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Abstract - This work presents a new evolutionary approach to  cisive factor of the agent’s activity is its fithess, expessby
searching for a global solution (in the Pareto sense) to muttb-  the amount of possessed non-renewable resource ddded
jective optimisation problem. Novelty of the method propogd  energy Selection is realised in such a way that agents with
consists in the apphcatlon Of an eVOl.Utlonary ml.fl“-agentsys- h|gh energy are more ||ke|y to reproduce, whereas a low level
tem (EMAS) instead of classical evolutionary algorithms. Decen- ot anergy increases possibility of death. In fatitdecisions
trallsathn of the evolution process |nEMA§ allows for mtensw.e about actions to be performed (including death and reproduc
exploration of the search space, and the introduced mechasin .

tion) are made autonomously by agents, and #JAS may

of crowd allows for effective approximation of the whole Pareto b idered . ltechni ilisid
frontier. In the paper the technique is described as well as - ~ P€ considered as a computational technique utilisidgeen-

liminary experimental results are reported. tralised model of evolution, unlike (extending) classical evo-
Keywords— multiobjective optimisation, evolutionary compu- Iutlonary. computatllon [3]. Whatis more,_ sllnce aggnts ugual
tation, multi-agent systems. operate in some (virtual) space and their interactions &g

lection) are limited to their close neighbourhood, this mlod
is alsodistributedlike in parallel evolutionary algorithms.
Based on this model a new evolutionary approach to search-
Although both evolutionary computation and agent teching for a global solution (in the Pareto sense) to multiobjec
nology gained a lot of interest during the last decade, manjye optimisation problem may be proposed. In this particul
aspects of their functionality still remain open. The pehb  case each agent represents a feasible solution to a given op-
become even more complicated considering systems uglisifimisation problem. By means of communication agents ac-
both evolutionary and agent paradigms. Building and applyuire information, which allows for the determination otth
ing such systems may be a thorny task but it often opens ngwon-)domination relation with respect to the others. Then
possibilities for solving difficult kinds of problems. Alsas dominated agents transfer a fixed amount of life energy to
for other hybrid systems, one approach may help another {Aeir dominants. This way non-dominated agents (represent
attaining its own goals. This is the case when an evolutionalng successive approximations of the Pareto set) gain rifere |
algorithm is used by an agent to aid the realisation of somghergy and reproduce, while dominated agents die. Addition
of its tasks, e.g. connected with learning or reasoning,[13}lly, the introduction of the mechanism afowd allows for a
or to support coordination of some group (team) activity, €. uniform sampling of the whole frontier [5].
planning [10]. Below a more detailed description of these ideas and their
An evolutionary multi-agent systerEMMAS) is an example  jmplementation is presented. Preliminary experimental re
of the opposite case, where a multi-agent systé®S) helps  syits show the influence of the crowding factor on the per-

the decentralisation of the solving process (evolutionhe T

key idea ofEMAS is the incorporation of evolutionary pro-
cesses intdAS at a population level. It means that besides
interaction mechanisms typical for agent-based systenth (s
as communication) agents are ablegproducggeneratenew  Decision making and lots of other tasks of human activ-
agents) and maglie (be eliminated from the system). A de-ity described by many non-comparable factors may be math-

I. Introduction

II. Evolutionary techniques of multiobjective
optimisation



ematically formulated as multiobjective optimisation ppro assigned prioritiesléxicographic orderinyy These early ap-

lems. The terms "multiobjective” or "multicriteria” indate proaches did not use directly the information about domina-

that a classical notion of optimality becomes ambiguousssin tion relation between solutions. Conversely, in most |ater

decisions which optimise one criterion need not optimige thsented methods some sort of ranking was used (e.qg. [8], [6]),

others. The notion of Pareto-optimality is based on dominaeflecting the "degree” of domination of particular solut#o

tion of solutions (which corresponds to the weak-order @fve This allowed for better approximation of the Pareto frontie

tors in the evaluation space) and in a general case leads to &specially when supported with some niching techniqulkes (li

selection of multiple alternatives. fithess sharing), which prevented genetic drift and enabled
The shape of the multiobjective optimisation problem magampling of the whole frontier. A detailed information oroev

be described as follows. Let the input variables be reptesen lutionary multicriteria optimisation techniques may beifiol

by a real-valued vector: in [6] or [4].

%=Xy, X, ..., %" € RN 1) _ _
[ll. Evolutionary multi-agent systems
whereN gives the number of variables. Then a subset 8f IR

of all possible (feasible) decision alternatives (optjarem be ~ While different forms of classical evolutionary compucati
defined by a system of: use specific representation, variation operators, andtiate

scheme, they all employ a similar model of evolution — they

al work on a given number of data structures (population) and
« equalities (boundsy (%) = 0,1 =1,2,....L repeat the same cycle of processing (generation) corgistin

and denoted by. The alternatives are evaluated by a sysof the selection of parents and production of offspring gsin

tem of M functions (outcomes) denoted here by vedtor  Variation operators. Yet this model of evolution is much-sim
[y, forenn, fylT: plified and lacks many important features observed in ogani

evolution [1], e.g.:

« inequalities (constraintsy, (X) > 0,k=1,2,... K,

fn: RN IR, m=12....M (2) , , _ N
« dynamically changing environmental conditions,

The key issue of optimality in the Pareto sense is the relatio « many criteria in consideration,
of domination. Alternative® is dominated by if and only « neither global knowledge nor generational synchronisa-
if: tion assumed,
« co-evolution of species,
Vm fiy(3) < fn(X) and 3m () < fn()  (3) « evolving genotype-phenotype mapping.

The relation of domination corresponds to the weak-order dfhis may limit development of more and more complicated
vectors in the evaluation space (given by valueBs pf applications, especially that theory of evolutionary aitjons

A solution to such-defined multiobjective optimisationis not mature enough to clearly indicate the way any partic-
problem (in the Pareto sense) means determination of all nomar problem should be solved. To avoid at least some of
dominated alternatives frol —the Pareto seor Pareto fron-  these shortcomings many variations of classical evolution
tier. In a general case (i.e. when no particular class of objeary algorithms were proposed, introducing e.g. some popu-
tive and constraint functions is considered) effectiverapp  lation structure (like inparallel evolutionary algorithmsor
mation of the Pareto set is hard to obtain. For specific typgpecialised selection mechanisms (Ifkaess sharing The
of criteria and constraints (e.g. of linear type) some mé#ho idea of decentralised evolutionary computation realisedra
are known, but even in low-dimensional cases they need mueghiolutionary multi-agent syste(@MAS) covers various spe-
computational effort. For complex problems, involving tiwul  cialised technigues in one coherent model as describedbelo
modal or discontinuous criteria, disjoint feasible spaoessy  ro|jowing neodarwinian paradigms, two main components
function evaluation, etc. evolutionary approach (e.9.@e9€  of the process of evolution arimheritance (with random
algorithm) may be applied. _ o . changes of genetic information by means of mutation and re-

Probably the first ideas concerning application of evolutio combination) angelection They are realised by the phenom-

ary algorithms to multicriteria optimisation problems c@m gn4 of death and reproduction, which may be easily modelled
from independent work of Schaffer [14] and Fourman [7]. Inyg actions executed by agents:

the first case\(EGA — Vector Evaluated Genetic Algorithm

selection was realised in separate sub-populations onahe b 1. action ofdeathresults in the elimination of the agent
sis of particular objective functions, while variation oamrs from the system,

were applied to the whole population. In the second case se-2. action ofreproductionis simply the production of a new
lection was based on a tournament, where the objectives were agent from its parent(s).



One should notice that in an agent-based system there is models of parallel evolutionary algorithms. Of course,rage
global control and no global information available [11]. Inmay be able to move in the space, though migration may be
consequence all actions are performed asynchronously, r@sluced due to energetic cost of the action.

well as agents may have only incomplete and/or uncertain A formal description of this model and discussion of its ad-
knowledge about the environment and other agents. At thantages may be found in [3], [5], and other. In sShEMAS
same time agents make autonomous decisions about actighsuld enable the following:

to be performed (also actions of death and reproduction). It
means that the only way to achieve a population level goal —
find a solution(s) to a given problem — is to adequately design
the agent’s behaviour.

The first component of evolutionary processes — inheritance
— is to be accomplished by an appropriate definition of repro- teraction with the environment,
duction, which is similar to classical evolutionary algbms. . self-adaptation of the population size is possible when
The set of parameters describing core properties of an agent appropriate selection mechanisms are used.
(genotype) is inherited from its parent(s) — with the use af m
tation and recombination. Besides, agents may possess soieat is more, explicitly defined living space facilitatesile-
knowledge acquired during their life, which is not inhedite mentation in a distributed computational environment.
Both the inherited and acquired information determines the
agent's behaviour in the system (phenotype). It rarely hap- V. Flow of life energy in EMAS for multiobjective
pens in classical evolutionary computation that inherited optimisation
formation does not determine the grown-up individual. If SO The particularEMAS should search for a set of points
(€.g. in evolutionary neural networks), each individua @  \hich constitute the approximation of the Pareto frontir f
grow up in one step of an evolutionary algorithm, before it i$; given multicriteria optimisation problem. The populatiaf
evaluated. Indeed this is not a musENAS. agents represents feasible solutions to the problem defiyed
Selection is the most important and most difficult elemend set of objective functions (each agent represents a partic
of the model of evolution employed EEBMAS. This is due to |ar solution and knows its quality with respect to each erite
assumed lack of global knowledge (which makes it impossiia). The agents act according to the above-described ofiles
ble to evaluate all individuals at the same time) and autgnonEMAS operation. The information about the solution is inher-
of agents (which causes that reproduction is achieved asyited during reproduction — in fact this is the only component
chronously). In such a situation selection mechanisms knowf the agent’s genotype and thus the crucial element of the
from classical evolutionary computation cannot be usea Thwvhole process.
proposed principle of selection corresponds to its nari@  Another important element of the process is the realisation
totype and is based on the existence of non-renewable i energetic reward/punishment mechanism, which should
source calledife energy The energy is gained and lost whenprefer non-dominated agents. At the beginning of the evolu-
the agent executes actions in the environment. Increase in €on process the initial population of agents is randomiyaye
ergy is a reward for 'good’ behaviour of the agent, decreasgted andife energyis evenly distributed to all of them. Since
— a penalty for 'bad’ behaviour (which behaviour is considthis initial population is usually small comparing to its xita
ered 'good’ or 'bad’ depends on the particular problem to benal possible size, the agents have a lot of life energy, which
solved). At the same time the level of energy determinegliows them to reproduce a lot of offspring (contribution to
actions the agent is able to execute. In particular low erhe genotype of the offspring requires also contributiothia
ergy level should increase possibility of death and high efform of life energy). At the same time they start to exchange
ergy level should increase possibility of reproductionfeLi energy based on the information about their solutions agid th
energy proves to be a very comfortable tool for managemeguality. The flow of energy between the existing agents may

of the number of agents in the population [2], as well as fofollow two distinctive principles. This either could be d®n
realisation of niching mechanisms similar to fitness stgpoin  vja:

crowding (as shown below).

Like in most agent systems, agent&MAS operate in the
distributed environment and their interactions are limhite o ) I
. . S . « crowd energy transfer principl@n short: crowd princi-

their close neighbourhood. This implies geographical popu ©)

lation structure and allows for local selection. The togylo Pie).

of the living space (structure of the environment) may be-fine Additional to these two principles there is also a flow of
or coarse-grained, which is similar to diffusion and migrat life energy during reproduction. Each reproduction ogerat

« local selection allows for intensive exploration of the
search space, which is similar to parallel evolutionary al-
gorithms,

« the way phenotype (behaviour of the agent) is developed
from genotype (inherited information) depends on its in-

« domination energy transfer principign short: domina-
tion principle), or



How rmany agents > of energy that could be transferred between the agents)for — i
are there in the node? . -

agent B has less energy thap,, — all its energy (in that case
agent B dies):

Random Choice

of a Agent Ae: {eB |f eB S emin (5)

€min if €5 > €nin
. where: Ae — the amount of energy transferred,
eg — initial amount of energy owned by agent B,
€n,n — Minimal amount of energy that could be trans-
ferred between the agents.

Get energy from

Am | dominatin
o dominated agent

this agent?

Get Energy from
B The flow of energy connected with tldmination princi-
ple causes that dominating agents are more likely to repro-
duce, whereas dominated ones are more likely to die. This
way, in successive generations, non-dominated agentsdgshou
make up better approximations of the Pareto frontier.
Thecrowd principlehas a similar mechanism of operation.
There are however some important differences. It is not the
quality of the solutions that counts; this time it is imparta
how similar the solutions are. Also, the amount of energy
transferred between the agents is not fixed. It is actually ca
culated by measuring the level of similarity between the com
municating agents and comparing it to the parameter called
crowding factor The algorithm of operation of this mecha-

. L ) . nism is following:
requires participation of two agents and is possible onlgrvh

the total life energy of both agents (let us call them agents A 1. one of the agents (agent A) initiates the communication
and B) is greater than the triple value of the minimal energy _ bY requesting the solution from another agent (agent B);

Reproduction

Move fo another node

END

Fig. 1. The algorithm of agent’s decision making

parametete, . ): 2. agent B presents its solution to the problem to agent A;
" _ 3. agent A then compares its solution to the one obtained
e, + €z > 3 €, = reproduction (4) and calculates the similarity level of the two solutions

described as a distance (in square metric) between the

Thus only agents possessing enough life energy are allowed ;
y ag b 9 9 9y two solutions:

to participate in the reproduction process.
The domination principleworks by forcing dominated A 5B N WA B
. g . _ A, 28) = 3 X =)
gents to give a fixed amount of their energy to the encoun &
tered dominants. This may happen, when two agents inhab-
iting one place communicate with each other and obtain in-
formation about their quality with respect to each objextiv

(6)

where: N — number of dimensions of the problem,
xA — i-th coefficient of the solution owned by

. . ; L agent A,
functlon_. The actual algorithm of operation of this prineip xB — i-th coefficient of the solution owned by
is following: I agent B

1. one of the agents (agent A) initiates the communication 4. agent A checks if the other solution is to be considered
by requesting the quality of the solution (with respectto  similar, i.e. if the distance computed in the previous step
each criteria) from another agent (agent B); is less than the crowding factor — if so, agent A receives

2. agent B presents the quality of its solution to the prob-  some energy from agent B.

lem to agent A; . . . .. The amount of energy to be transferred is calculated as the di
3. agent A compares the quality of its own solution wit
S erence between the amount of energy that agent B had before
the one obtained; _— - > )
the beginning of the communication and this energy multi-

4. if the solution of agent B is dominated (in the Paretq ,. : . .
sense) by the solution of agent A, agent A will receiv !led by squared distance (calculated in the previous steg)

some energy from agent B. divided by squared crowding factor:
ifd>¢
) otherwise

()

d2

Depending on the amount of energy that agent B has, it will be Ae— {O (
- 1_
B &2

either amount og,,, (a parameter describing minimal amount



where: Ae — the amount of energy transferred,

eg — initial amount of energy owned by the second fleyzt) = —(x-2°~(y+3)° ~(2-5°~(t-4+5
agent, fz(x,y,z,t) _ s):n);+5|2y-2|—smzz+zsmt —
d — calculated distance (or the similarity level), 1 o)+ ()" (50" (o)
& — value of the crowding factor. 44
The flow of energy connected with the crowd principle causes IR 351
that some of the similar agents are more likely to be elimi- L
nated. This should lead to more uniform agent distribution "-.L2_5,
along the Pareto frontier and prevent agent clusteringratou Possible discontinuity =
particular spots of the search space. = of the Pareto frontier ‘i’
The idea behind introducing the mechanism of crowd Wai 1-53.

to discourage agents from creating large bunches of simild¥ 143
solutions at some points on the Pareto frontier (this isequit
similar to the ideas presented by De Jong [12] and others). .
Instead they should be rather uniformly distributed over th g 70 & s 40 30 2 10 § °
whole frontier. Also in the case of problems for which the 057
Pareto set consists of several disjoined parts, this mésman -
should improve the ability of agents to cover a wide area of fikxy.zt)
the search space, and discover other parts of the frontier.

The complete algorithm of the agent’s decision making prdEig. 3. The crowding factor’s role in determining discomtity of
cess is shown on fig. 1. the Pareto frontier

0.5

V. Experimental results A set of parameters is used to contEMIAS behaviour and

Many experiments were performed to check how the prd'gdjust it.to.particular problems. The parameters includg (b
posed technique works for different optimisation problems"® not limited to) the following:
Figures 2 and 3 show the results obtained for sample optimi-, description of the criteria functions,
sation problems. One may notice that the solutions found are, gescription of the search domain,
very close to the actual Pareto frontier. Surely the appnaxi . size of the initial agent population,
tion does not cover all the points of the actual Pareto fesnti  , yajye of the crowding factor,
but it is due to the fact that it consists of only a finite number , total amount of life energy in the system,

of agents. « the minimal amount of energy that could be transferred

between agents.

f(x) = —x* — 3¢ + 10¢ + 10+ 10 These parameters were checked in order to establish the influ
£00 = X' +2¢ +10¢ — 10+ 5 ence of the mechanism of crowd on the system performance.
2 It was observed that:

200

1), £2() 1. Small values of the crowding factor improve the system
w00 ] performance for almost every test problem, as it was ex-

—~ pected. The agents are able to find more points from the

e~ | Pareto frontier, comparing to the cases, when the crowd-

2 2N i ing factor equals O or is too large (fig. 4).

100 | 2. For problems with a fairly large number of disjoint parts

\ of Pareto-optimal solutions a rather large value of the

-200 1 crowding factor (compared to the distance between sepa-

\ rate parts of the Pareto frontier) allows the system to find

300 these disjoint areas more efficiently (fig. 5).

4 Pareto frontier points found

— objective function f1(x 400 As it was shown on fig. 4 and fig. 5, the crowding factor

— oblective funcfion f2(x has an influence on the average minimal distance between so-
lutions (this value was computed over the whole set of non-

Fig. 2. Sample optimisation problem and the Pareto fromligtov- dominated solutions). In fact the lower value indicate that

ered by the system "gaps” between solutions found, are smaller. If these gaps a
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introduction of the mechanism of crowd improved the system
performance concerning the distribution of the solutions o
the Pareto frontier. Of course, it is impossible to assuat th
some value of the crowding factor may give perfectly uniform
distribution, and hence absolute certainty of the Parein-fr
tier shape. Yet, in most cases it allows to estimate it much
better.

Further research should concern the effectiveness of the
approach proposed, especially in the case of difficult prob-
lems (many dimensions, multimodal or discontinuous deter
etc.). Several extensions to the evolutionary processh(asc
aggregation) applied t&MAS in other application domains

N N

0 1 2 3 4 5 6 7 8 10
Crowdingractor

0

©

(1
Fig. 4. The influence of the crowding factor on the perforneant
the system in case of the coherent Pareto frontier
[2]
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Fig. 5. The influence of the crowding factor on the perforneanc(’]
of the system in case of Pareto frontier consisting of séwlisa

joined parts 8l

El
smaller, then the distribution is more uniform and better re
flects the real Pareto frontier, which in turn makes it passib [1q;
to recognize disjoint areas of Pareto frontier (fig. 3).

VI. Concluding remarks
[11]

The proposed idea of an evolutionary multi-agent system
for multi-objective optimisation proved to be working in a[12]
number of tests. Up till now it is still too early to compare
this method with various other heuristics supporting deais ;3
making known from literature. Yet the preliminary results
show significant advantages over other techniques regardin
adaptation to a particular problem, which is mainly perfedm [14]
by the system itself. In most of the problems investigated th

should also be considered.
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