
AGENT-BASED COMPUTING

Nicholas R. Jennings

Dept. 0/ Electronics and Computer 8cience,

University 0/80uthampton, 80uthampton 8017 JEI, UK.

Abstract Agent-based computing represents an exciting new synthesis for both

Artificial Intelligence and, more generally, Computer Science. It has the

potential to improve the theory and the practice of modelling, designing

and implementing complex computer systems. Yet, to date, there has

been little systematic analysis of what makes the agent-based approach

such an appealing and powerful computational model. To rectify this

situation, this paper aims to tackle exactly this issue. The stand point of

this analysis is the role of agent-based software in solving complex, real

world problems. In particular, it will be argued that the development of

robust and scalable software systems requires autonomous agents that

can complete their objectives while situated in a dynamic and uncertain

environment, that can engage in rich, high-level interactions, and that

can operate within flexible organisational structures.

Keywords: autonomous agents, agent-oriented software engineering, complex sys

tems

Introduction

Building high quality, industrial-strength software is difficult. Indeed,

it has been argued that developing such software in domains like telecom

munications, industrial control and business process management rep

resents one of the most complex construction tasks humans undertake

(both in terms of the number and the flexibility of the constituent compo

nents and in terms oftheir interconnections). Against this background, a

wide range of software engineering paradigms have been devised. Each

successive development either claims to make the engineering process

easier or to extend the complexity of applications that can feasibly be

buHt. Although evidence is emerging to support these claims, researchers

continue to strive for more effective techniques. To this end, this paper

will argue that analysing, designing and implementing complex software

The original version of this chapter was revised: The copyright line was incorrect. This has been

corrected. The Erratum to this chapter is available at DOI:

© IFIP International Federation for Information Processing 2002

M. A. Musen et al. (eds.), Intelligent Information Processing

10.1007/978-0-387-35602-0_35

http://dx.doi.org/10.1007/978-0-387-35602-0_35

18 N. R. Jennings

systems as a coHection of interacting, autonomous agents (Le., as a multi

agent system) affords software engineers a number of significant advan

tages over contemporary methods. This is not to say that agent-oriented

software engineering [Jennings 2000] represents a silver buHet [Brooks

1995] - there is no evidence to suggest it will represent an order of mag

nitude improvement in productivity. However, the increasing number

of deployed applications [Jennings and Wooldridge 1998, Parunak 1999]

bears testament to the potential advantages that accrue from such an

approach.

In seeking to demonstrate the efficacy of agent-oriented techniques,

the most compelling argument would be to quantitatively show how

their adoption had improved the development process in a range of

projects. However, such data is simply not available (as it is not for

other contemporary software engineering approaches like patterns, ap

plication frameworks and component-ware). Given this fact, the best
that can be achieved is a qualitative justification of why agent-oriented

approaches are weIl suited to engineering complex, distributed software

systems.

1. MANAGING COMPLEXITY IN

SOFTWARE SYSTEMS

Industrial-strength software is complex: it has a large number of parts

that have many interactions [Sirnon 1996]. Moreover this complexity is

not accidental [Brooks 1995], it is an innate property of such systems.

Given this situation, the role of software engineering is to provide struc

tures and techniques that make it easier to handle complexity. For

tunately for designers, this complexity exhibits a number of important

regularities [Sirnon 1996]:

• Complexity frequently takes the form of a hierarchy. That is, a sys
tem that is composed of inter-related sub-systems, each of whieh is

in turn hierarchie in structure, until the lowest level of elementary

sub-system is reached. The precise nature of these organisational

relationships varies between sub-systems, however some generic

forms (such as dient-server, peer, team, etc.) can be identified.

These relationships are not statie: they often vary over time.

• The choiee of which components in the system are primitive is

relatively arbitrary and is defined by the observer's aims and ob

jectives.

• Hierarchie systems evolve more quiekly than non-hierarchic ones

of comparable size (Le., complex systems will evolve from simple

Intelligent Information Processing 19

systems more rapidly if there are clearly identifiable stable inter

mediate forms, than if there are not).

• It is possible to distinguish between the interactions among sub

systems and those within sub-systems. The latter are both more

frequent (typically at least an order of magnitude more) and more

predictable than the former. This gives rise to the view that com

plex systems are nearly decomposable: sub-systems can be treated

almost as if they are independent, but not quite since there are

some interactions between them. Moreover, although many of

these interactions can be predicted at design time, some cannot.

Drawing these insights together, it is possible to define a canonical view

of a complex system (figure 1). The system's hierarchical nature is ex

pressed through the "related to" links, components within a sub-system

are connected through "frequent interaction" links, and interactions be

tween components are expressed through "infrequent interaction" links .

. _ ""''V'''''
• ""'syd'" <0011"'''''

...... rlla'cd'.

frequent "'wo<!1on

• - • InfrlqUCJlf iI'uo<tI ..

Figure 1. View of a Canonical Complex System

Given these observations, software engineers have devised a number of

fundamental tools of the trade for helping to manage complexity [Booch

1994J :

• Decomposition: The most basic technique for tackling large prob

lems is to divide them into sm aller , more manageable chunks each

ofwhich can then be dealt with in relative isolation (note the nearly

decomposable sub-systems in figure 1) . Decomposition helps tackle

complexity because it limits the designer's scope.

20 N. R. Jennings

• Abstraction: The process of defining a simplified model of the sys

tem that emphasises some of the details or properties, while sup

pressing others. Again, this works because it limits the designer's

scope of interest at a given time.

• Organisation!: The process of defining and managing the inter

relationships between the various problem solving components (note

the sub-system and interaction links of figure 1). The ability

to specify and enact organisation al relationships helps designers

tackle complexity by: (i) enabling a number of basic components

to be grouped together and treated as a higher-Ievel unit of analysis

and (ii) providing a means of describing the high-level relationships

between various units.

2. THE CASE FOR AGENT-ORIENTED

SOFTWARE ENGINEERING

The first step in arguing for an agent-oriented approach to software

engineering involves identifying the key concepts of agent-based comput

ing. The first such concept is that of an agent:

an agent is an encapsulated computer system that is situated in some

environment, and that is capable of flexible, autonomous action in that

environment in order to meet its design objectives [Wooldridge 1997J

There are a number of points about this definition that require elabo
ration. Agents are: (i) clearly identifiable problem solving entities with

well-defined boundaries and interfaces; (ii) situated (embedded) in a par

ticular environment over which they have partial control and observabil

ity - they receive inputs related to the state of their environment through

sensors and they act on the environment through effectors; (iii) designed

to fulfil a specific role - they have particular objectives to achieve; (iv)

autonomous - they have control both over their internal state and over

their own behaviour; (v) capable of exhibiting flexible problem solving
behaviour in pursuit of their design objectives - being both reactive (able

to respond in a timely fashion to changes that occur in their environ

ment) and proactive (able to opportunistically adopt goals and take the

initiative) [Wooldridge and Jennings 1995J.

When adopting an agent-oriented view, it soon becomes apparent

that most problems require or involve multiple agents: to represent the

decentralised nature of the problem, the multiple loci of control, the

multiple perspectives or the competing interests. Moreover, the agents

will need to interact with one another: either to achieve their individual

objectives or to manage the dependencies that ensue from being situ-

Intelligent Information Processing 21

ated in a common environment. These interactions can vary from sim

ple semantic interoperation (information passing), through traditional

dient-server type interactions, to rich social interactions (the ability to

cooperate, coordinate and negotiate about a course of action). What

ever the nature of the social process, however, there are two points that

qualitatively differentiate agent interactions from those that occur in

other software engineering paradigms. Firstly, agent-oriented interac

tions generally occur through a high-level (dedarative) agent commu

nication language (often based on speech act theory [Mayfield et al.

1995]). Consequently, interactions are conducted at the knowledge-level

[Newe1l1982J: in terms of which goals should be followed, at what time
and by whom (cf. method invocation or function calls that operate at a
purely syntactic level). Secondly, as agents are flexible problem solvers,

operating in an environment over which they have only partial control

and observability, interactions need to be handled in a similarly flexi

ble manner. Thus, agents need the computational apparatus to make

context-dependent decisions about the nature and scope of their interac

tions and to initiate (and respond to) interactions that were not foreseen
at design time.

In the majority of cases, agents act either on behalf of individu

als/ companies or as part of some wider initiative. Thus, there is typically

some underpinning organisational context to agents' interactions. This

context defines the nature of the relationship between the agents. For

example, they may be peers working together in a team or one may

be the manager of the others. To capture such links, agent systems

have explicit constructs for modelling organisational relationships (e.g.

manager, team member). In many cases, these relationships are subject

to ongoing change: social interaction means existing relationships evolve

(e.g. a team of peers may decide to move to a more hierarchical structure

as their numbers grow) and new relations are created (e.g. a number of

unrelated agents may decide to form a team to deliver a service that no

one individual can offer). The temporal extent ofthese relationships can

also vary enormously: from providing a service as a one-off, to a per

manent bond. To cope with this variety and dynamic, agent researchers

have devised protocols that enable organisational groupings to be formed

and disbanded, specified mechanisms to ensure groupings act together

in a coherent fashion and developed structures to characterise the macro

behaviour of collectives [Jennings and Wooldridge 1998, Wooldridge and

Jennings 1995J.

Drawing these points together (figure 2), it can be seen that: (i)
adopting an agent-oriented approach to software engineering means de

composing the problem into multiple, autonomous components that can

22 N. R. Jennings

act and interact in flexible ways to achieve their set objectives; (ii) the

key abstraction models that define the agent-oriented mindset are agents,

interactions and organisations; and (iii) explicit structures and mecha

nisms are often used to describe and manage the complex and changing

web of organisational relationships that exist between the agents.

- agl!f1t

-. Interaetion

Enllironment

Sphere of '<islblity
and

Figure 2. Canonical View of a Multi-agent System

2.1. The Software Engineering Credentials of
the Agent-Oriented Approach

Here the argument in favour of an agent-oriented approach to software

engineering is composed of the following steps:

• show that agent-oriented decompositions are an effective way of

partitioning the problem space of a complex system;

• show that the key abstractions of the agent-oriented mindset are

a natural means of modelling complex systems; and

• show that the agent-oriented philosophy for modelling and man

aging organisation al relationships is appropriate for dealing with

the dependencies and interactions that exist in complex systems.

When taken together, these steps form a complete mapping between

the characteristics of a complex system and the key software engineer

ing abstractions for handling complexity as they apply to agent-based

systems.

The Merits of Agent-Oriented Decompositions.

Complex systems consist of a number of related sub-systems organ

ised in a hierarchical fashion (figure 1). At any given level, sub-systems

Intelligent Information Processing 23

work together to achieve the functionality of their parent system. More

over, within a sub-system, the constituent components work together

to deliver the overall functionality. Thus, the same basic model of in

teracting components, working together to achieve particular objectives

occurs throughout the system. Given this fact, it is entirely natural

to modularise the components in terms of the objectives they achieve2 .

In other words, each component can be thought of as achieving one or

more objectives. A second important observation is that complex sys

tems have multiple loci of control: "real systems have no top" [Meyer

1988] pg 43. Applying this philosophy to objective-achieving decompo

sitions means the individual components should localise and encapsulate

their own control. Thus, entities should have their own thread of control

(Le. they should be active) and they should have control over their own

actions (Le. they should be autonomous).

For the active and autonomous components to fulfil both their indi

vidual and collective objectives, they need to interact (recall complex

systems are only nearly decomposable). However the system's inherent

complexity means it is impossible to apriori know about all potential

links: interactions will occur at unpredictable times, for unpredictable

reasons, between unpredictable components. For this reason, it is futile

to try and predict or analyse all the possibilities at design-time. It is

more realistic to endow the components with the ability to make deci

sions about the nature and scope of their interactions at run-time. From

this, it follows that components need the ability to initiate (and respond

to) interactions in a flexible manner.

The policy of deferring to run-time decisions about component in

teractions facilitates the engineering of complex systems in two ways.

Firstly, problems associated with the coupling of components are sig

nificantly reduced (by dealing with them in a flexible and declarative

manner). Components are specifically designed to deal with unantici

pated requests and can spontaneously generate requests for assistance if

they find themselves in difficulty. Moreover because these interactions

are enacted through a high-level agent communication language, cou

pling becomes a knowledge-level issue. At a stroke this removes syntac

tic concerns from the types of errors caused by unexpected interactions.

Secondly, the problem of managing control relationships between the

software components (a task that bedevils traditional objective-based

decompositions) is significantly reduced. All agents are continuously ac

tive and any coordination or synchronisation that is required is handled

bottom-up through inter-agent interaction.

From this discussion, it is apparent that the natural way to modu

larise a complex system is in terms of multiple autonomous components

24 N. R. Jennings

that can act and interact in flexible ways in order to achieve their set

objectives. Given this, the agent-oriented approach is simply the best

fit to this ideal.

The Suitability of Agent-Oriented Abstractions.

A significant part of the design process is finding the right models for

viewing the problem. In general, there will be multiple candidates and

the difficult task is picking the most appropriate one. When designing

software, the most powerful abstractions are those that mini mise the

semantic gap between the units of analysis that are intuitively used to

conceptualise the problem and the constructs present in the solution

paradigm. In the case of complex systems, the problem to be char

acterised consists of sub-systems, sub-system components, interactions

and organisational relationships. Taking each in turn:

• Sub-systems naturally correspond to agent organisations. They

involve a number of constituent components that act and interact

according to their role within the larger enterprise.

• The case for viewing sub-system components as agents has been

made above.

• The interplay between the sub-systems and between their con

stituent components is most naturally viewed in terms of high-level

social interactions: "in a complex system... at any given level of

abstraction, we find meaningful collections of objects that collab

orate to achieve some higher level view" [Booch 1994] pg 34. This

view ac cords precisely with the knowledge-Ievel treatment of inter

action afforded by the agent-oriented approach. Agent systems are

invariably described in terms of "cooperating to achieve common

objectives" , "coordinating their actions" or "negotiating to resolve

conflicts" .

• Complex systems involve changing webs of relationships between

their various components. They also require collections of compo

nents to be treated as a single conceptual unit when viewed from a

different level of abstraction. Here again the agent-oriented mi nd

set provides suitable abstractions. A rich set of structures are

available for explicitly representing organisation al relationships.

Interaction protocols exist for forming new groupings and dis band

ing unwanted ones. Finally, structures are available for modelling

col1ectives. The latter point is especially useful in relation to rep

resenting sub-systems since they are not hing more than a team of

components working together to achieve a collective goal.

Intelligent Information Processing 25

Flexible Organisational Structures.

Organisational constructs are first-dass entities in agent systems - ex

plicit representations are made of organisational relationships and struc

tures. Moreover, agent-oriented systems have the concomitant compu

tational mechanisms for flexibly forming, maintaining and disbanding

organisations. This representational power enables agent systems to ex

ploit two facets of the nature of complex systems. Firstly, the notion

of a primitive component can be varied according to the needs of the

observer. Thus at one level, entire sub-systems can be viewed as sin

gletons, alternatively teams or collections of agents can be viewed as

primitive components, and so on until the system eventually bottoms

out. Secondly, such structures provide the stable intermediate forms

that are essential for the rapid development of complex systems. Their

availability means that individual agents or organisational groupings can

be developed in relative isolation and then added into the system in an

incremental manner. This, in turn, ensures there is a smooth growth in

functionality.

2.2. Will Agent-Oriented Techniques Be Widely
Adopted?

There are two key pragmatic issues that will determine whether agent

oriented approaches catch on as a software engineering paradigm: (i) the

degree to which agents represent a radical departure from current soft

ware engineering thinking and (ii) the degree to which existing software

can be integrated with agents. Each point will now be dealt with in

turn.

A number of trends become evident when examining the evolution of

programming models. Firstly, there has been an inexorable move from

languages that have their conceptual basis determined by the underly

ing machine architecture, to languages that have their key abstractions

rooted in the problem domain. Here the agent-oriented world view is

perhaps the most natural way of characterising many types of problem.

Just as the real-world is populated with objects that have operations

performed on them, so it is equally fuH of active, purposeful agents

that interact to achieve their objectives3 . Indeed, many object-oriented

analyses start from precisely this perspective: "we view the world as a

set of autonomous agents that collaborate to perform so me higher level

function" [Booch 1994] pg. 17. Secondly, the basic building blocks of

the programming models exhibit increasing degrees of localisation and

encapsulation [Parunak 1999]. Agents follow this trend by localising

purpose inside each agent, by giving each agent its own thread of con-

26 N. R. Jennings

trol, and by encapsulating action selection. Thirdly, ever rieher mecha

nisms for promoting re-use are being provided. Here, the agent view also

reaches new heights. Rather than stopping at re-use of sub-system com

ponents (design patterns and component-ware) and rigidly pre-ordained

interactions (application frameworks), agents enable whole sub-systems

and flexible interactions to be re-used. In the former case, agent de

signs and implementations are re-used within and between applications.

Consider, for example, the class of agent architectures that have beliefs

(what the agent knows), desires (what the agent wants) and intentions

(what the agent is doing) at its core. Such architectures have been used

in a wide variety of applications including air trafiic control, process con

trol, fault diagnosis and transportation [Jennings and Wooldridge 1998,

Parunak 1999]. In the latter case, flexible patterns of interaction such

as the Contract Net Protocol (an agent with a task to complete adver

tises this fact to others who it believes are capable of performing it,
these agents may submit a bid to perform the task if they are interested,

and the originator then delegat es the task to the agent that makes the

best bid) and various forms of resource-allocation auction (e.g. English,

Dutch, First-Priee Sealed Bid, Viekrey) have been re-used in significant

numbers of applications. In short, agent-oriented techniques represent a

natural progression of current software engineering thinking and, for this

reason, the main concepts and tenets of the approach should be readily

acceptable to software engineering practitioners.

The second factor in favour of a wide-spread take up of agents is
that their adoption does not require a revolution in terms of an organ

isation's software capabilities. Agent-oriented systems are evolutionary

and incremental as legacy (non-agent) software can be incorporated in a

relatively straightforward manner. The technique used is to place wrap

ping software around the legacy code. The wrapper presents an agent

interface to the other software components. Thus from the outside it

looks like any other agent. On the inside, the wrapper performs a two

way translation function: taking external requests from other agents and

mapping them into calls in the legacy code, and taking the legacy code's

external requests and mapping them into the appropriate set of agent

communication commands. This ability to wrap legacy systems means

agents may initially be used as an integration technology. However, as

new requirements are placed upon the system, so bespoke agents may be

developed and added. This feature enables a complex system to grow in

an evolutionary fashion (based on stable intermediate forms), while ad

hering to the important principle that there should always be a working

version of the system available.

Intelligent Information Processing

3. CA SE STUDY: PROVISIONING A

VIRTUAL PRIVATE NETWORK

27

As an exemplar of a complex software system consider the task of

dynamically provisioning a public communication network (such as the

Internet) as a virtual private network for end users. To be concrete, let

the task in quest ion be setting up a video-conferencing meeting [Faratin

et al. 2000J. This application involves a variety of different individuals

and organisations (figure 3). There are the end users that are each rep

resented by their personal communication agent (PCA). The providers

of services on the network (such as setting up a video-conference, for

example) are each represented by a service provider agent (SPA). Fi

nally, there are the agents that represent the network provider on whose

telecommunications infrastructure the services will actually be delivered

(each represented by a network provider agent (NPA)). In setting up

a video-conference call, the various PCAs negotiate (using one of the

techniques described in [Jennings et al. 2001]), on behalf of their user,

with one another in order to find a suitable time for the call. When they

come to an agreement, one of the PCAs then contacts, and subsequently

negotiates with, the various SPAs that offer the video-conference service

(not all SPAs will do this). This negotiation revolves around the cast

of the conference call and the quality of service that is desired. The

SPA that wins the contract then negotiates with the various NPAs to

determine which of them can deliver the desired quality and bandwidth

at the best price.

Groupthatwant _,_-- ---- - ._.,_

to make call

'. PCA
·' _._. __ __ ._

End Users

Locale video-conference prov.der negotiation

Service
Providers

Networlc
Providers

Figure 3. Dynamic Provisioning of Virtual Private Networks by End Users

28 N. R. Jennings

This application highlights many of the benefits that are claimed

above for an agent-oriented approach to software engineering. Firstly,

autonomous agents are the most natural means of representing the dis

tinct individuals and organisations that are present in the application.

Each such entity is an active problem solver that has its own objectives

to achieve and has control over the actions it chooses and the resourees

that it expends. The agents need to be responsive to changes in their en

vironment (e.g. a NPA may need to buy in additional network capacity

from another NPA in order to maintain its agreed upon quality of service

if part of its network fails) and they need to be able to opportunistically

adopt new goals as they present themselves (e.g. two SPAs may dis

eover they have complementary service capabilities and may decide to

aet together in order to offer a new service).

Secondly, the agents need to engage in knowledge-Ievel interactions in

order to achieve their individual objectives. In this case, agents typically

represent self-interested entities and so the main form of interaetion is

negotiation. Thus, to set the time of the video conference or to select

a particular service/network provider the agents make proposals, trade

offers, make concessions and, hopefully, come to agreements. This rich

form of interaction is necessary because the agents represent autonomous

(competitive) stake holders and also to ensure that agents can arrange

their activities in a manner that is appropriate to their prevailing cir

eumstances.

Finally, there is a very clear and explicit not ion of organisational eon
text. The applieation involves a number of different real-world organisa

tions: individual end users, companies that provide the different types of

services and network providers that control the underlying telecommu

nications infrastructure. These relationships directly affect the agents'

behaviour. For example, if a SPA and a NPA are in fact part of the

same organisation, then their negotiations are more eooperative in na

ture than if they represent two unrelated companies. Similarly, the PCAs

that have agreed to hold a conference call, act as a team rather than

a collection of individuals. Additionally, during the ongoing operation

of the application new organisational groupings can appear and then

disband. The PCAs of distinct end users form themselves into collec

tives when they require a particular service (e.g. all the participants

of the video-conference). Individual SPAs combine their capabilities to

off er new services that are beyond the seope of any individual provider.

Competing NPAs form themselves into temporary coalition in order to

respond to particularly large requests for network resources 4.

Intelligent Information Processing 29

4. CONCLUSIONS

Agent-oriented techniques are increasingly being used in a range of

telecommunication, commercial and industrial applications. However if

they are to enter the mainstream of software engineering then it is vi

tal that clear arguments are advanced as to their suitability for solving

large classes of problems (as opposed to specific point solutions). To

this end, this paper has sought to justify precisely why agent-oriented

approaches are weIl suited to developing complex, distributed software

systems. These general points are then made more concrete by show

ing how they apply in a specific telecommunications application. In

making these arguments, it is possible for proponents of other software

engineering paradigms to claim that the key concepts of agent-oriented

computing can be reproduced using their technique. This is undoubt

edly true. Agent-oriented systems are, after all, computer programs and

aIl programs have the same set of computable functions. However, this

misses the point. The value of a paradigm is the mindset and the tech

niques it provides to software engineers. In this respect, agent-oriented

concepts and techniques are both weIl suited to developing complex, dis

tributed systems and an extension of those currently available in other

paradigms.

Notes

1. Booch actually uses the term "hierarchy" [Booch 1994J; however, this invariably gives

the connotation of contro!. Hence the more neutral term "organisation" is used here.

2. The view that decompositions based upon functions/actions/processes are more intu

itive and easier to produce than those based upon data/objects is even acknowledged within
the object-oriented community (see [Meyer 1988J pg 44).

3. Although there are certain similarities between object- and agent- oriented approaches

(e.g. both adhere to the principle of information hiding and recognise the importance of inter

actions), there are also a number of important differences. Firstly, objects are generally pas
sive in nature: they need to be sent a message before they become active. Secondly, although

objects encapsulate state and behaviour realisation, they do not encapsulate behaviour acti

vation (action choice). Thus, any object can invoke any publicly accessible method on any

other object. Once the method is invoked, the corresponding actions are performed. Thirdly,

object-orientation fails to provide an adequate set of concepts and mechanisms for modelling

complex systems: for such systems "we find that objects, classes and modules provide an

essential yet insufficient means of abstraction" [Booch 1994J pg 34. Individual objects repre

sent too fine a granularity of behaviour and method invocation is too primitive a mechanism

for describing the types of interactions that take place. Recognition of these facts, led to

the development of more powerful abstraction mechanisms such as design patterns, applica
tion frameworks, and component-ware. Whilst these are undoubtedly a step forward, they

fall short of the desiderata for complex systems developments. By their very nature, they
focus on generic system functions and the mandated patterns of inter action are rigid and

pre-determined. Finally, object-oriented approaches provide only minimal support for speci

fying and managing organisational relationships (basically relationships are defined by static

inheritance hierarchies).

30 N. R. Jennings

4. In contrast, an object-oriented approach is less suitable for this problem because: it

cannot naturally represent the autonomous problem solving behaviour of the constituent

components (recall objects do not encapsulate action choice), it has nothing to say about the

design of flexible problem solvers that balance reactive and proactive problem solving nor
about inter-agent negotiation (other than the fact that it involves message exchanges) and it
has no innate mechanism for representing and reasoning with the fact that the agents repre

sent different stakeholder organisations (other than the fact that they are different classes).

References

G. Booch (1994). Object-oriented analysis and design with applications. Addison Wes

ley.

F.P. Brooks (1995). The mythical man-month. Addison Wesley.

P. Faratin, N.R. Jennings, P. Buckle, and C. Sierra (2000). Automated negotiation

for provisioning virtual private networks using FIPA-compliant agents. Proc. 5th

Int Conf. on Practical Application of Intelligent Agents and Multi-Agent Systems,

Manchester, UK, 185-202.

N.R. Jennings (2000). On Agent-Based Software Engineering Artificial Intelligence

117(2): 277-296.

N.R. Jennings, P. Faratin, A. R. Lomuscio, S. Parsons, C. Sierra and M. Wooldridge

(2001). Automated negotiation: prospects, methods and challenges Int. J. of Group

Decision and Negotiation 10 (2) 199-215.

N.R. Jennings and M. Wooldridge (eds.) (1998). Agent technology: foundations, ap

plications and markets. Springer Verlag.

A. Newell (1982). The knowledge level. Artificial Intelligence 18:87-127.

J. Mayfield, Y. Labrou, and T. Finin (1995). Evaluating KQML as an agent commu

nication language. In M. Wooldridge, J.P. Muller and M. Tambe, eds., Intelligent

Agents H, Springer, 347-360.

B. Meyer (1988). Object-oriented software construction. Prentice Hall.

H.V. D. Parunak (1999). Industrial and practical applications 0/ distributed Al. In G.

Weiss, ed., Multi-agent systems, MIT Press, 377-421.

H.A. Simon (1996). The sciences 0/ the artificial. MIT Press.

M. Wooldridge (1997). Agent-based software engineering. IEE Proc Software Engi

neering 144:26-37.

M. Wooldridge and N.R. Jennings (1995). Intelligent agents: theory and practice. The

Knowledge Engineering Review 10(2): 115-152.

	AGENT-BASED COMPUTING
	1. MANAGING COMPLEXITY INSOFTWARE SYSTEMS
	2. THE CASE FOR AGENT-ORIENTEDSOFTWARE ENGINEERING
	2.1. The Software Engineering Credentials ofthe Agent-Oriented Approach
	2.2. Will Agent-Oriented Techniques Be WidelyAdopted?

	3. CA SE STUDY: PROVISIONING AVIRTUAL PRIVATE NETWORK
	4. CONCLUSIONS
	References

