. Generally, within
a dialogue game, an argumentative Web service can only play
one move. However, Attack and Make-Offer moves can be
played together; attacking offers and then making counter-
offers.

Example 5 Let us suppose that the master AgMW S1_Cx and
the Web service AgW S2 would like to negotiate two terms in
the joining contract: the AgW S2 ’s availability increasing and
participation rate in composite business scenarios the mas-
ter can provide. By the availability we mean the availabi-
lity of the Web service as perceived by the user. The master
can promise to AgW S2 to increase its availability since the
community provides a collaborative setting so it can share
resources with other Web services and they can replace it
in case of failure execution. Let p(v1, v2) indicate the fact
that the availability will be increased by a value v1 and the
participation rate by time unit will be of a value v2. An ins-
tantiation of the the Offer game is as follows:
(
Make-Offer(AgMW S1_Cx , AgW S2 , p(v1, v2))

∧ p(v1, v2) � Arg_Sys(AgW S2)

⇒ Accept (AgW S2 , AgMW S1_Cx , p(v1, v2))
)

∧(
Make-Offer(AgMW S1_Cx , AgW S2 , p(v1, v2))

∧ ¬(p(v1, v2) � Arg_Sys(AgW S2))

∧ ¬(¬p(v1, v2) � Arg_Sys(AgW S2))

⇒ Challenge(AgW S2 , AgMW S1_Cx , p(v1, v2))
)

∧(
Make-Offer(AgMW S1_Cx , AgW S2 , p(v1, v2))

∧ (Av_W S2+v1<Availabili t y-Cx � Arg_Sys(AgW S2))

∧ (v2 < Participation-Cx � Arg_Sys(AgW S2))

⇒ Make-Offer(AgW S2 , AgMW S1_Cx , p(Availabili t y-
Cx + ε1, v2 + ε2))

)

∧(
Make-Offer(AgMW S1_Cx , AgW S2 , p(v1, v2))

∧ ¬p(v1, v2) � Arg_Sys(AgW S2)

⇒ Ref use(AgW S2 , AgMW S1_Cx , p(v1, v2))
)

In this example, AgW S2 accepts the offered availability
increasing and participation rate if it has an argument suppor-
ting them, which means that the offer fits the Web service’s
expectation. If no argument can support the offer or attack
it, AgW S2 asks for justification. This means that the Web ser-
vice does not have any expectation regarding the availability
increasing and the participation rate. For example, the Web
service does not know if the offered participation rate is more
or less than the community’s average. If the increasing avai-
lability and participation rate are not enough because they
are less than the community’s average, AgW S2 will make a
counter-offer. In the example, ε1 and ε2 can be calculated so
that the new offer fits the AgW S2 ’s expectation. Otherwise, the
offer will be simply refused. For simplicity reasons, the attack
option is merged with the counter-offer in this example.

4.3.3 Challenge and J ustification games

General form

The Challenge game is specified as follows:

Challenge(AgW S1 , AgW S2 , p) ∧ C1

⇒ Justi f y(AgW S2 , AgW S1 , (H, p))

123

230 SOCA (2008) 2:219–238

where

C1 = H � Arg_Sys(AgW S2)

Condition C1 should always be satisfied since a Web service
must always be able to justify its propositions and assertions.

We specify the J ustification game as follows:
(
Justi f y(AgW S1 , AgW S2 , (H, p)) ∧ C1

⇒ Accept (AgW S2 , AgW S1 , H)
)

∧(
Justi f y(AgW S1 , AgW S2 , (H, p)) ∧ C2

⇒ Challenge(AgW S2 , AgW S1 , H ′)
)

∧(
Justi f y(AgW S1 , AgW S2 , (H, p)) ∧ C3

⇒ Attack(AgW S2 , AgW S1 , (H ′, p′))
)

∧(
Justi f y(AgW S1 , AgW S2 , (H, p)) ∧ C4

⇒ Make-Offer(AgW S2 , AgW S1 , q))
)

∧(
Justi f y(AgW S1 , AgW S2 , (H, p)) ∧ C5

⇒ Refuse(AgW S2 , AgW S1 , p))
)

where

C1 = H � Arg_Sys(AgW S2)

C2 = ∃H ′ ⊆ H : ∀hi ∈ H ′
¬(hi � Arg_Sys(AgW S2)) ∧ ¬(¬hi � Arg_Sys(AgW S2))

C3 = H ′ � Arg_Sys(AgW S2)) ∧ (H ′, p′) AT (H, p)

C4 = p � q ∧ q � Arg_Sys(AgW S2)

C5 = ¬(C1 ∨ C2 ∨ C3 ∨ C4)

Challenging a set of formulae H means that challenging all
the formulas in it:

Challenge(AgW S2 , AgW S1 , H)
�= ∀hi ∈ H

Challenge(AgW S2 , AgW S1 , hi)

These five conditions are similar to those associated with the
Offer game. The only difference in the J ustifi-cation game
resides in Accept and Attack moves that are relative to the
support of the offer and not to the offer itself.

Example 6 Let us continue the scenario we instantiated in
Example 5 in which, the master AgMW S1_Cx and the Web
service AgW S2 negotiate the AgW S2 ’s availability increasing
and participation rate in composite business scenarios. When
AgW S2 challenges the offer, AgMW S1_Cx justifies it by the
fact that it is greater than the community’s average. AgW S2

attacks then the answer by providing an example of another
community Cy providing the same functionalities but with a
higher participation rate. This scenario is formulated as fol-
lows:

(
Challenge(AgW S2 , AgMW S1 _Cx , p(v1, v2))

∧ (Av_W S2 + v1 > Availabili t y-Cx � Arg_Sys
(AgMW S1 _C_x))
∧ (v2 > Participation-Cx � Arg_Sys(AgMW S1 _Cx))

⇒ Justi f y(AgMW S1 _Cx , AgW S2 , (H, p(v1, v2)))
)

(
Justi f y(AgMW S1 _Cx , AgW S2 , (H, p(v1, v2)))

∧ (Participation-Cy > v2 � Arg_Sys(AgW S2))

∧ (H ′,¬p(−, v2)) AT (H, p(v1, v2))

⇒ Attack(AgW S2 , AgMW S1 _Cx , (H ′,¬p(−, v2)))
)

where

H = (Av_W S2 + v1 > Availabili t y-Cx)

∧ (v2 > Participation-Cx) and
H ′ = Participation-Cy > v2

4.3.4 Attack game

General form

The Attack game is specified as follows:

Attack(AgW S1 , AgW S2 , (H, p)) ∧ C1

⇒ Accept (AgW S2 , AgW S1 , p)

Attack(AgW S1 , AgW S2 , (H, p)) ∧ C2

⇒ Challenge(AgW S2 , AgW S1 , H ′)
Attack(AgW S1 , AgW S2 , (H, p)) ∧ C3

⇒ Attack(AgW S2 , AgW S1 , (H ′, p′))
Attack(AgW S1 , AgW S2 , (H, p)) ∧ C4

⇒ Make-Offer(AgW S2 , AgW S1 , q)

Attack(AgW S1 , AgW S2 , (H, p)) ∧ C5

⇒ Refuse(AgW S2 , AgW S1 , p)

These conditions are identical to the ones associated with the
J ustification game.

An argumentative Web service AgW S2 accepts an atta-
cker’s argument if it can generate a support for it from its
argumentation system. If it cannot neither generate nor negate
this support, the agent challenges it. If it can generate a
counter-attacker argument, then it will play the Attack move.
If an offer can be made from the Web service’s knowledge
base using its argumentation system, it makes this offer.
Otherwise, it refuses the attacker’s argument. This refuse
move can be played if the negation of the attacker’s argu-
ment conclusion is in AgW S2 ’s knowledge base. We note in
this case that AgW S2 cannot play the Attack move since it does
not have a counter-argument but only a knowledge about the
negation of the argument conclusion.

Example 7 As a continuation of Example 6 in which, the
Web service AgW S2 attacks the justification of the master
AgMW S1_Cx , this latter replies by making another offer
p(v1, v2 + ε). In this new offer the master increases the pro-
mised participation rate by a value ε calculated using some
rules from the argumentation system. Only the participation
rate is increased since the availability increasing is not atta-
cked:(

Attack(AgW S2 , AgMW S1 _Cx , (H ′,¬p(−, v2)))

∧ v2 + ε � Arg_Sys(AgMW S1 _Cx)

⇒ Make-Offer(AgMW S1 _Cx , AgW S2 , p(v1, v2 + ε))
)

123

SOCA (2008) 2:219–238 231

4.4 Dialogue games combination

Having specified the different dialogue games that
argumentative Web services use in their interactions to
manage their communities, we need to specify how these
games could be now combined to form the persuasive nego-
tiation protocol. We notice that during the same protocol ses-
sion, an argumentative Web service cannot play the same
move with the same content more than once. For example, if
a master Web service proposed a participation rate by time
unit v2 during a protocol session, the same value cannot be
proposed again during this session. Also, if an argumentative
Web service uses a counter-argument to attack an argument,
it cannot use the same counter-argument afterwards during
this session (reiterations are prohibited). The protocol termi-
nates (T ermination game) either by accepting or refusing the
last offer. There is an acceptance when a Web service accepts
the offer (for example accepts the last offered rewards to join
the community), i.e. when an agreement is reached. The pro-
tocol terminates by a refusal when no agreement is reached.
The Persuasive N egotiation Protocol for Communities of
Web Services (PNP-CWS) that combines the aforemen-
tioned games can be described using the BNF grammar as
follows:

PNP − CWS = Entr y game ;
(Refuse | (Accept ; ChG))

ChG = Make-Offer ; X
X = Accept

| Refuse
| Make-Offer ; X
| Attack ; X
| Challenge ; Justify ; X
| Attack ; Make-Offer ; X

where “|” is the choice symbol, and “;” is the sequence sym-
bol.
After the Entry game, the addressee refuses the invitation,
or accepts to engage in negotiation, in which case chaining
games (ChG) will take place. The last line in this grammar
refers to the case where Attack and Make-Offer moves are
played together.

5 Formal analysis

5.1 PNP-CWS’s properties

In this section, we discuss the computational and formal pro-
perties of the PNP-CWS protocol. These properties are:
termination (no deadlock), soundness (correct specification),

and completeness (wholeness with respect to Web services’
knowledge bases).

Proposition 1 The PNP-CWS protocol terminates iff the
invited argumentative Web service refuses the Entry game, or
one of the Web services plays either Accept or Refuse moves
when the Entry game is accepted.

Proof The first part is straightforward, because by definition,
if the Entry game is refused, the protocol terminates. Let us
now suppose that the Entry game is accepted. The direction
⇒ is straightforward from the protocol’s BNF description. In
addition let us suppose that the protocol terminates. Accor-
ding to the protocol’s BNF description, part X is recursive
and all the moves, except Accept and Refuse, are followed
by X . The only way to stop the process is then to play either
Accept or Refuse. Consequently, the direction ⇐ holds. ��
Theorem 1 (Termination) For any set of dialogue games,
The PNP-CWS protocol always terminates.

Proof Because the knowledge bases of argumentative Web
services are finite, the arguments that these Web services can
build out of these bases are finite as well. Consequently, the
number of offers and attacks that can be made and built res-
pectively are finite. Therefore, the branches Make-Offer ; X ,
Attack ; X , and Attack ; Make-Offer ; X in the BNF descrip-
tion are finite, since playing the same move with the same
content is prohibited during a conversation. The branch Chal-
lenge ; Justify ; X is also finite because the number of argu-
ments is finite and when an argument is justified by itself, the
addressee cannot challenge it again because repeating moves
is prohibited. Thus in all possible executions, one of the argu-
mentative Web services will select one of the branches Accept
or Refuse. From Proposition 1 the result follows. ��
Definition 5 (Agreement) Let AgW S1 and AgW S2 be two
argumentative Web services engaged in a conversation using
the PNP-CWS protocol. Also, let Arg_Sys(AgW S1) and
Arg_Sys(AgW S2)be their respective argumentation systems.
An agreement about an offer p is reached between AgW S1 and
AgW S2 iff p � Arg_Sys(AgW S1) and p � Arg_Sys(AgW S2).

In other words, an agrement about an offer is reached iff the
offer can be supported by the the argumentation systems of
the participating Web services.

Theorem 2 (Soundness) If the PNP-CWS protocol termi-
nates by an acceptance (resp. refusal), then an agreement is
(rep. is not) reached.

Proof According to the protocol’s BNF description, an argu-
mentative Web service plays Accept move as a reply to either
an offer, an attack, or a justification. According to the Offer
game, accepting an offer means that the addressee has an

123

232 SOCA (2008) 2:219–238

argument in its knowledge base that supports accepting this
offer. According to Definition 5, having this argument in the
knowledge base means that an agreement is reached. Now, if
the argumentative Web service accepts to either attack or jus-
tify, then according to the Attack and J ustification games,
the protocol’s BNF description, and the fact that the content
of an attack could be a counter-offer, this Web service accepts
the last offer made by the addressee. Accepting this offer
means that the Web service has an argument supporting it,
which means that an agrement is reached.

In the opposite case, if an argumentative Web service plays
a refusal, then according to the dialogue games specification
and the protocol’s BNF description, all the exchanged offers
can not be supported by one of the two Web services. This
means that there is no argument from the two Web services’
knowledge bases supporting one of the offers. Consequently,
an agreement is not reached. ��

The soundness property shows that the protocol is correct.
However, what is important here to show is that if more than
one agreements are made available for argumentative Web
services, then the protocol execution will reach one of them.

Theorem 3 (Completeness) If an agreement about an offer
p can be reached from the knowledge bases of the argumen-
tative Web services, then the protocol execution will result in
achieving an agreement.

Proof According to Definition 5, the existence of an agree-
ment about p means that p � Arg_Sys(AgW S1) ∪ Arg_Sys
(AgW S1). Then, from the union of the two knowledge bases,
it is possible to build an argument supporting the offer p,
which is not attacked by another argument from the union.
Let us show how this argument can be reached when execu-
ting the protocol.

If p is the initial offer made by AgW S1 for example, then
AgW S2 will accept it since p�Arg_Sys(AgW S2). So an agree-
ment is reached. If the initial offer is q, we have q � p
since p and q are different but about the same topic. Accor-
ding to Proposition 1, the protocol terminates by either a
refusal or an acceptance. Because the protocol always ter-
minates by Theorem 1, during the protocol execution one of
the argumentative Web services should play either Refuse
or Accept move. Suppose that Refuse move is played by
one of the two Web services, for example AgW S1 . Accor-
ding to the dialogue games specification, there is no possi-
bility for this Web service to make a counter-offer r such
that r � q ∧ r � Arg_Sys(AgW S1). This is contradictory
because by hypothesis there is an offer p such that p �
q ∧ p � Arg_Sys(AgW S1). Consequently, the only possibi-
lity to terminate the protocol is to play an acceptance move,
which means that an agreement is reached. ��

It is also possible to use a proof by construction to prove
this theorem by discussing all possible situations according

to the protocol’s BNF description. We let this exercise to
interested readers.

We notice here that the soundness theorem states that an
agreement is reached, but does not tell what is the agreement.
The reason is that many agreements can exist, and which
one could be reached depends on the strategies that these
argumentative Web services adopt.

5.2 Complexity

In this section, we discuss the complexity of the PNP-CWS
protocol. Because first, the protocol is expressed in terms of
argumentation-based dialogue games, and second, the deci-
sion parameters (the conditions associated with the rules) that
argumentative Web services use to combine these games are
expressed in terms of the possibility of building arguments,
the complexity of the protocol is determined by the com-
plexity of generating arguments to support offers or to attack
existing arguments. In the following we present the different
complexity results.

Proposition 2 Given a Horn knowledge base Γ , a subset
H ⊆ Γ , and a formula h. Checking whether (H, h) is an
argument is polynomial.

Proof From the linear time algorithms for Horn satisfiabi-
lity in [14], it follows that the Horn implication problem
H � h is decidable in O(|H | × |h|) time. From the same
result, it also follows that deciding whether H is consistent
is polynomial. ��
Proposition 3 Given a Horn knowledge base Γ , and an
argument (H, h) over Γ . Checking whether (H, h) is mini-
mal is polynomial.

Proof Let l be a literal. The following algorithm resolves the
problem:
∀l ∈ H check if H − {l} � h. Because the implication
problem is polynomial, we are done. ��

As indicated in Sect. 4.1, argumentative Web services
are equipped with knowledge bases that are supposed to be
consistent. Let us consider this case.

Proposition 4 Let Γ be a definite Horn knowledge base, h
a formula, and A the set of arguments over Γ .
∃H ⊆ Γ : (H, h)∈A⇒∀H ′ : H ⊆ H ′ ⊆ Γ, (H ′, h)∈A.

Proof If (H, h) is an argument where H is a set of definite
Horn formulas under the form c or p1 ∧ p2 ∧ · · · ∧ pn → c
where p1, p2, . . . , pn, c are positive literals, then adding any
definite Horn formula to H will result in a consistent set of
formulas H ′ : Γ ⊇ H ′ ⊇ H . Since H � h, it follows that
H ′ � h, whence the proposition. ��

123

SOCA (2008) 2:219–238 233

Fig. 3 Architecture of the
prototype

Jadex Platform

AMS
(Agent Management System)

DF
(Directory Facilitator)

Message Transport Service

API API

Master Web Service Slave Web Service

DF Capability
Protocol

Capability
AMS

Capability
DF Capability

Protocol
Capability

AMS
Capability

ACL

ACL
+ CL

ACL
+ CL

Send Invitation

Evaluate

Initiation

Proposal

Proposal

Agreement

Evaluate
Invitation

BeliefBas e BeliefBas e

Legend Goal Plan Inter Message Intra Message

Negotiation

Agreement

PlanBase GoalBase

PlanBase

GoalBase

Reply Invitation

Fig. 4 Parameters of the
Proposal plan

<plans>
……
<plan name="proposal">

<parameter name="cfp" class="Object">
 <goalmapping ref="evaluate_proposals.cfp"/>
</parameter>
<parameter name="cfp" class="Object" optional="true">
 <goalmapping ref="evaluate_proposals.cfp"/>
</parameter>
<parameterset name="proposals" class="Object">
 <goalmapping ref="evaluate_proposals.proposals"/>
</parameterset>
<parameterset name="history" class="Negotiation">
 <goalmapping ref="evaluate_proposals.history"/>
</parameterset>
<parameterset name="acceptables" class="Object">
 <goalmapping>

 ref="evaluate_proposals.acceptables"
 <goalmapping/>
</parameterset>
<body class="EvaluatePlan" />
<trigger>
 <goal ref="evaluate_proposals"/>
</trigger>

</plan>
……

</plans>

123

234 SOCA (2008) 2:219–238

Theorem 4 Given a definite Horn knowledge base Γ and a
formula h. Deciding whether there is an argument (H, h) is
polynomial.

Proof From Proposition 4, it follows that there is an argu-
ment supporting h iff (Γ, h) ∈ A. Because every definite
Horn knowledge base is a Horn knowledge base, then by
Proposition 2, the theorem follows. ��

The following theorem is a direct consequence of
Theorem 4.

Theorem 5 Given a consistent Horn knowledge base Γ and
a formula h. Deciding whether there is an argument (H, h)

is polynomial.

Proof Proposition 4 holds if the knowledge base Γ is
consistent. Then, by Proposition 2, the result follows. ��
Proposition 5 Let Γ be a Horn knowledge base and (H, h)

and (H ′.h′) be two arguments over Γ . Deciding whether
(H ′, h′) AT (H, h) is polynomial.

Proof According to Definition 2, (H ′, h′) AT (H, h) iff
H ′ � ¬h. The proof is then straightforward since the Horn
implication problem H ′ � ¬h is decidable in O(|H |×|¬h′|)
time. ��
Theorem 6 Let Γ be a consistent Horn knowledge base and
(H, h) an argument over Γ . Deciding whether there is an
attacker of (H, h) over Γ is polynomial.

Proof From Definitions 1 and 2, building an argument atta-
cking a given argument is less complex than building an
argument supporting a conclusion. From Theorem 4 we are
done. ��

These results prove that our PNP-CWS protocol is com-
putationally efficient, and its complexity depends only on the
size of the knowledge bases.

6 Implementation

6.1 Architecture

A prototype has been implemented to demonstrate first, the
combination between argumentative agents and Web services
and second, the performance of the persuasive negotiation
protocol PNP-CWS that manages communities of Web ser-
vices. The prototype is built on top of Jadex platform [40].
Based on Java and XML technologies, Jadex allows building
up rational and goal-oriented agents.

Figure 3 depicts the architecture of the prototype. Argu-
mentative Web services have capabilities that represent their

beliefs, goals, plans, and events. These capabilities are spe-
cified in an XML-based Definition File. The description of
the Web service and its non-functional parameters (i.e. QoS)
are examples of beliefs. The master Web service has three
goals that populate its goalbase: (1) Send Invitation used to
send joining invitations; (2) Negotiation used to trigger the
negotiation of the joining contracts; and (3) Evaluate used to
trigger the evaluation of the different offers it receives back.
Four plans in the master Web service are associated to these
goals: (1) Invitation used to process the joining invitation;
(2) Initiation triggered by the Negotiation goal; (3) Proposal
to make and evaluate offers; and (4) Agreement to stop the
negotiation either by an agreement or not. The slave Web
service has three plans: (1) Reply Invitation used to reply to
the joining invitation; (2) Proposal to make offers; and (3)
Agreement to finish the negotiation. Evaluate goal in the slave
Web service is used to trigger the Proposal and Agreement
plans.

Each goal has a target condition and is activated when this
condition evaluates to true. For example, Negotiation goal in
the master Web service is activated when an acceptance reply
is received by a slave Web service. When a plan is triggered,
the Web service runs it to perform the specified actions. For
example, when Evaluate goal is activated, the plan Propo-
sal is executed to evaluate the received offer and/or make a
new offer. The different parameters of a plan are specified
in an XML file. Figure 4 gives an example of the different
parameters used in the Proposal plan. For example the file
“evaluate_proposals.cfp” refers to the mapping goal file of
this plan.

The argumentation reasoning is implemented in Java as
the procedural parts of the plans. The PNP-CWS protocol
is declaratively specified as a set of dialogue games using
an XML syntax in a public plan that argumentative Web ser-
vices refer to when communicating. Which dialogue game
a Web service should play within this protocol depends on
its strategy based on its argumentation system and the mes-
sage it receives from the addressee. The exchanged messages
are events that trigger some plans. Web services share the
same ontology to define the meaning of the Horn formulas
they exchange. The whole prototype relies on the Jadex plat-
form, which provides a directory facilitator, an agent manage-
ment system, and a message transport service. The message
transport service is provided to transport messages between
Web services by specifying the recipient of a message, the
general structure of the message, and the used ontology. The
agent management system facilitates the creation, registra-
tion, location and operation of Web services. All the simu-
lated Web services and communities are registered in the
directory facilitator. The directory facilitator used to report
Web services in a community is controlled by the master Web
service. When a Web service accepts a joining invitation, the
master adds it to its directory. When the master decides to put

123

SOCA (2008) 2:219–238 235

Fig. 5 Sequence diagram of
the Entry game scenario

MWS SWS1

sd Entry Game
Community of Weather-Forecast

alternative

alternative

SWS2 SWS3 SWS4 SWS5

Open(MWS, SWS2, p)

Open(MWS, SWS3, p)

Open(MWS, SWS4, p)

Open(MWS, SWS5, p)

Accept(SWS2, MWS, p)

Refuse(SWS3, MWS, p)

Refuse(SWS4, MWS, p)

Accept(SWS5, MWS, p)

p: Joining Invitation

Open(MWS,
SWS1, p)

Accept(SWS1,
MWS, p)

a Web service out of the community, it deletes its registration
information from the directory.

6.2 Experimental results

To illustrate some experimental results, we consider two sce-
narios: (1) invitation to join a community; and (2) negotia-
tion of the joining contract. In the first scenario, a Master
Web service MW S searches for slave Web services providing
Weather-Forecast functionality in the directory facili-
tator. Five Slave Web Services are identified SW Si,i=1,...,5,
and the master plays the Entry game (Open communica-
tive act) to invite them to negotiate about joining its com-
munity. Three of these Slave Web services (SW S1, SW S2,
and SW S5) accept the game because they have arguments
supporting the acceptance decision. These arguments are
availability (these Web services did not commit to
join any other community yet) and interest in joining the
community of this master Web service because they believe
that its reputation is high. The rest of the slave Web services
namely SW S3 and SW S4 refuse the invitation for two dif-
ferent reasons. SW S3 is already committed to join another
community, and SW S4 is not interested because it has an
argument against the reputation of this community. Figure 5
illustrates the sequence diagram of this scenario. According
to theEntry game, slave Web services do not reveal their argu-
ments about their acceptance or refusal, but they use them
internally to make their decisions. This is the reason why
they are not illustrated in the sequence diagram. Figure 6
illustrates a snapshot of this scenario.

In the second scenario, the master Web service nego-
tiates the joining contract with one of the slave Web services

that accept the joining invitation, for instance SW S1. As
in Example 5 of Sect. 4.3.2, two terms are negotiated in
this scenario: SW S1’s availability increase and
participation rate in composite business scenarios
the master Web service can provide. First, the master Web
service uses its argumentation system to make an offer:
promised participation rate by time unit = 20%
and availability increase by time unit = 30% (these
values are calculated on the basis of the current efficiency of
the community and what the master provides to the existing
members). By playing the Offer game, SW S1 attacks the first
part of the offer because it has an argument against this offer;
the proposedparticipation rate is less than the com-
munity average (we call this argument the average argument).
The master Web service replies, using the Attack game. It
makes a new offer in which the participation rate
is increased (from 20 to 30%) and the availability is
decreased (from 30 to 25%). Playing the Offer game, SW S1
replies to this new offer by attacking the second part using
the argument that adding its current availability to the offered
rate is less than the community average. The master makes
then a new offer by increasing the availability rate
(from 25 to 35%) but by reducing the participation
rate (from 30 to 25%). This new offer considers the fact that
it is greater than the community average, so it cannot be
attacked using the average argument. SW S1 replies to this
new offer by making another counter-offer using its argu-
mentation system. In this offer, SW S1 requests a 28% for
the participation rate instead of 25% and accepts
the proposed availability increase. The master Web
service proposes then a balance between the two values:
27% for the participation rate, and 32% for the

123

236 SOCA (2008) 2:219–238

Fig. 6 Snapshot for the Entry
game scenario

availability increase. Finally, SW S1 accepts the new
offer, which results in stopping the negotiation. This scenario
is illustrated with Fig. 7.

6.3 Discussions

The two implemented scenarios explained in the experimen-
tal results (inviting Web services to join a community and
negotiating a joining contract) show how argumentative
agents are combined with Web services to effectively manage
communities that host these Web services. In fact, these
results show how the problems discussed in this paper

(starvation, competition-free, and unfairness) are resolved
in a satisfactory manner. Based on their argumentation sys-
tems, some slave Web services have accepted joining the
community while some have refused. In addition, not all the
Web services that have accepted the invitation were enga-
ged in negotiation, but only few depending on the needs of
and resources available to the master Web service. In addi-
tion, by negotiating the joining contract, SW S1 has suc-
ceeded to obtain a better offer compared to the one that
has been proposed by the master (27% in stead of 20%
of participation rate and 32% instead of 30% of
availability increase). Consequently, starvation,

123

SOCA (2008) 2:219–238 237

non-competitiveness and unfairness are properly addressed
in a community of Web services. Another outcome of the
implementation exercise concerns the correctness and high
performance of the PNP-CWS protocol. The answers given
by the invited Web services in the invitation session of the
protocol are compatible with their knowledge bases. Only
the Web services that can theoretically accept the invita-
tion (regarding the content of their knowledge base) send
an acceptance. In term of performance, the whole invita-
tion protocol is executed in very few seconds (the carried
out simulations have exhibited an execution time between
2 and 7 s with a number of Web services ranging from 5
to 30). The negotiation sessions in the experimental results
have also shown the soundness and termination of the proto-
col. An agreement is reached only if it is possible regarding
the content of the participants’ knowledge bases. In terms of
execution time, the whole protocol is linear with the size of
the knowledge bases and generally takes between 4 and 8s
when this size ranges from 50 to 100 propositions.

7 Conclusion

In this paper, we first, exposed some obstacles that restrict
the use of Web services in complex business applications and
then, offered some solutions to tackle these obstacles through
two concepts namely community and argumentative software
agents. On the one hand, community first, groups Web ser-
vices with the same functionality regardless of who deve-
loped them, where they are located, and how they function
and second, sustains Web services availability at run-time.
On the other hand, argumentative agents back Web services
in making appropriate decisions prior they implement any
action. Different types of actions were listed like signing up
in a community, participating in a composition scenario, and
last but not least leaving a community due to lack of business
opportunities.

We discussed the rationale behind using argumentation
to manage Web services communities, and we showed that
this technique provides suitable solutions for some problems,
which we denoted by “starvation,” “non-competitiveness,”
“unfairness,” and “selection” that cannot be efficiently resol-
ved using Web services’ existing techniques. We framed the
management operations that take place in a community with
a persuasive negotiation protocol that argumentative agents
implement. This protocol relies on a set of games like Entry,
Offer, and Attack. The formal properties of this protocol
along with its complexity were discussed and assessed, res-
pectively. In addition, a prototype simulating the protocol
was discussed. The experimental results revealed that inviting
Web services to join communities and negotiating joining
contracts with multi-issue terms can be efficiently managed
using argumentation. In addition, the implementation

MWS SWS1

sd Contract Negotiation

Make-Offer(MWS, SWS1, (P(20), Q(30)))

Attack(SWS1, MWS, (P(20)<Mean-Part, P(20)))

Accept(SWS1, MWS, (P(27), Q(32)))

Make-Offer(MWS, SWS1, (P(30), Q(25)))

Make-Offer(MWS, SWS1, (P(25), Q(35)))

Make-Offer(MWS, SWS1, (P(27), Q(32)))

Attack(SWS1, MWS, (Q(25)+Av<Mean-Av, Q(25)))

Make-Offer(SWS1, MWS, (P(28), Q(35)))

P: Participation Rate
Q: Increasing Availability

Fig. 7 Sequence diagram of the contract negotiation scenario

allowed us to experimentally check the theoretical sound-
ness and completeness of the proposed protocol.

Our research work on argumentative agents and communi-
ties of Web services opens up at least two research opportu-
nities namely alliance development and reputation. Firstly,
alliances could be used to internally structure a commu-
nity based on some mutual agreements between providers of
Web services as part of their partnership strategies. Secondly,
reputation would enable the existence of several communi-
ties of Web services. This existence would need to be looked
into from two perspectives: provider and user. In the for-
mer perspective, a provider should primarily know in which
community it will let its Web services sign up. In the latter
perspective, a user should know which community to bind
to prior to identifying the Web service (that resides in this
community) to invoke later.

Acknowledgments The authors would like to thank the reviewers for
their very valuable comments and suggestions of changes. The first
author acknowledges the financial support of NSERC, FQRNT, and
FQRSC (Canada).

References

1. Baldoni M, Baroglio C, Martelli A, Patti V (2007) Reasoning about
interaction protocols for customizing web service selection and
composition. J Logic Algebraic Program (special issue on Web
Services and Formal Methods) 70(1)

2. Barbir A (2003) Web services security: an enabler of semantic Web
services. In: Proceedings of business agents and the semantic Web
held in conjunction with The 16th Canadian conference on artificial
intelligence (AI’2003). Halifax, Nova Scotia

3. Benatallah B, Casati F, Toumani F (2005) Representing, analysing
and managing Web service protocols. Data Knowl Eng J 58(3)

123

238 SOCA (2008) 2:219–238

4. Benatallah B, Dumas M, Sheng QZ (2005) Facilitating the rapid
development and scalable orchestration of composite Web services.
J Distrib Parallel Databases 17

5. Bentahar J, Labban J, Moulin B (2007) An argumentation-driven
model for efficient and secure negotiation. In: Proceedings of
the international conference on group decision and negotiation
(GDN2007), Montreal

6. Bentahar J, Maamar Z, Benslimane D, Thiran P (2007) An argu-
mentation framework for communities of Web services. IEEE Intell
Syst 22(2):6

7. Birman KP (2004) Like it or not, Web services are distributed
objects. Commun ACM 47(12)

8. Bui T, Gacher A (2005) Web services for negotiation and bargai-
ning in electronic markets: design requirements and implementa-
tion framework. In: Proceedings of the 38th Hawaii international
conference on system sciences (HICSS’2005), Big Island

9. Chang S, Chen Q, Hsu M (2003) Managing security policy in a
large distributed Web services environment. In: Proceedings of
the 27th annual international computer software and applications
conference (COMPSAC’2003), Dallas

10. Chesñevar CI, Maguitman A, Loui R (2000) Logical models of
argument. ACM Comput Surv 32

11. Dale J, Ceccaroni L, Zou Y, Agam A (2003) Implementing agent-
based Web services. In: Proceedings of the AAMAS’03 workshop
on challenges in open agent systems, Melbourne

12. Daniel F, Pernici B (2005) Insights into Web service orchestration
and choreography. Int J E-Bus Res (The Idea Group Inc.) 1(2)

13. Dinis L, Parrondo JMR (2004) Inefficiency of voting in parrondo
games. Phys A Stat Mech Appl 343

14. Dowling W, Gallier JH (1984) Linear-time algorithms for testing
the satisfiability of propositional horn theories. J Logic Program
1(3)

15. Dung PM (1995) On the acceptability of arguments and its fun-
damental role in nonmonotonic reasoning, logic programming and
n-person games. Artif Intell 77(2)

16. Dung PM, Kowalski RA, Toni F (2006) Dialectic proof proce-
dures for assumption-based, admissible argumentation. Artif Intell
170(2)

17. Elnaffar S, Maamar Z, Yahyaoui H, Bentahar J, Thiran P (2008)
Reputation of communities of web services—preliminary inves-
tigation. In: Proceedings of the international symposium on Web
and mobile information services (WAMIS’2008) held in conjunc-
tion of the 22nd international conference on advanced information
networking and applications (AINA’2008), Okinawa

18. Elvang-Goransson M, Fox J, Krause P (1993) Dialectic reaso-
ning with inconsistent information. In: Proceedings of the 9th
conference on uncertainty in artificial intelligence (UAI’1993),
Washington, DC

19. Fensel D (2001) Ontologies: a silver bullet for knowledge mana-
gement and electronic commerce. Springer, Heidelberg

20. Jennings N, Sycara K, Wooldridge M (1998) A roadmap of agent
research and development. Autonomous Agents and Multi-Agent
Systems, Kluwer, vol 1(1)

21. Jureta I, Faulkner S, Achbany Y, Saerens M (2007) Dynamic Web
service composition within a service-oriented architecture. In: Pro-
ceedings of the IEEE international conference on Web services
(ICWS’2007), Salt Lake City

22. Li Y, Shen W, Chenniwa H (2004) Agent-based Web services fra-
mework and development environment. Comput Intell 20(4)

23. Ma KJ (2005) Web services: what’s real and what’s not. IEEE IT
Professional, vol 7(2)

24. Maamar Z, Benslimane D, Mostéfaoui GK, Subramanian S,
Mahmoud Q (2008) Towards behavioral Web services using poli-
cies. IEEE Trans Syst Man Cybern A (forthcoming)

25. Maamar Z, Benslimane D, Narendra NC (2006) What can context
do for Web services? Commun ACM 49(12)

26. Maamar Z, Lahkim M, Benslimane D, Thiran P (2006) Towards
an approach for specifying and managing communities of Web
services. Technical report, Zayed University, King Saud University,
Claude Bernard Lyon 1 University, and Namur University

27. Maamar Z, Lahkim M, Benslimane D, Thiran P, Sattanathan S
(2007) Web services communities—concepts and operations. In:
Proceedings of the 3rd international conference on Web informa-
tion systems and technologies (WEBIST’2007), Barcelona

28. Maximilien EM, Singh M (2005) Toward Web services interaction
styles. In: Proceedings of IEEE services computing conference
(SCC2005), Orlando

29. McBurney P, Parsons S (2002) Games that agents play: a formal
framework for dialogues between autonomous agents. J Logic Lang
Inform 11(3)

30. Medjahed B, Atif Y (2007) Context-based matching for Web ser-
vice composition. Distrib Parallel Databases. Springer, Heidelberg
21(1)

31. Medjahed B, Bouguettaya A (2005) A dynamic foundational archi-
tecture for semantic Web services. Distributed and Parallel Data-
bases. Kluwer, Dordrecht, vol 17(2)

32. Menascé DA (2002) QoS issues in Web services. IEEE Internet
Comput 6(6)

33. Meyer J-J, Veltman F (2007) Inteligent agents and common sense
reasoning. In: Blackburn P et al (ed) Studies in logic and practical
reasoning. Handbook of Modal Logic, vol 3

34. Mrissa M, Ghedira C, Benslimane D, Maamar Z, Rosenberg F,
Dustdar S (2007) A context-based mediation approach to compose
semantic Web services. ACM Transactions on Internet Technology,
Special Issue on Semantic Web Services: Issues, Solutions and
Applications, vol 8(1)

35. Narendra NC (2001) Flexible agent societies: flexible workflow
support for agent societies. In: Proceedings of the 2001 internatio-
nal conference on intelligent agents Web technologies and Internet
commerce (IAWTIC’2001), Las Vegas

36. Ouzzani M, Bouguettaya A (2004) Efficient access to Web services.
IEEE Internet Comput 8(2)

37. Paolucci M, Sycara K (2003) Autonomous semantic Web services.
IEEE Internet Comput 7(5)

38. Parsons S, Wooldridge M, Amgoud L (2003) Properties and com-
plexity of some formal inter-agent dialogues. J Logic Comput 13(3)

39. Pitt J, Kamara L, Sergot MJ, Artikis A (2005) Formalization of
a voting protocol for virtual organizations. In: Proceedings of the
international conference on autonomous agents and multi-agent
systems (AAMAS’2005), Utrecht

40. Pokahr A, Braubach L, Lamersdor W (2005) Jadex: a BDI reaso-
ning engine. In: Bordini R, Dastani M, Dix J, Seghrouchni A (eds)
Multi-agent programming. Languages, Plateforms and Applica-
tions. Springer, Heidelberg

41. Prakken H, Vreeswijk G (2000) Logics for defeasible argumenta-
tion, 2nd edn. Handbook of Philosophical Logic

42. Smith R (1980) The contract net protocol: high level communica-
tion and control in distributed problem solver. IEEE Trans Comput
29

43. Taher Y, Benslimane D, Fauvet M-C, Maamar Z (2006) Towards
an approach for Web services substitution. In: Proceedings of The
10th international database engineering and applications sympo-
sium (IDEAS’2006), Delhi

44. Toni F, Bentahar J (2008) Computational logic-based agents. J
Auton Agents Multi-Agent Syst 16(3)

45. Wanyamaa T, Homayoun B (2007) A protocol for multi-agent
negotiation in a group-choice decision making process. J Network
Comput Appl 30(3)

123

	Abstract
	1 Introduction
	1.1 Motivations
	1.2 Contributions
	1.3 Paper's organization

	2 Communities of Web services
	2.1 Definitions and architecture
	2.2 Management
	2.3 Motivations behind argumentative Web services

	3 Argumentative agents
	4 Persuasive negotiation protocol for communities of Web services
	4.1 Formal foundation
	4.2 General specification
	4.3 Argumentative dialogue games for communities of Web services
	4.4 Dialogue games combination

	5 Formal analysis
	5.1 PNP-CWS's properties
	5.2 Complexity

	6 Implementation
	6.1 Architecture
	6.2 Experimental results
	6.3 Discussions

	7 Conclusion
	Acknowledgments
	References

