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Abstract—This paper presents a game theoretic decen-
tralized electric vehicle charging schedule for minimizing
the customers’ payments, maximizing the grid efficiency,
and providing maximum potential capacity for ancillary
services. Most of the available methods for electric vehicle
charging assume that the customers are rational, there is
low-latency perfect two-way communication infrastructure
without communication/computation limitation between the
distribution company and all the customers, and they have
perfect knowledge about the system parameters. To avoid
these strong assumptions and preserve the customers’
privacy, we take advantages of the regret matching and the
Nash Folk theorems. In the considered game, the players
(customers) interact and communicate locally with only
their neighbors. We propose a mechanism for this game
which results in a full Nash Folk theorem. We demonstrate
and prove that the on-off charging strategy provides maxi-
mum regulation capacity. However, our mechanism is quite
general, takes into account the battery characteristics and
degradation costs of the vehicles, provides a real time
dynamic pricing model, and supports the vehicle-to-grid
(V2G) and modulated charging protocols. Moreover, the
developed mechanism is robust to the data disruptions and
takes into account the long/short term uncertainties.

Index Terms—Plug-in electric vehicles (PEVs), decentral-
ized charging, Nash Folk strategy, regret matching.

I. INTRODUCTION

PLUG-IN electric vehicles (PEVs) will soon electrify the

entire structure of the future transportation systems [1].

Reducing dependency on fossil fuels, reducing emissions of

greenhouse gases, energy and cost-saving, and better utilizing

of renewable energy sources are among the leading reasons

that PEVs are increasing in popularity. However, uncoordi-

nated charging of PEVs could have adverse effects on reliabil-

ity, stability, and efficiency of the power system. These adverse

effects include increasing the system peak load or creating

new sub-peaks, increasing power losses, decreasing the load

factor, and causing system voltage deviation and overloading

of transformers [2]. So, it is critical to develop a well-designed

charging coordination mechanism to alleviate the undesirable

effects and enhance the benefits of this electrification. From

this point of view, several studies have been carried out in

recent years to provide optimal charging schedules for PEVs

[3]–[14].
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A. Related Works

The authors of paper in [3] identified and analyzed the

relationships and the mutual influence between the feeder

losses, the load factor, and the load variance parameters.

They developed optimal charging algorithms for each of the

parameters, while minimizing the impact of PEV charging on

the connected distribution system. They denoted by the simu-

lation results on the two test systems that these relationships

approximately hold independent of system topology. Further,

they showed that it is more beneficial in terms of problem

convexity and the computational complexity to use load factor

or load variance as the objective function rather than system

losses. He et al. introduced a global convex optimization

problem in [4], which aimed to minimize the total cost for

charging all the PEVs within the day. As the proposed global

optimal solution needs information about the future base loads

and the arrival times and the charging periods of the PEVs that

will arrive in the future time of the day, it is impractical in

real world. So, they assigned a local optimization problem to

the PEVs scheduling in each local group, which is resilient to

the dynamic PEV arrivals and aims to minimize the total cost

of the PEVs in the current ongoing groups in an independent

and distributed manner. They demonstrated by the numerical

simulations that the locally optimal scheduling scheme can

achieve a close performance compared to the globally optimal

scheduling scheme.

The work in [5] formulated a game theoretical model to

characterize the interactions among the PEVs and the aggre-

gator in a V2G protocol. Using this model, the authors of

this paper designed a mechanism to achieve optimal frequency

regulation performance in a distributed fashion which benefits

both the customers and the power grids. To encourage the

PEVs to participate in the frequency regulation service, a

dynamic pricing policy is considered in this paper. Moreover,

they provided a new model explaining how a backup battery

bank can be deployed in an aggregator to maintain a stable

regulation capacity. Through analyzing the Nash equilibrium

in the vehicle-to-aggregator interaction games, they showed

that the proposed decentralized mechanism works as efficiently

as the centralized controlled methods. Reference [6] formu-

lated a decentralized iterative algorithm to schedule the PEV

charging to fill the valleys of the aggregated load demand

curve, which results in a valley-filling charging profile. In each

iteration, PEVs update their charging profiles according to the

control signal broadcast by the utility company, and the utility

company alters the control signal to guide their updates. This

procedure makes possible of real-time implementation and

tracking a desirable given load profile. The proposed method

preserves optimality (i.e., make the aggregate demand as flat
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as it can possibly be) even when the PEVs do not necessarily

update their charging profiles in every iteration. The proposed

algorithm in this work only requires each PEV solving its local

problem, hence its implementation requires low computation

capability.

A distributed algorithm for charging control of PEVs was

proposed in [7] based on the regret minimization, while the

utility functions of various PEV owners are not identical, or

precisely known to the distribution company. This algorithm

requires only one-way communication from the distribution

company to the customers, does not require infrastructure that

can support low latency two-way communication, and there

is no need for the customers to send their private data to the

distribution company. However, the charging profiles in this

work are sought to be optimized over the set of profiles that

do not vary from day to day, while the algorithm convergence

to the optimal charging schedule is slow. Based on the non-

cooperative game theory, a new price-driven charging control

scheme was developed in [8] to coordinate large scale PEVs

without compromising the security of the distribution network.

The aim of this work is to minimize the cost of individual PEV

owners, considering the overload constraints in the distribution

feeders which is tested on the IEEE 13-bus system. A Newton-

type fixed point method was formulated in this work to find

a better Nash equilibrium of the game model at a superlinear

convergence rate. Furthermore, an accelerated gradient method

was proposed to tackle the sub-problem for each customer’s

best response which is implemented in a distributed way in

order to protect customer’s privacy.

The impact of the PEVs demand on the system electricity

price was studied in [9]. The optimal scheduling of the individ-

ual PEV controller considering the actions of other PEVs in the

game is developed with the PEV driving pattern distribution.

An aggregative game model was proposed by this paper for

modeling interaction between the PEVs during the day-ahead

charging management. An optimization method is developed

to calculate the equilibrium of the game model through

quadratic programming and the existence and uniqueness of

its pure strategy Nash equilibrium was proved using Karush-

Kuhn-Tucker (KKT) optimality conditions. Case studies with

the proposed game model were carried out using real world

driving data from the Danish National Travel Surveys. The

impacts of the PEV driving patterns and price forecasts on

the EV demand with the proposed game model were also

analyzed in this work. In [10], Liu et al. provided an online and

near-optimal dynamic stochastic linear programming scheme

to optimize electric vehicle recharging costs and increase

the reliability of system taking into account load, electricity

pricing, and renewable energy generation uncertainties. At first

offline stage of this work, a day-ahead problem is solved.

Subsequently, at the second online stage, the proposed frame-

work uses offline solutions, collects real-time system data,

and the stochastic market parameters, and adjusts recharging

schedules to obtain a better recharging scheme once system

uncertainties are revealed. Since the aggregator communicates

to each PEV only once, their method needs a low bandwidth

communication infrastructure and can be used in a wide area.

Further, the proposed method is robust to variations in different

stochastic parameters and benefits both users and the power

utility.

In another research [11], an optimal PEV charging schedule

has been formulated assuming that the deriving pattern and

future charging demand of the PEVs are not known a priori,

but their statistical information can be estimated. The cost

of PEV charging was defined as a general strictly convex

increasing function of the instantaneous load demand, and was

demonstrated that minimizing such a cost leads to a flattened

load demand. This problem was formulated as a finite-horizon

dynamic programming and a model predictive control (MPC)

was provided to avoid the prohibitively high complexity of

solving such a problem. The computational complexity and

performance gap between the near optimal solution of the

MPC-based approach and the optimal solution for any dis-

tributions of exogenous random variables where rigorously

analyzed in this paper. An optimal charging problem of the

PEVs on demand side management (DSM) was formulated in

[13] to meet the power system interests, such as reducing the

generation supply cost, while respecting each PEV’s charging

constraint. A distributed consensus initialization-free algo-

rithm was used in this work to estimate the mismatch between

all the PEVs allocated powers and the total available charging

power on the directed graph. With these mismatch estimation,

a non-smooth analysis-based dynamic system was adopted by

the authors to dynamically update the PEVs charging power.

The proposed multi-agent system strategy is robust to the time-

varying available charging power, plug-and-play operations,

and single-link failures. Wang et al. in [14], introduced a

hybrid two-stage centralized-decentralized charging control

scheme to reduce the energy cost and guarantee the system sta-

bility. On the centralized stage, an offline optimal scheduling

approach was presented aiming at minimizing the energy cost

while satisfying the charging requirements of the PEVs. To

deals with the system dynamics and uncertainties, a real time

MPC-based adaptive scheduling strategy is developed by the

authors to determine the near optimal PEV charging profiles.

Then, on the decentralized stage, the interactions between

the PEVs and the charging system controller is modeled as

a leader-follower non-cooperative Stackelberg game in which

the system controller acts as the leader and the PEVs act as

followers. It was shown in this work that by adopting the pro-

posed decentralized charging algorithm, the communication

burden between PEVs and the system controller is low and the

charging scheme is robust to poor communication channels.

B. Contributions

The main contributions of this paper are summarized as

follows.

Designing a novel fully decentralized game theoretic

model: Due to the interdependence between PEVs’ actions

(a PEV action affects other PEVs’ payoffs), a game theoretic

model for the PEVs charging is designed guarantying the

local optimality for each PEV and the global optimality for

the system aggregator. As the centralized coordination of

large fleet of PEVs is costly, not secure, not reliable, and

complex process, a fully decentralized scalable approach is

proposed for the first time and its convergence to the Nash Folk

equilibrium is proved. In the developed framework, the inter-

actions between PEVs are done locally with neighbors using
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an arbitrary-private topology. So, the privacy of the customers

are preserved, there is not any vulnerable central point, and

the framework is robust to link/node failures. Further, unlike

the game theoretic solutions in the literature which do not

consider the adversary customers and malfunction data, any

customer action deviation or cyber-attack can be identified in

the proposed framework. In the mean time, as the emergence

of PEVs to the system affects the electricity market price, we

formulate a dynamic real time pricing policy in which the

customers take into account their impacts on the price.

Improving long/short term global performance: Due to the

several uncertainty sources (e.g., unexpected plug-in/out the

PEVs, base load, and baseline price) the day-ahead schedul-

ing solution may get away from the optimal point. So, we

adjoin the regret matching strategy (to improve the long term

performance) and the MPC strategy (to improve the short

term performance) with our framework. We also use Bayesian

inference and conditional value at risk techniques to tackle

the uncertainties in driving behaviors of the customers. Beside

considering the customers’ payments and battery degradation

costs, the proposed method results in a valley-filling charging

profile, minimizes the power losses and the load variance, and

maximizes the load factor and total regulation capacity.

Supporting universal charging protocols: Charging the

PEVs with faster rate and lower time by drawing the maximum

charging power from the charging pole [12], prolonging the

PEV battery’s lifetime with constant power feeding [15],

and requiring smaller communication overheads to contact

(switch off or on) with a small subset of PEVs [16]. Further,

with this method the infrastructures only need to work with

one charging rate which needs very cheap infrastructure and

services. In addition to the desirable effects of on-off charging

strategy, rather than modulating the charging rate, we prove

that the on-off strategy results in providing the maximum

regulation capacity. However, our proposed method supports

the modulated and V2G charging protocols too.

The proposed real-time universal charging scheduling im-

plemented in the fully decentralized manner have potential

application in the large power systems with too many cus-

tomers and the micro-grids equipped with the renewable power

generation similar to work in [17]. The model considered in

this paper is completely general and can be implemented by

different residential/commercial/industrial/organizational cus-

tomers having one or a group of the PEVs with some minor

manipulations.

Notation: Throughout the paper |·| denotes the cardinality of

the corresponding set, Pr{·} denoted the probability operator,

E[·] denotes the expectation operator, [a]+ = max{0, a}, and

〈·, ·〉 denotes the inner product. For λ-strongly convex function

L(x) with respect to a norm ‖ · ‖, ‖ · ‖∗ denotes the norm that

is dual to ‖·‖. We denote the Bregman divergence with respect

to L(x) as DL(x, x́) := L(x)− L(x́)− 〈∇L(x́), x− x́〉, and

∇L−1(x) denotes the inverse mapping of gradient ∇L(x).
The rest of this paper is organized as follows. The system

components is described in Section II. The PEV energy

consumption scheduling problem is formulated in Section III.

Our proposed method is introduced in Section IV. Section

V provides simulation results and we conclude the paper in

Section VI.

II. SYSTEM MODEL

In liberalized electricity markets, the retailers buy electricity

from the wholesale market and sell it to their customers

in a way to maximize social welfare [18]. Besides, in the

liberalized ancillary service market, to facilitate PEVs par-

ticipation and satisfy the minimum regulation capacity (e.g.,

0.1 MW), the aggregators are served as an interface between

the independent system operator (ISO) and a fleet of PEVs

[12]. The more the PEVs can provide regulation capacity, the

more they can acquire financial rebate. On the day before the

operation hours, each PEV owner determines the amount of

regulation capacity which can or is willing to provide. The

aggregator gathers all the regulation capacities and submits

its bid to the ISO accordingly. In one hand, the retailer must

announce the total future load demand of its customers to

the wholesale market before starting the scheduling horizon

H (e.g., one day with H = 24 hours). This load profile is

needed by the wholesale market for energy management and

power balancing issues. On the other hand, the aggregator

has to sign a contract with the ISO based on the expected

storage capacity of its associated PEV fleet before starting

the scheduling horizon. So, it is necessary for the retailer

(aggregator) to determine a proper framework to reduce the

customers’ payment (increase the PEVs regulation capacity)

in a day-ahead manner1.

A. Constraints

Consider set K of PEVs belonging to different residential

customers subscribing to the same aggregator. By assuming

that each customer has one PEV, the number of the PEVs

(customers) is denoted with K = |K|. As the most energy

consumption schedules are implemented in two stages (first

day ahead programing and then real time programing), we

divide a scheduling horizon H into several time slots H ,

[1, 2, · · · , H]. The PEVs are schedulable only when they are

at home and plugged into the power system. So, there is a

schedulable window Hk , [αk, · · · , βk] ⊆ H for each PEV

k, where αk is the plugged in time and βk is the last time

slot after which the PEV leaves the house. Let xhk denote the

power rate at which PEV of customer k ∈ K is charged (xhk >
0) or discharged (xhk < 0) at slot h ∈ H (i.e., the energy

consumption at each slot). Also, the total inelastic (non-PEV)

load demand of the customer in slot h is denoted with lhk .

To coordinate charging process of the PEV’s battery of each

customer the following constraints must be satisfied:

Eh+1
k = Eh

k + ηk
xhk
Bcap

k

, Emin
k ≤ Eh

k ≤ Emax
k , ∀h ∈ H (1)

∑

h∈Hk

ηk
xhk
Bcap

k

= Ed
k , xhk = 0, ∀h /∈ Hk (2)

where Eh
k is the state of charge (SOC) of PEV k at slot

h, ηk ∈ (0, 1] is the energy conversion efficiency of charg-

ing/discharging, Bcap
k [kWh] is the maximum energy that the

battery can store (storage capacity), Emin
k is the lower bound

1Throughout the paper, we assume that both the retailer and ag-
gregator are the same entity and the terms “retailer, aggregator” and
“customer, PEV owner” are used interchangeably.
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of the battery’s SOC, Emax
k is the upper bound of the battery’s

SOC, and Ed
k is the desired SOC at the end of scheduling

horizon H . The first term of (1) is the dynamic equation of

the battery’s SOC, and the second implies that the SOC of

each battery is bounded. For example, we can let Emin
k = 0%

and Emax
k = 100%. That means, the battery is allowed to

be depleted in discharging mode and can be charged to the

rated capacity. The first term of (2), imposes the scheduling

program to provide the required energy level for PEV’s traffic

at the departure time (end of the scheduling horizon), and

the second term denotes that when the PEV is unplugged,

it cannot consume power. So, the feasible set for PEV k’s

charging schedule is defined as:

Xk := {xk | (1) and (2)} (3)

where xk , [x1k, · · · , xHk ] and each charging schedule is

acceptable if and only of xk ∈ Xk.

B. Price Function

In the proposed strategies in the demand response (DR)

literature, the price signals are used as the main tool to shape

the load demand curve [19]. To make an optimal decision

in these strategies, the customers need to forecast the price

parameters before the scheduling horizon. However, most of

the strategies assume that the customers are price-taker (PT)

[20]. That means, the behavior of the active (who participate

in the DR programs) customers does not affect the wholesale

price signal. However, when there are a considerable number

of active customers (e.g., PEVs) in the grid, their power

consumption behavior will be comparable to the conventional

demand and inevitably influence the spot prices in the day-

ahead market. So, in this paper, the PEVs are considered to

be price-participant (PP), meaning that, they consider their

action’s impact on the spot price signal coming from the

retailer. To do this, the predicted price at slot h is modeled as

follows:

Ph = ph + λh
∑

k∈K

xhk (4)

where ph is the foretasted baseline price at slot h due to

the inelastic demand and λh
∑

k∈K x
h
k is incurred price (say

spot price) due to the flexible demand with price sensitivity

coefficient λh [9].

C. Cost Function

The most important purpose of each PEV owner to par-

ticipate in the charging schedule is reducing his payment as

much as possible. However, frequent charging/discharging the

PEV’s battery to reduce the payment, also reduces the battery’s

lifetime. Considering appropriate storage and operation cost

functions can be interpreted as imposing a soft constraint to

prolong the lifetime preventing large variations of the stored

energy. As the lithium-ion type of battery, has been widely

applied in electrical vehicles [21], we define the following cost

function for customer k incorporating the lithium-ion battery

degradation cost:

fk(xk) =
∑

h∈H

Ph
(
xhk + lhk

)
+ φsk + φfk (5)

where

φsk =
∑

h∈H

(

γs1k (xhk)
2 + γs2k |xhk |+ γs3k

)

, φfk =
H∑

h=2

γfk
(
xhk − xh−1

k

)2
,

γs1k = 106pcelγ4/(MkV
nom), γs2k = 103pcel(γ2 + γ6V nom),

γs3k =Mkp
celV nom(γ1 + γ3V nom + γ5(V nom)2 + γ7(V nom)3)

(6)

where pcel represents the price of a single energy unit of a

battery cell, Mk is the number of cell units in PEV k, and

V nom is the nominal value of the open circuit voltage of

the battery cell unit [22]. The parameters γi, i = 1, 2, · · · , 7
specified as −1.148 × 10−7, 3.9984 × 10−8, 1.3158 × 10−7,

5.5487 × 10−10, −4.968 × 10−8, −1.1166 × 10−8, and

6.1675×10−9, respectively [21]. For a detailed analyze about

the battery degradation cost please refer to [23]. The first

term of (5) is the monetary cost imposed on customer k
due to buying power xhk for his PEV and buying power lhk
for his inelastic (non-PEV) appliances in price Ph at slot h.

The terms φsk, φfk in (5) define the battery degradation cost

due to the variations of the stored energy (storage cost) and

frequent fluctuations of charging/discharging power (operation

cost) with model parameter γs1k , γs2k , γs3k , and γfk determined

by the battery manufacturer (higher weights γs1k , γs2k , and

γfk encourage smaller variation with the constant per slot

storage price γs3k ), respectively. Clearly, if the PEV power

consumption does not change in some consecutive time slots,

there is no operation cost φfk for that slots [4].

III. PROBLEM FORMULATION

A. Tackling The Uncertainties

In general, the actual plug-in time αk, plug-out time βk,

and the desired energy level (SOC) for the next trip Ed
k (i.e.,

the driving pattern) of each PEV k may not be available

to its corresponding customer in advance. To tackle these

uncertainty resources, the customer can collect the plug-in-

plug-out and the desired energy demand historical data record

of each PEV k. According to the collected driving pattern

data, one can estimate the energy demand (Êd
kB

cap
k ) and

the probabilities πα,k(h) and πβ,k(h) in which the PEV

k becomes available and unavailable at each time slot h,

respectively. The conditional probability πα,k(h|τ) that the

PEV k becomes available in an upcoming time slot h > τ ,

given that it has not become available until the current time

slot τ , is [24]:

πα,k(h|τ) =
πα,k(h)

1−∑τ
h́=1 πα,k(h́)

(7)

The conditional probability πβ,k(h|τ) that the PEV k be-

comes unavailable at slot h, given that it is still available at

the current slot τ , can be drawn in a similar way. Bayes’

theorem allows us to update prior beliefs on the probabilities

πα,k(h|τ) and πβ,k(h|τ) at each slot h [25]. Due to the

adaptive nature of our framework, from the point of view

of Bayesian inference, one can estimate the values of αk

and βk using the maximum a posteriori probability (MAP)

estimate techniques [26]. In estimating the desired SOC Ed
k ,

if we underestimate the energy demand, high discomfort level
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would impose on the PEV owner k and it is possible that the

PEV’s task remain unfinished. The smart conditional value-

at-risk (CVaR)-based regularizer turns out to be capable of

utilizing the PEVs cabability intelligently for peak shaving and

ancillary service effectively with limited underestimate risk

[27]. To prevent the under-estimation (i.e., the energy deficit

for the PEV), the customer k is charged with shortage price

Psh (cents/kW), when its actual energy demand is higher than

the estimated amount. Let ∆k(E
d
k , Ê

d
k) = Psh[E

d
k − Êd

k ]
+

denote the penalty for energy deficit imposed on the customer

k for one scheduling window, where Êd
k is the estimated

desired SOC. Under a given confidence level νk ∈ (0, 1)
and the estimated energy demand Êd

k , the value-at-risk (VaR)

for PEV k is defined as the minimum threshold cost σk, for

which the probability of energy shortage of PEV k being

less than σk is at least νk. Due to the non-convexity, it is

difficult to minimize the VaR. The CVaR is an alternative risk

measure, which is convex and can be optimized using sampling

techniques [27]. The CVaR, CV ν
k (Êd

k), for PEV k is defined

as the expected value of the energy deficit cost, ∆k(E
d
k , Ê

d
k),

when only the costs that are greater than or equal to the VaR,

V ν
k (Êd

k), are considered [27]. That is,

V ν
k (Êd

k) = min{σk|Pr{∆k(·) ≤ σk} ≥ νk},
CV ν

k (Êd
k) = E

[

∆k|∆k(·) ≥ V ν
k (Êd

k)
]

(8)

It is possible to estimate the CVaR by adopting sample average

approximation (SAA) technique [28]. Samples of the random

variable Ed
k for PEV k can be observed from the historical

record. Consider the set Ek = {1, 2, · · · , Ek} of Ek samples

of the random variable Ed
k . Let Ed

k,n denote the nth sample

of Ed
k for PEV k. The CVaR in (9) can be approximated by

[29]:

CV ν
k (Êd

k) ≈ min
σk

C̃ν
k (Ê

d
k , σk),

C̃ν
k (Ê

d
k , σk) = σk +

∑

n∈Ek

[∆h
k(E

d
k,n, Ê

d
k)− σk]

+

Ek(1− νk)
(9)

Under the given estimate Êd
k , we can use the historical samples

of the PEV’s desired energy demand in each scheduling

window to compute C̃ν
k (Ê

d
k , σk). Moreover, according to the

MPC theory, we can use the information updated at each slot

to improve the performance of the estimation [30].

B. The global optimization problem

From the aggregator point of view, the total load profile

must be as flat as possible (valley filling) and the PEVs should

be managed so that they provide maximum regulation capacity

to reduce the power system losses and increase the efficiency.

On the other hand, the customers only care about their

payment. We provide a mechanism to make a compromise

between the two. The global optimization problem to minimize

the customers’ payments is given by:

min
xk∈Xk

∑

k∈K

(
∑

h∈H

(
(
ph + λh

∑

k∈K

xhk
)(
xhk + lhk

)
+ γs1k (xhk)

2 +

γs2k |xhk |+ γs3k

)

+
H∑

h=2

γfk
(
xhk − xh−1

k

)2

)

(10)

This problem is a strictly convex due to its combination of

strictly convex and linear functions [31]. We can solve problem

(10) centrally by the aggregator using well known convex

programming techniques. However, due to the mentioned

drawbacks of the centralized solutions (in Section I-B), we

seek to provide a decentralized solution. In Section V of

[5] it is shown that under some conditions, the decentralized

game theoretic solution (Nash equilibrium) coincides with

the optimal global centralized solution. In the decentralized

strategy, each customer is aware only of his personal objective

function and constraints. With some manipulation the global

problem (10) is rewritten as follows:

min
xk∈Xk

∑

k∈K

∑

h∈H

(
λh
∑

k∈K

xhk
)(
xhk + lhk

)
+
∑

k∈K

∑

h∈H

ph
(
xhk + lhk

)
+

∑

k∈K

∑

h∈H

γs1k (xhk)
2 + γs2k |xhk |+ γs3k +

H∑

h=2

γfk
(
xhk − xh−1

k

)2

(11)

The challenging term for decentralizing the problem is the

first term which shows that the optimal behavior of each

customer depends on how he/she and all other customers

schedule their consumptions. So, due to the dynamic price

component λh
∑

k∈K x
h
k , the customers’ actions are coupled

to each other through an energy cost sharing model. The

most suitable solution concept to tackle such energy cost

sharing model is achieved through game theory. Each game

Γ(K, xk, Pk(xk, x−k)) is defined by three components as:

Players: All the registered customers in set K. Strategies:

Charging/discharging schedules xk of each player k ∈ K.

Payoffs: Local objective function Pk(xk, x−k) that each player

k seeks to maximize it. Let’s define the local cost function

associated with each single customer k ∈ K as follows:

min
xk∈Xk

Jk(xk, x−k) =
∑

h∈H

((

λh
(
xhk +

∑

j∈K/k

xhj
))(

xhk + lhk
)
+

ph
(
xhk + lhk

)
+ γs1k (xhk)

2 + γs2k |xhk |+ γs3k

)

+
H∑

h=2

γfk
(
xhk − xh−1

k

)2

(12)

where x−k denotes all the customers’ action other than that

of customer k. The payoff function of customer k becomes

Pk(xk, x−k) = −Jk(xk, x−k). The dynamic price component

is decomposed accordingly to customer k’s dynamic cost and

the other customers (j ∈ K/k) as λh
(
xhk +

∑

j∈K/k x
h
j

)
.

Theorem 1. An optimal solution of (11) provides a valley

filling load profile, minimizes the load variance, minimizes the

power system losses, and maximizes the load factor.

Proof. See Appendix A.
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In view of Theorem 1, as the proposed framework has the

lowest load variance and results in a valley filling charging

profile, there is no need to be concerned about additional

constraint that may refrain from equipment’s overloading.

Theorem 2. An optimal on-off strategy with maximum charge

rate xrk for convex minimization problem (12) maximizes the

regulation capacity.

Proof. See Appendix B.

Based on Theorem 2, the charging control should be on

or off at the maximum charging rate to maximize regulation

capacity. Thus, there is no need to be concerned about the opti-

mal charging rate and constraints such as xmin
k ≤ xhk ≤ xmax

k .

The only important thing is how to schedule the charging

sequence. So, the power consumption is constrained to be off

(xhk = 0) or on (xhk = xrk) and the feasible set Xk for each

PEV owner k ∈ K is modified as follows:

X̃k = {xk | (1), (2), and xhk ∈ {0, xrk}} (13)

where xrk is the rated power at which the PEV k is charged

(> 0) or discharged (< 0).

IV. NASH FOLK REGRET-BASED STRATEGY

The system parameters, such as, the price signal, the base

loads, the deriving patterns, and the customer’s decisions can

have unpredictable changes. So, there is always a difference

between the real world and the scheduled energy consump-

tions. This difference results in a sub-optimal schedule, even

with deploying the MPC and stochastic methods. Assuming

perfect knowledge of the parameters’ behavior throughput the

scheduling horizon is very strong. Therefore, we adopt the

optimistic mirror descent (OMD) regret-based algorithm to

take into account the long term behavior of these unpredictable

changes. The iterative minimization of problem (12) for each

k ∈ K based on the OMD algorithm becomes:

ψt+1
k = ∇L−1

k

(
∇Lk(ψ

t
k)− ηk∇J t

k(x
t
k, x

t
−k)
)

xt+1
k = argmin

xk∈X̃k

ηkx⊤kM
t+1
k +DLk

(xk, ψ
t+1
k ) (14)

where superscript t denotes the problem at hand in day t,
ηk is a penalty term, Lk is any 1-strongly convex function,

and M t+1
k denotes prediction for the gradient of the cost

function J t+1
k . For example, we can select the prediction

M t+1
k as the average of the gradients of the cost functions

for the previous days, i.e., M t+1
k = 1/t

∑t
v=1 ∇Jv

k (x
v
k, x

v
−k)

[7]. This is because, it is expected that the system parameters

have high correlations with the previous days (the customers

have daily habits, go/come back to/from the work at similar

hours, etc). So, the OMD algorithm uses the information of

the previous scheduling horizons (days) to improve the long-

term performance. Let’s consider the customer k regret after

T days as:

Rgk(T ) :=
T∑

t=1

J t
k(x

t
k, x

t
−k)− min

xk∈X̃k

T∑

t=1

J t
k(xk, x−k) (15)

In fact, applying such regret-based OMD algorithm provide

a data-base of action-results to the customer k by which the

customer can infer each of his actions results to what cost (how

much regret). This approach can be seen as a way of adding

prior knowledge about the sequence within the paradigm of

online learning [32].

Proposition 1. Iteration (14) converges in the sense that, for

any x∗k ∈ X̃k we have:

Rgk(T ) ≤
1

ηk
Yk +

ηk
2

T∑

t=1

∥
∥∇J t

k(x
t
k, x

t
−k)−M t

k

∥
∥
2

∗
(16)

where

Yk := max
xk∈X̃k

Lk(xk)− min
xk∈X̃k

Lk(xk)

Proof. See Proof of Lemma 2 in [33]. In particular, if ηk
is chosen as O(1/

√
T ), then the average regret, namely,

Rgk(T )/T converges to zero as T → ∞ [7].

Now, we need to provide a coordinated charging mechanism

between the PEVs to result in a public social optimal solution

to the global problem (11). The main challenge to provide

a fully decentralized solution to (11) is that each customer

k requires to know the aggregate PEVs power consumption
∑

k∈K x
h
k = xhk +

∑

j∈K/k x
h
j for each slot h ∈ H to solve

(12). A common state of the art solution to this, is that each

PEV submit its action profile to all other PEVs (either directly,

or through the aggregator). According to this mechanism, each

PEV k independently executes the Nash equilibrium regret-

based Algorithm 1 to achieve optimal coordinated charging

(See [34] for optimality and convergence proof). This method

Algorithm 1 Decentralized Nash Equilibrium Strategy

(DNES): executed by each PEV k

1: I. Initialization: Take arbitrary action x0
k

, M0
k

, and ∇J0
k

.
2: II. Repeat for t = 1, 2, · · ·
3: Set h = 0, and take parameters of previous day t− 1 as initial values.
4: Repeat according to some order
5: Receive the last update of the other PEVs actions (xtj in j ∈ K/k).

6: Run OMD algorithm (14) and determine x
t+1

k
.

7: If x
t+1

k
changes compared to current schedule, Then, set x

t+1

k
as the

new solution and broadcast it.
8: Until convergence

requires very low-latency communication, is not robust to

noise and node/link failures, and jeopardizes the customers’

privacy security. More importantly, for a large power system, it

is probable that some customers, deliberately or inadvertently,

do not communicate with other or do not act rationally. We

can model the noisy data such as the customers are not so

rational and reliable. In this situation the classical games fail

to reach the Nash equilibrium. So, we have used a behavioral

repeated game in this paper. Our game can be modeled as

an infinite game due to the fact that the energy scheduling

must be repeated at each hour or at each day. To tackle this

issue, we present a fully decentralized robust collaborative

method based on the Nash Folk theorem [35]. The original

Folk theorem concerned the payoffs of all the Nash equilibria

of an infinitely repeated game. This theorem helps to identity

the deviator players (PEVs), and punish them with locally

and private message exchange between the neighbors. There

are two kinds of deviations (disruptions) in action or in

communication. If a player either adopt any strategy other

than the provided optimal equilibrium strategy of Algorithm
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1 or sends a spurious information to his neighbors, he is a

deviator. Let’s define the PEV k’s neighborhood Nk as the set

of all PEVs with ability to communicate with PEV k. The key

to characterize a scalable game framework lies in determining

under which conditions can information be diffused through

the grid by the neighbors. In this way, we propose Algorithm

2 considering the following proposition.

Proposition 2. The necessary and sufficient conditions for

a full Nash Folk theorem to hold and to enable deviator

identification by the deviator’s neighbors are as follows:

1) Condition P: For each player k ∈ K, each neighbor

j ∈ Nk, any actions xj , x́j ∈ X̃j , xk ∈ X̃k and

xNk/j ∈ X̃Nk/j , we must have Jk(xk, xj , xNk/j) 6=
Jk(xk, x́j , xNk/j).

2) Condition N: For each player k, for any neighbors j, i ∈
Nk such that j 6= i, there exists ℓ ∈ Nj/i ∆ Ni/j, such

that there is a path from ℓ to k which passes through

neither j nor i.

where Nk/j is the set of player k’s neighbors other than

neighbor j with action set X̃Nk/j and action profile xNk/j .

ℓ ∈ Nj/i ∆ Ni/j =
(
Nj/{i,Ni}

)
∪
(
Ni/{j,Nj}

)
and

implies that player ℓ is a neighbor of j or i, but not of both.

Condition P implies that the action of a players always affects

his neighbors’ payoffs, so, its behavior is learnable (deviation

is detectable). A 3-connected2 network in which players have

different neighbors, i.e., for any pair (j, i) ∈ N
2,Nj/i 6=

Ni/j, satisfies Condition N (see [36] for detailed information

and proof about Proposition 2). In the proposed framework in

Algorithm 2, the payoff of a customer depends only on his

own action and the actions of his neighbors. This algorithm

is robust to (deliberately or inadvertently) disruption in the

sense that it has ability to identify the guilty customers with

the local private information exchange as follows:

Communication protocol CP: Let’s denote by θ = inf{t ≥
1 : ∃k ∈ K s.t.

(
xtk 6= x∗t

k or ∃j ∈ Nk s.t. mt
k(j) 6= ∅

)
},

the first stage at which a player starts deviating, where x∗t
k is

the customer k’s equilibrium strategy at stage t and mt
k(j) =

{k, · · · , i} means that a deviation report has been sent from

player k to player j at stage t declaring players {k, · · · , i} as

the innocent players. When each customer k ∈ K detects a

deviation (θ 6= ∅), that is, either he observes a change in his

payoff or he receives mt
j(k) 6= ∅ from his neighbor, then he

sends the sets of innocent players to his neighbors. This set is

computed as follows:

• If he has observed a change in his payoff (the deviation

is in action), then he clears all the customers that are not

his neighbors. That means, the deviator must be one of

his neighbors. If θ 6= ∅ and he does not observe a change

in his payoff (he has received mt
j(k) from some j ∈ Nk),

he clears all his neighbors.

• The set of innocent customers then is updated using the

sets received by his neighbors, i.e., if neighbor j ∈ Nk

sends his set of innocents {j, i,m}, customer k adds

2Graph G with vertex V is called n-connected if |V | ≥ n and G −
X is connected for every set X ⊆ V with |X| < n, where G − X
represents the graph where all nodes in X have been removed (and
the corresponding links). Simply, a graph is n-connected if any two of its
nodes can be joined by n independent paths.

customer i and m to his own set of innocents. Note

that player k cannot clear player j. If j is the deviator,

then i and m are cleared automatically. Otherwise, j is

performing the protocol obediently, so his information is

true and i and m are really innocent. Therefore, by this

mechanism the information “j claims that i and m are

innocent” is not manipulable by player j.
• At the end of the protocol, if at least one customer k ∈ Nℓ

says that customer ℓ ∈ Nk is not cleared, then customer

ℓ is known as the deviator. Otherwise, there is no action

deviation and deviation is in communication.

The adopted communication protocol is such that, if a

customer deviates in communication but not in action, then

all customers keep playing the equilibrium actions and payoffs

are not affected. Moreover, when there is an action deviation,

only the deviator’s neighbors have to identify him in order to

punish him.

Punishment: The (independent) minmax level of player ℓ to

be punished by his neighbors is as follows:

vℓ = min
xNℓ

∈
∏

j∈Nℓ
X̃j

max
xℓ∈X̃ℓ

Pℓ(xℓ, xNℓ
) (17)

where Pℓ(xℓ, xNℓ
) = −Jℓ(xℓ, xNℓ

) and Jℓ(xℓ, xNℓ
) is obtained

from (12) by replacing
∑

j∈Nℓ
xhj for

∑

j∈K/ℓ x
h
j .

Algorithm 2 Fully Decentralized Nash Folk Strategy (FD-

NFS): Executed by each PEV k

1: I. Initialization: Take arbitrary action x0
k, M0

k , and ∇J0
k .

2: II. Repeat for t = 1, 2, · · ·
3: Set h = 0, and take parameters of previous day t − 1 as initial

values.
4: Repeat according to some order
5: Action Phase: Receive the last update xt

j of each PEV in
neighborhood j ∈ Nk.

6: Run OMD algorithm (14) and determine xt+1

k .

7: Communication Phase: If xt+1

k changes compared to current

schedule, Then set xt+1

k as the new solution and broadcast it to
the neighbors.

8: If no deviation is detected, Then sends a blank message
mt+1

k (j) = ∅ to his neighbors j ∈ Nk,
9: Else run the communication protocol CP until the deviator ℓ is

identified.
10: Punishment Phase: If the deviator ℓ is neighbor with k, Then

player k plays minmax strategy (17) against his neighbor ℓ.
11: Until convergence

To provide an insight about how the customers interact with

each other and apply the Nash Folk strategy, the block diagram

of the proposed framework is presented in Fig. 1.

Theorem 3. The developed Nash Folk repeated game in

Algorithm 2 converges to an optimal unique solution of global

minimization problem (11) at Nash equilibrium. In the Nash

equilibrium solution, no player can increase his payoff by

switching unilaterally to an alternative strategy.

Proof. See Appendix C.

Remark 1. For improving the short term performance of the

proposed mechanism, we can use an event-triggered MPC

strategy with optimal tuning t and run the repeated game once

needed (e.g., a change is occurred) [30].
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Fig. 1. The block diagram of applying the Nash Folk strategy on the
considered smart micro-grid model.

V. NUMERICAL RESULTS

A. Simulation Scenarios and System Parameters

In the adopted setup for numerical simulations, we have

considered a smart micro-grid including one aggregator

procuring power for K = 10 customers within scheduling

horizon H = 24 for each h = 1 hour. The baseline price signal

is adopted from the real case day ahead hourly locational

marginal price (LMP) values determined by Pennsylvania-New

Jersey-Maryland Interconnection (PJM) electricity market for

2017/08/01 [37]. Each customer has one PEV with ideal

charge/discharge efficiency and their base loads is adopted

randomly with some correlation with the baseline price signal.

The customers’ electric vehicles are assumed to randomly have

different specifications (e.g., 12 ≤ Bcap
k = Emax

k ≤ 14 kWh,

Emin
k = 0, xrk = 4 kW/h) and preferences (e.g., Hk). We also

assumed that the initial energy level of all the PEVs is zero

and 12 ≤ Ed
k ≤ 14 kWh. Without loss of generality, for

the considered system topology (graph), it is assumed that

each customer has three neighbors (e.g., N1 ={3, 4, 5}, N2

={4, 5, 6}, N3 ={1, 5, 6}, N4 ={1, 2, 6}, N5 ={1, 2, 3},

N6 ={2, 3, 4}, N7 ={6, 8, 9}, N8 ={5, 7, 10}, N9 ={2,

7, 10}, N10 ={3, 8, 9}). In the proposed results, PP and

PT denote dynamic price-participant and static price-taker

scenarios, respectively. The grid topology with 3-connected

graph is denoted by 3 and 2-connected graph is denoted by

number 2, and symbol B denotes a communication protocol

in which each customer needs to send his base load to the

neighbors. Further, on/off (continuous) denotes the scenario

in which the PEVs are allowed only to charge/discharge with

fixed (modulated) charging rate, and V2G denotes the scenario

in which the PEVs can sell electricity back to the grid.

B. Performance Comparison

For each of the algorithms (DNES and FDNFS) formulated

in the previous section, the convergence behavior is compared

for different price signals, communication protocols, and grid

topologies in Fig. 2. As seen in this figure, deploying both

of the algorithms with different assumptions the system con-

verges very fast (only one iteration per customer is required)

and result in much lower total grid payment compared with

when there is not any scheduling program. In all the results

the proposed FDNFS is as efficient as the DNES method

(which the dominant method in the literature), while it is

obvious that our novel FDNFS method is more robust, more

reliable, require low communications, and scalable. Also this

results indicate that there is no need for customers to share

their base non-PEV loads (as long as the price signal is well

designed) and they are free to adopt 2, 3, or more neighbors

(as long as the grid topology is a connected graph). As in

the price-participant scenarios, the consumption patterns affect

the price signal, there is some oscillation in the convergence

process around the optimal point. This is because, as much

as the customers shift their PEVs consumption to time slots

with lower prices, the spot price increases at those slots

to prevent creation of sub-peaks [18]. The performance of

the centralized method in the price taking (PT) scenario

shows that the aggregate system payment is the lowest. We

must note that when there is too many customers in the

system, the centralized method is not practical as it imposes

a huge computational burden to the system, the privacy of

the customers are put into danger, and the algorithm is not

reliable and robust to failures. However, in another simulation

scenario with dynamic pricing (Centralized-PP), we can see

that performance of the centralized method is worse than the

decentralized methods. This is because in the decentralized

method, at each iteration the customers update the price

function and effectively can predict the effect of their actions

on the price behavior.

However, according to Fig. 2, when the customers are

assumed to be price-taker, they incur more cost compared

with those by price-participant customers. This is because

when the customers are price-participant, shifting the PEVs’

load to lower price slots helps flatten and lower the price

signal. This behavior is illustrated in Fig. 3. As shown in

Fig. 3(a), without the charge scheduling, the PEVs’ load

demand deteriorates the system performance as results in

higher peak demand. Accordingly, when our method (the

FDNFS algorithm) is deployed, the peak demand is reduced

and the PEVs’ charging profiles is shifted to the time slots with

lower price. This behavior results in a valley filling pattern.

Fig. 3(b) illustrates the deference between dynamic-PP and

static-PT real time pricing. In the case of static pricing, the

customers’ behavior does not affect the price signal. So, the

spot price is coordinated with the baseline price to reduce the

peak demand as much as possible. On the other hand, when

dynamic real time pricing is performed, shifting the PEVs’

demand to low price time slots results in transferring the spot

price to those slots. This behavior has two benefits; preventing

creation sub-peaks in slots with low prices and reducing the

customers’ payments (see Fig. 4).

To make incentive for all the PEV owners to participate

in a scheduling program they must be sure to acquire some

monetary benefit of it. From Fig. 4, we can see that all the

PEV owners can reduce their payments by participating in our

mechanism. As previously mentioned, for all the simulations

the customer’s payment with dynamic-PP pricing is lower than

other scenarios (no schedule and static-PT pricing). Moreover,

it is obvious that by V2G protocol, the customers can charge

their PEVs in low price slots and sell it at high price slots (see

Fig. 5), resulting in minimum possible payment.
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As an example, customer 4’s load pattern in four scenarios

are given in Fig. 5. Two charging models (on/off and contin-

uous) without ability of selling electricity back to the grid are

shown in Fig. 5(a). In both models the customer has charged

his PEV in slots with low base load demand (which coincides

with low price slots). As is clear from Fig. 5(a), in the on/off

charging mode, the PEV is working on only three time slots,

while continuous charging occupies six slots. As we proved in

Appendix B, this result shows that the on/off charging strategy

provides more regulation capacity. The charging profile for

customer 4 under V2G protocol is shown in Fig. 5(b). We

can see that the customer has charged his PEV with more

power than he needs in slots with low prices and sell back the

excess energy in slots with high prices to reduce his payment.

However, due to the frequent charge/discharge battery cycles,

this procedure increases the battery degradation cost (see Fig.

6).

There is always a trade-off between reducing the payment

by frequently charging and discharging the storage devices

and reducing the battery degradation cost by keeping constant

the battery SOC. Comparison between Fig. 4 and Fig. 6

demonstrates this trade-off. The results of Fig. 4 show that

the customers have minimum possible payment with the V2G

protocol. On the other perspective, Figs. 6(a)-(b) illustrate

that the V2G protocol results in maximum possible battery

degradation cost.

The long-term performance of the proposed framework

is analyzed in Figs. 7(a)-(b). The aggregate behavior of 10

customer in the presence of uncertainty about parameters αk,

βk, Ed
k , and ph are demonstrated in Fig. 7(a). As we can see,

at time slots with high price (which is mostly incurred by

high base load) all the customers try to discharge the battery

of their PEVs to make profit. They also charge their PEVs

at slots with low price to pay less. However, the most(least)

PEV power charging(discharging) does not exactly coincides

with the lowest(highest) price due to inaccuracy in stochastic

parameters estimation. Moreover, the convergence behavior of

iteration (14) for customer 4 is depicted in Fig. 7(b) by regret

criterion (15). The result denotes that at the first days the regret

level is high, while as the learning capability of the customer

increases, the regret level goes down and converges.
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tion behavior and (b) Difference between dynamic and static pricing.
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Fig. 5. Customer 4’s load profile: (a) Without ability to selling electricity
back and (b) With ability to selling electricity back (V2G).

VI. CONCLUSIONS

Efficient charging scheduling of PEVs requires robust,

decentralized and incentive-based coordination mechanism.

None of the proposed PEV charging/discharging schedules in

the literature is robust fully decentralized. To address these

concerns, we proposed a computationally efficient “fully”

decentralized game-based charging mechanism coordinated by

a real time dynamic pricing method using the Nash Folk

strategy. Due to the private and local communication between

the neighbors this framework is robust to link/node failures and
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Fig. 7. Long-term performance of the proposed framework under
uncertainty of the deriving pattern and the baseline-price: (a) aggregate
consumption pattern (b) regret convergence of customer 4.

noisy information too. Our pricing and charging schedule takes

into account the PEV’s battery specification and degradation

cost, is completely general, and can work with any scenario

with some manipulation. The MPC and regret matching tech-

niques where used with Bayesian inference and the CVaR

to cope with uncertainties and improve the short/long-term

performance of the mechanism. Further, for the first time, we

illustrated that any cheating by the players or any cyber-attack

can be identified by the proposed framework. We proved that

our method minimizes the load variance and power system

losses, and provides maximum regulation capacity and the

load factor. Finally, we proved and demonstrated by numerical

results that our mechanism works efficiently in different sce-

narios and results in total valley filling profile and minimum

possible payment for the customers.

APPENDIX

A. Proof of Theorem 1

The proof of Theorem 1 consists of four parts. In the fist

part we need to show that an optimal solution of (11) provides

a valley filling load profile. To this end we need following

proposition

Proposition 3. Minimizing an strictly convex global function
∑

k∈K U(xk) : R → R results in a valley filling charging

profile
∑

k∈K x
h
k = [A −∑k∈K l

h
k ]

+, ∀h ∈ H, where [a]+ =
max{0, a} with some A ∈ R.

Proof. In [6], it is proved that a valley-filling charging profile

is optimal (Property 1) and an optimal solution exist, if X =
X1 × · · · × XK 6= ∅, i.e., X is nonempty (Property 2). The

feasible set Xk of each PEV k’s charging profile is obviously

nonempty, compact, and convex. So, the global feasible set is

also nonempty, compact, and convex [31].

Let X , [x1, · · · , xK ]⊤ ∈ R
K×H , x = x1 + · · · + xK ∈

R
1×H denote the charging profile and the aggregate charging

profile of all the PEVs.

Definition 1. Two feasible charging profiles X and X́ are

equivalent, denoted as X ∼= X́, if their aggregate charging

profiles are the same, i.e., x = x́.

It is inference from Theorem 1 in [6] that for optimization

problem (12), optimal charging profile is in general not unique.

So, let denote the set of optimal charging profiles with an arbi-

trary optimal charging profile Xo as O := {X ∈ X | X ∼= Xo}.

Moreover, it is shown in [6] that the set O of optimal charging

profiles does not depend on the choice of U(X). That means,

if Xo is optimal with respect to a strictly convex U1(X), then

Xo is optimal with respect to any strictly convex Un(X).
Now, we consider an arbitrary valley-filling charging profile

Xv . From property 1 of [6], this charging profile is optimal to

any strictly convex function, specially to (11). As the objective

function of problem 12 and its global objective function (11)

are also strictly convex, each global optimal solution Xo to

(11), is an equivalence class with valley-filling charging profile

Xv . From Definition 1 the aggregate charging profiles of Xv

and Xo are the same. So, we can conclude that the optimal

charging profile Xo generates a valley-filling profile and the

proof of Proposition 3 (the first part of the proof of Theorem

1) is complete.

Next, we proceed to show that an optimal solution of (11)

minimizes the load variance (the second part of the proof

of Theorem 1). Note that as the set O of optimal charging

profiles does not depend on the choice of U(X), without

loss of generality we assume that our objective function is

U(X) =
∑

k∈K

∑

h∈H

(
xhk
)2

. The load variance seen at the

retailer side is defined as follows:

σ2 ,
1

H

∑

h∈H

(Xh − Lavg)
2, Lavg =

1

H

∑

k∈K

∑

h∈H

(xhk − lhk)

(18)

where Xh =
∑

k∈K x
h
k is the aggregate PEVs’ load at slot h.

Function (18) can be expanded as follows:

σ2 ,
1

H

∑

h∈H

(Xh)2− 2Lavg
1

H

∑

h∈H

Xh+
1

H

∑

h∈H

L2
avg (19)

where the second term must be constant (equal to
∑

k∈KE
d
k/(ηkB

cap
k )) due to constraint (2). Since Lavg is con-

stant, the last term is constant likewise. Therefore, minimizing

the load variance is equivalent to minimizing the first term of

(19), i.e., our objective function
∑

h∈H

(
Xh
)2

. So, the optimal

charge profiles which minimize our global problem (11), result

in the minimum load variance.
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In the third part of the proof of Theorem 1, we need

to show that an optimal solution of (11) minimizes the the

power system losses. According to the Theorem 2 in [3], for a

fixed energy demand in scheduling horizon H , minimizing the

feeder energy losses is equivalent to minimizing load variance

if the feeder is a single branch with small voltage fluctuations,

which completes the third part of the proof of Theorem 1.

Finally, we proceed to fourth part of the proof of Theorem

1. As the PEV consume much power, in Section II-B, we

assumed that the PEVs penetration into the future power

system is large enough to affect the spot electricity price. So,

it is reasonable to assume that
∑

k∈KE
d
k/(ηkB

cap
k ) is larger

enough compared with
∑

k∈K

∑

h∈H lhk . Let Im,b, V denote

maximum current of the aggregate base loads and the system

voltage, respectively. According to the Theorem 3 in [3], if
∑

k∈K

∑

h∈H(xhk + lhk) ≥ Im,bV T hold, minimizing the load

variance is equivalent to maximizing the load factor and the

proof of Theorem 1 is complete.

B. Proof of Theorem 2

A vehicle is considered to provide regulation service and

can make profit when being idle. So, the more the PEV is in

idle mode, the more it can provide the regulation capacity. On

the other hand, when a vehicle is charging, it has to pay for

purchasing the power from the grid. Thus, the profit acquired

by PEV owner k ∈ K is defined as follows (for simplicity and

without loss of generality we do not consider the degradation

cost and we drop subscript k from the following notations):

G(Hc, r
h) ,

∑

h∈(H−Hc)

Ph
R − xmax

∑

h∈Hc

Phrh (20)

where Hc is the set of time slots in which PEV k is in

charging mode, Ph
R is the regulation price payed to the PEV

for providing the regulation capacity at slot h, xmax is the

maximum possible charging rate, and 0 ≤ rh ≤ 1 is the

charging rate. Rewriting the above equation with respect to

the control variables rh and Ph yields:

G(Hc, r
h) ,

∑

h∈H

Ph
R −

∑

h∈Hc

(

Phrhxmax + Ph
R

)

︸ ︷︷ ︸

H(rh)

(21)

where the first term is constant and Ph
R, Ph are given by the

aggregator. So, to maximize the profit we need minimize the

second term (H(rh)) of (21). Let’s assume that there exist

optimal rh1 and rh2 such that 0 < rh1 , rh2 < 1. It follows then

that we have:

H(rh1 ) +H(rh2 ) = Ph
1 r

h
1x

max + Ph
R,1 + Ph

2 r
h
2x

max + Ph
R,2

= rh1 (Ph
1 − Ph

2 ) +DPh
2 + Ph

R,1 + Ph
R,2

(22)

As we seek to determine a charging rate which results in the

maximum regulation capacity, we can assume D = rh1 + rh2
to be constant. Therefore, (22) becomes a first-order equation

with respect to rh1 and the extrema occur only at both ends

of the range of rh1 . That is, (22) has a minimum at either of

rh1 = 0 or rh1 = 1 from (21), which contradicts the assumption

that 0 < rh1 , rh2 < 1. Therefore, rh is unique and should be

either 0 or 1 to minimize H(rh). Since we assumed that Ph
R,

Ph are known (given by the aggregator), minimizing H(rh)
results in minimizing Hc and consequently maximize the time

slots in which the PEV is in idle mode.

C. Proof of Theorem 3

As our objective function fk(xk) is strictly convex, each

payoff function Pk(xk, x−k) is strictly concave with respect

to xk [31]. Therefore, game Γ(K, xk, Pk(xk, x−k)) is a strictly

concave K-person game [38]. Accordingly, the existence of

a Nash equilibrium directly results from Theorem 1 and the

uniqueness of this equilibrium from Theorem 2 of [39]. This

unique Nash equilibrium of considered game is the optimal

solution of global minimization problem (11) according to

Theorem 2 of [34]. So, the actions determined by Algorithm

2 are feasible and strictly individually rational payoff. For any

payoff function which satisfy condition P, the necessary and

sufficient condition on the network for a Nash Folk theorem

to hold is satisfying condition N (see proof of Theorem 2.12

in [36]). Our payoff function P (xk, x−k) satisfy condition P

(Jk(xk, x−k) is strictly monotone with respect to its arguments

[31]). Therefore, by considering a topology with satisfy con-

dition N, our framework will be converging to a full Nash

Folk theorem, i.e. conditions under which all feasible, strictly

individually rational payoffs are Nash equilibrium payoffs in

a repeated game with patient players.
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