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Abstract - This work presents a new evolutionary approach to
searching for a global solution (in the Pareto sense) to multiob-
jective optimisation problem. Novelty of the method proposed
consists in the application of an evolutionary multi-agentsys-
tem (EMAS) instead of classical evolutionary algorithms. Decen-
tralisation of the evolution process inEMAS allows for intensive
exploration of the search space, and the introduced mechanism
of crowd allows for effective approximation of the whole Pareto
frontier. In the paper the technique is described as well as pre-
liminary experimental results are reported.

Keywords— multiobjective optimisation, evolutionary compu-
tation, multi-agent systems.

I. Introduction

Although both evolutionary computation and agent tech-
nology gained a lot of interest during the last decade, many
aspects of their functionality still remain open. The problems
become even more complicated considering systems utilising
both evolutionary and agent paradigms. Building and apply-
ing such systems may be a thorny task but it often opens new
possibilities for solving difficult kinds of problems. Also, as
for other hybrid systems, one approach may help another in
attaining its own goals. This is the case when an evolutionary
algorithm is used by an agent to aid the realisation of some
of its tasks, e.g. connected with learning or reasoning [13],
or to support coordination of some group (team) activity, e.g.
planning [10].

An evolutionary multi-agent system (EMAS) is an example
of the opposite case, where a multi-agent system (MAS) helps
evolutionary computation providing mechanisms allowing for
the decentralisation of the solving process (evolution). The
key idea ofEMAS is the incorporation of evolutionary pro-
cesses intoMAS at a population level. It means that besides
interaction mechanisms typical for agent-based systems (such
as communication) agents are able toreproduce(generate new
agents) and maydie (be eliminated from the system). A de-

cisive factor of the agent’s activity is its fitness, expressed by
the amount of possessed non-renewable resource calledlife
energy. Selection is realised in such a way that agents with
high energy are more likely to reproduce, whereas a low level
of energy increases possibility of death. In factall decisions
about actions to be performed (including death and reproduc-
tion) are made autonomously by agents, and thusEMAS may
be considered as a computational technique utilising adecen-
tralised model of evolution, unlike (extending) classical evo-
lutionary computation [3]. What is more, since agents usually
operate in some (virtual) space and their interactions (e.g. se-
lection) are limited to their close neighbourhood, this model
is alsodistributedlike in parallel evolutionary algorithms.

Based on this model a new evolutionary approach to search-
ing for a global solution (in the Pareto sense) to multiobjec-
tive optimisation problem may be proposed. In this particular
case each agent represents a feasible solution to a given op-
timisation problem. By means of communication agents ac-
quire information, which allows for the determination of the
(non-)domination relation with respect to the others. Then
dominated agents transfer a fixed amount of life energy to
their dominants. This way non-dominated agents (represent-
ing successive approximations of the Pareto set) gain more life
energy and reproduce, while dominated agents die. Addition-
ally, the introduction of the mechanism ofcrowdallows for a
uniform sampling of the whole frontier [5].

Below a more detailed description of these ideas and their
implementation is presented. Preliminary experimental re-
sults show the influence of the crowding factor on the per-
formance of the system applied to selected test problems.

II. Evolutionary techniques of multiobjective
optimisation

Decision making and lots of other tasks of human activ-
ity described by many non-comparable factors may be math-



ematically formulated as multiobjective optimisation prob-
lems. The terms ”multiobjective” or ”multicriteria” indicate
that a classical notion of optimality becomes ambiguous since
decisions which optimise one criterion need not optimise the
others. The notion of Pareto-optimality is based on domina-
tion of solutions (which corresponds to the weak-order of vec-
tors in the evaluation space) and in a general case leads to the
selection of multiple alternatives.

The shape of the multiobjective optimisation problem may
be described as follows. Let the input variables be represented
by a real-valued vector:~x= [x1;x2; : : : ;xN℄T 2 IRN (1)

whereN gives the number of variables. Then a subset of IRN

of all possible (feasible) decision alternatives (options) can be
defined by a system of:� inequalities (constraints):gk(~x)� 0, k= 1;2; : : : ;K,� equalities (bounds):hl (~x) = 0, l = 1;2; : : : ;L
and denoted byD. The alternatives are evaluated by a sys-
tem of M functions (outcomes) denoted here by vectorF =[ f1; f2; : : : ; fM ℄T :

fm : IRN ! IR; m= 1;2; : : : ;M (2)

The key issue of optimality in the Pareto sense is the relation
of domination. Alternative~xa is dominated by~xb if and only
if: 8m fm(~xa)� fm(~xb) and 9m fm(~xa)< fm(~xb) (3)

The relation of domination corresponds to the weak-order of
vectors in the evaluation space (given by values ofF).

A solution to such-defined multiobjective optimisation
problem (in the Pareto sense) means determination of all non-
dominated alternatives fromD – the Pareto setor Pareto fron-
tier. In a general case (i.e. when no particular class of objec-
tive and constraint functions is considered) effective approxi-
mation of the Pareto set is hard to obtain. For specific types
of criteria and constraints (e.g. of linear type) some methods
are known, but even in low-dimensional cases they need much
computational effort. For complex problems, involving multi-
modal or discontinuous criteria, disjoint feasible spaces, noisy
function evaluation, etc. evolutionary approach (e.g. a genetic
algorithm) may be applied.

Probably the first ideas concerning application of evolution-
ary algorithms to multicriteria optimisation problems came
from independent work of Schaffer [14] and Fourman [7]. In
the first case (VEGA – Vector Evaluated Genetic Algorithm)
selection was realised in separate sub-populations on the ba-
sis of particular objective functions, while variation operators
were applied to the whole population. In the second case se-
lection was based on a tournament, where the objectives were

assigned priorities (lexicographic ordering). These early ap-
proaches did not use directly the information about domina-
tion relation between solutions. Conversely, in most laterpre-
sented methods some sort of ranking was used (e.g. [8], [6]),
reflecting the ”degree” of domination of particular solutions.
This allowed for better approximation of the Pareto frontier,
especially when supported with some niching techniques (like
fitness sharing), which prevented genetic drift and enabled
sampling of the whole frontier. A detailed information on evo-
lutionary multicriteria optimisation techniques may be found
in [6] or [4].

III. Evolutionary multi-agent systems

While different forms of classical evolutionary computation
use specific representation, variation operators, and selection
scheme, they all employ a similar model of evolution – they
work on a given number of data structures (population) and
repeat the same cycle of processing (generation) consisting
of the selection of parents and production of offspring using
variation operators. Yet this model of evolution is much sim-
plified and lacks many important features observed in organic
evolution [1], e.g.:� dynamically changing environmental conditions,� many criteria in consideration,� neither global knowledge nor generational synchronisa-

tion assumed,� co-evolution of species,� evolving genotype-phenotype mapping.

This may limit development of more and more complicated
applications, especially that theory of evolutionary algorithms
is not mature enough to clearly indicate the way any partic-
ular problem should be solved. To avoid at least some of
these shortcomings many variations of classical evolution-
ary algorithms were proposed, introducing e.g. some popu-
lation structure (like inparallel evolutionary algorithms) or
specialised selection mechanisms (likefitness sharing). The
idea of decentralised evolutionary computation realised as an
evolutionary multi-agent system(EMAS) covers various spe-
cialised techniques in one coherent model as described below.

Following neodarwinian paradigms, two main components
of the process of evolution areinheritance (with random
changes of genetic information by means of mutation and re-
combination) andselection. They are realised by the phenom-
ena of death and reproduction, which may be easily modelled
as actions executed by agents:

1. action ofdeathresults in the elimination of the agent
from the system,

2. action ofreproductionis simply the production of a new
agent from its parent(s).



One should notice that in an agent-based system there is no
global control and no global information available [11]. In
consequence all actions are performed asynchronously, as
well as agents may have only incomplete and/or uncertain
knowledge about the environment and other agents. At the
same time agents make autonomous decisions about actions
to be performed (also actions of death and reproduction). It
means that the only way to achieve a population level goal –
find a solution(s) to a given problem – is to adequately design
the agent’s behaviour.

The first component of evolutionary processes – inheritance
– is to be accomplished by an appropriate definition of repro-
duction, which is similar to classical evolutionary algorithms.
The set of parameters describing core properties of an agent
(genotype) is inherited from its parent(s) – with the use of mu-
tation and recombination. Besides, agents may possess some
knowledge acquired during their life, which is not inherited.
Both the inherited and acquired information determines the
agent’s behaviour in the system (phenotype). It rarely hap-
pens in classical evolutionary computation that inheritedin-
formation does not determine the grown-up individual. If so
(e.g. in evolutionary neural networks), each individual has to
grow up in one step of an evolutionary algorithm, before it is
evaluated. Indeed this is not a must inEMAS.

Selection is the most important and most difficult element
of the model of evolution employed inEMAS. This is due to
assumed lack of global knowledge (which makes it impossi-
ble to evaluate all individuals at the same time) and autonomy
of agents (which causes that reproduction is achieved asyn-
chronously). In such a situation selection mechanisms known
from classical evolutionary computation cannot be used. The
proposed principle of selection corresponds to its naturalpro-
totype and is based on the existence of non-renewable re-
source calledlife energy. The energy is gained and lost when
the agent executes actions in the environment. Increase in en-
ergy is a reward for ’good’ behaviour of the agent, decrease
– a penalty for ’bad’ behaviour (which behaviour is consid-
ered ’good’ or ’bad’ depends on the particular problem to be
solved). At the same time the level of energy determines
actions the agent is able to execute. In particular low en-
ergy level should increase possibility of death and high en-
ergy level should increase possibility of reproduction. Life
energy proves to be a very comfortable tool for management
of the number of agents in the population [2], as well as for
realisation of niching mechanisms similar to fitness sharing or
crowding (as shown below).

Like in most agent systems, agents ofEMAS operate in the
distributed environment and their interactions are limited to
their close neighbourhood. This implies geographical popu-
lation structure and allows for local selection. The topology
of the living space (structure of the environment) may be fine-
or coarse-grained, which is similar to diffusion and migration

models of parallel evolutionary algorithms. Of course, agents
may be able to move in the space, though migration may be
reduced due to energetic cost of the action.

A formal description of this model and discussion of its ad-
vantages may be found in [3], [5], and other. In short,EMAS
should enable the following:� local selection allows for intensive exploration of the

search space, which is similar to parallel evolutionary al-
gorithms,� the way phenotype (behaviour of the agent) is developed
from genotype (inherited information) depends on its in-
teraction with the environment,� self-adaptation of the population size is possible when
appropriate selection mechanisms are used.

What is more, explicitly defined living space facilitates imple-
mentation in a distributed computational environment.

IV. Flow of life energy in EMAS for multiobjective
optimisation

The particularEMAS should search for a set of points
which constitute the approximation of the Pareto frontier for
a given multicriteria optimisation problem. The population of
agents represents feasible solutions to the problem definedby
a set of objective functions (each agent represents a particu-
lar solution and knows its quality with respect to each crite-
ria). The agents act according to the above-described rulesof
EMAS operation. The information about the solution is inher-
ited during reproduction – in fact this is the only component
of the agent’s genotype and thus the crucial element of the
whole process.

Another important element of the process is the realisation
of energetic reward/punishment mechanism, which should
prefer non-dominated agents. At the beginning of the evolu-
tion process the initial population of agents is randomly gener-
ated andlife energyis evenly distributed to all of them. Since
this initial population is usually small comparing to its maxi-
mal possible size, the agents have a lot of life energy, which
allows them to reproduce a lot of offspring (contribution to
the genotype of the offspring requires also contribution inthe
form of life energy). At the same time they start to exchange
energy based on the information about their solutions and their
quality. The flow of energy between the existing agents may
follow two distinctive principles. This either could be done
via:� domination energy transfer principle(in short: domina-

tion principle), or� crowd energy transfer principle(in short: crowd princi-
ple).

Additional to these two principles there is also a flow of
life energy during reproduction. Each reproduction operation



Fig. 1. The algorithm of agent’s decision making

requires participation of two agents and is possible only when
the total life energy of both agents (let us call them agents A
and B) is greater than the triple value of the minimal energy
parameter(emin):

eA+eB� 3 �emin =) reproduction (4)

Thus only agents possessing enough life energy are allowed
to participate in the reproduction process.

The domination principleworks by forcing dominated
agents to give a fixed amount of their energy to the encoun-
tered dominants. This may happen, when two agents inhab-
iting one place communicate with each other and obtain in-
formation about their quality with respect to each objective
function. The actual algorithm of operation of this principle
is following:

1. one of the agents (agent A) initiates the communication
by requesting the quality of the solution (with respect to
each criteria) from another agent (agent B);

2. agent B presents the quality of its solution to the prob-
lem to agent A;

3. agent A compares the quality of its own solution with
the one obtained;

4. if the solution of agent B is dominated (in the Pareto
sense) by the solution of agent A, agent A will receive
some energy from agent B.

Depending on the amount of energy that agent B has, it will be
either amount ofemin (a parameter describing minimal amount

of energy that could be transferred between the agents) or – if
agent B has less energy thanemin – all its energy (in that case
agent B dies):

∆e=(
eB if eB � emin

emin if eB > emin

(5)

where: ∆e – the amount of energy transferred,
eB – initial amount of energy owned by agent B,
emin – minimal amount of energy that could be trans-

ferred between the agents.

The flow of energy connected with thedomination princi-
ple causes that dominating agents are more likely to repro-
duce, whereas dominated ones are more likely to die. This
way, in successive generations, non-dominated agents should
make up better approximations of the Pareto frontier.

Thecrowd principlehas a similar mechanism of operation.
There are however some important differences. It is not the
quality of the solutions that counts; this time it is important
how similar the solutions are. Also, the amount of energy
transferred between the agents is not fixed. It is actually cal-
culated by measuring the level of similarity between the com-
municating agents and comparing it to the parameter called
crowding factor. The algorithm of operation of this mecha-
nism is following:

1. one of the agents (agent A) initiates the communication
by requesting the solution from another agent (agent B);

2. agent B presents its solution to the problem to agent A;
3. agent A then compares its solution to the one obtained

and calculates the similarity level of the two solutions
described as a distance (in square metric) between the
two solutions:

d(~xA;~xB) = N

∑
i=1
jxA

i �xB
i j (6)

where: N – number of dimensions of the problem,
xA

i – i-th coefficient of the solution owned by
agent A,

xB
i – i-th coefficient of the solution owned by

agent B.
4. agent A checks if the other solution is to be considered

similar, i.e. if the distance computed in the previous step
is less than the crowding factor – if so, agent A receives
some energy from agent B.

The amount of energy to be transferred is calculated as the dif-
ference between the amount of energy that agent B had before
the beginning of the communication and this energy multi-
plied by squared distance (calculated in the previous step)and
divided by squared crowding factor:

∆e=(
0 if d� ξ
eB ��1� d2

ξ 2

�
otherwise

(7)



where: ∆e – the amount of energy transferred,
eB – initial amount of energy owned by the second

agent,
d – calculated distance (or the similarity level),
ξ – value of the crowding factor.

The flow of energy connected with the crowd principle causes
that some of the similar agents are more likely to be elimi-
nated. This should lead to more uniform agent distribution
along the Pareto frontier and prevent agent clustering around
particular spots of the search space.

The idea behind introducing the mechanism of crowd was
to discourage agents from creating large bunches of similar
solutions at some points on the Pareto frontier (this is quite
similar to the ideas presented by De Jong [12] and others).
Instead they should be rather uniformly distributed over the
whole frontier. Also in the case of problems for which the
Pareto set consists of several disjoined parts, this mechanism
should improve the ability of agents to cover a wide area of
the search space, and discover other parts of the frontier.

The complete algorithm of the agent’s decision making pro-
cess is shown on fig. 1.

V. Experimental results

Many experiments were performed to check how the pro-
posed technique works for different optimisation problems.
Figures 2 and 3 show the results obtained for sample optimi-
sation problems. One may notice that the solutions found are
very close to the actual Pareto frontier. Surely the approxima-
tion does not cover all the points of the actual Pareto frontier,
but it is due to the fact that it consists of only a finite number
of agents.

f1(x) =�x4�3x3+10x2+10x+10

f2(x) = 1
2

x4+2x3+10x2�10x+5

Fig. 2. Sample optimisation problem and the Pareto frontierdiscov-
ered by the system

f1(x;y;z; t) =�(x�2)2� (y+3)2� (z�5)2� (t�4)2+5

f2(x;y;z; t) = sinx+siny+sinz+sint
1+( x

10)2+( y
10)2+( z

10)2+( t
10)2
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Fig. 3. The crowding factor’s role in determining discontinuity of
the Pareto frontier

A set of parameters is used to controlEMAS behaviour and
adjust it to particular problems. The parameters include (but
are not limited to) the following:� description of the criteria functions,� description of the search domain,� size of the initial agent population,� value of the crowding factor,� total amount of life energy in the system,� the minimal amount of energy that could be transferred

between agents.

These parameters were checked in order to establish the influ-
ence of the mechanism of crowd on the system performance.
It was observed that:

1. Small values of the crowding factor improve the system
performance for almost every test problem, as it was ex-
pected. The agents are able to find more points from the
Pareto frontier, comparing to the cases, when the crowd-
ing factor equals 0 or is too large (fig. 4).

2. For problems with a fairly large number of disjoint parts
of Pareto-optimal solutions a rather large value of the
crowding factor (compared to the distance between sepa-
rate parts of the Pareto frontier) allows the system to find
these disjoint areas more efficiently (fig. 5).

As it was shown on fig. 4 and fig. 5, the crowding factor
has an influence on the average minimal distance between so-
lutions (this value was computed over the whole set of non-
dominated solutions). In fact the lower value indicate thatthe
”gaps” between solutions found, are smaller. If these gaps are
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Fig. 4. The influence of the crowding factor on the performance of
the system in case of the coherent Pareto frontier
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Fig. 5. The influence of the crowding factor on the performance
of the system in case of Pareto frontier consisting of several dis-
joined parts

smaller, then the distribution is more uniform and better re-
flects the real Pareto frontier, which in turn makes it possible
to recognize disjoint areas of Pareto frontier (fig. 3).

VI. Concluding remarks

The proposed idea of an evolutionary multi-agent system
for multi-objective optimisation proved to be working in a
number of tests. Up till now it is still too early to compare
this method with various other heuristics supporting decision
making known from literature. Yet the preliminary results
show significant advantages over other techniques regarding
adaptation to a particular problem, which is mainly performed
by the system itself. In most of the problems investigated the

introduction of the mechanism of crowd improved the system
performance concerning the distribution of the solutions on
the Pareto frontier. Of course, it is impossible to assure that
some value of the crowding factor may give perfectly uniform
distribution, and hence absolute certainty of the Pareto fron-
tier shape. Yet, in most cases it allows to estimate it much
better.

Further research should concern the effectiveness of the
approach proposed, especially in the case of difficult prob-
lems (many dimensions, multimodal or discontinuous criteria,
etc.). Several extensions to the evolutionary process (such as
aggregation) applied toEMAS in other application domains
should also be considered.
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