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Abstract. Recently, the eXplainable AI (XAI) research community has
focused on developing methods making Machine Learning (ML) predic-
tors more interpretable and explainable. Unfortunately, researchers are
struggling to converge towards an unambiguous definition of notions such
as interpretation, or, explanation—which are often (and mistakenly) used
interchangeably. Furthermore, despite the sound metaphors that Multi-
Agent System (MAS) could easily provide to address such a challenge,
and agent-oriented perspective on the topic is still missing. Thus, this
paper proposes an abstract and formal framework for XAI-based MAS,
reconciling notions, and results from the literature.
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1 Introduction

The adoption of intelligent systems (IS) in modern society is booming: the trend
is mostly due to the recent momentum gained by Machine Learning (ML). In the
past decades, disruptive results from ML dictated several waves of temporary
yet massive adoption of AI systems, in both academia and industry. Therefore,
some authors refer to the current era as the third spring of AI—stressing that
AI has already lived two winters.

As in the previous springs of AI, the expectations are being inflated by the
promising predictive capabilities showed by ML-based IS. Besides the remarkable
computational capability characterising this era, the vast availability of data is
the second key aspect enabling the new spring. However, also modern researchers
and stakeholders are experiencing problems stemming from the opacity of ML-
based solutions.

The opacity of numeric predictors (i.e., the outcome of ML techniques applied
on data) is a broadly acknowledged issue, which has been studied even before
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the current spring of AI. However, mostly due to the unprecedented pace and
extent of ML adoption in several, often critical domains (e.g., finance, health-
care, and law), the need for addressing such opacity issues is more compelling
than ever [2].

The opaqueness of ML-based solutions is an unacceptable condition in a
world where ML is involved in many (safety-)critical activities. Indeed, perform-
ing automatic, good predictions (resp. provide useful decisions) is essential as
much as letting the humans involved in those contexts understand why and
how such predictions (resp. decisions) have been obtained. When humans can-
not understand the outcome or the behaviour of ML predictors involved in some
business processes, bad consequences can follow. This is because, in the current
society, the liability of decisions/actions is still mainly associated with human
beings (even if the outcomes have been obtained via IS). To make the picture
even more complicated, modern regulations recognise citizens right to receive
meaningful explanations when automatic decisions may affect their lives [12].
For all the above reasons, the problem of understanding ML results is rapidly
gaining momentum in recent AI research [5].

The topic of understandability in AI is nowadays the main concern of the
eXplainable AI community (XAI henceforth), whose name is due to a successful
project of DARPA [24]. There, the authors review the main approaches to make
AI more understandable to human beings. However, as further discussed in this
paper, we argue that studies in this field are flawed by a fundamental issue—
namely, they lack an unambiguous definition for the concept of explanation and,
consequently, a clear understanding of what X in XAI actually means. Indeed,
the notion of explanation is not clearly established in the literature, nor is there
a consensus on what the property named “explainability” should imply. This
is especially true for ML-based solutions, where knowledge is represented in a
sub-symbolic, unintelligible way.

Similar issues exist as far as the notion of interpretation is concerned. The
two terms are sometimes used interchangeably in the literature, whereas other
times they carry different meanings. To face such issues, we argue that since
multi-agent systems (MAS) offer a coherent yet expressive set of abstractions,
promoting conceptual integrity in the engineering of complex software systems
[18] – and of socio-technical systems (STS) in particular –, they can be exploited
to define a sound and unambiguous reference framework for XAI.

In this paper, we propose an abstract framework for XAI relying on notions
and results from the MAS literature. The framework is mostly targetting sub-
symbolic AI and ML-based intelligent systems. In particular, our framework
introduces a clear distinction among two orthogonal, yet interrelated, activities
– i.e., interpretation and explanation – which can be performed on sub-symbolic
predictors to make them more understandable in the eyes of human beings. Thus,
it provides a formal definition for such activities in the MAS perspective, thus
stressing the objective nature of explanation, other than the subjective nature of
interpretation.
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Accordingly, the paper is structured as follows. In Sect. 2 we provide an
overview of the XAI research domain. In Sect. 3 we present our abstract frame-
work. Then, Sect. 4 assesses our framework by showing how it can help in unam-
biguously defining the main problems in XAI. Conversely, Sect. 5 speculates on
some future directions. Finally, Sect. 6 concludes the paper.

2 Background

Most IS today leverage on sub-symbolic predictive models that are trained from
data through ML. The reason for such wide adoption is easy to understand. We
live in an era where the availability of data is unprecedented, and ML algorithms
make it possible to detect useful statistical information hidden into such data
semi-automatically. Information, in turn, supports decision making, monitoring,
planning, and forecasting in virtually any human activity where data is available.

However, ML is not the silver bullet. Despite the increased predictive power,
ML comes with some well-known drawbacks which make it perform poorly in
some use cases. One blatant example is algorithmic opacity—that is, essentially,
the difficulty of the human mind in understanding how ML-based IS function or
compute their outputs. This represents a serious issue in all those contexts where
human beings are liable for their decision, or, when they are expected to provide
some sort of explanation for it—even if the decision has been supported by some
IS. For instance, think about a doctor willing to motivate a serious, computer-
aided diagnosis, or, a bank employee in need of explaining to a customer why
his/her profile is inadequate for a loan. In all contexts, ML is at the same time
an enabling – as it aids the decision process by automating it – and a limiting
factor—as opacity prevents human awareness of how the decision process works.

Opacity is why ML predictors are also referred to as black boxes into the
literature. The “black box” expression refers to models where knowledge is not
explicitly represented [15]. The lack of some explicit, symbolic representation of
knowledge is what makes it hard for humans to understand the functioning of
black boxes, and why they led to suggest or undertake a given decision. Clearly,
troubles in understanding black-box content and functioning prevent people from
fully trusting – therefore accepting – them. To make the picture even more com-
plex, current regulations such as the GDPR [25] are starting to recognise the
citizens’ right to explanation [12]—which implicitly requires IS to eventually
become understandable. Indeed, understanding IS is essential to guarantee algo-
rithmic fairness, to identify potential bias/problems in the training data, and to
ensure that IS perform as designed and expected.

Unfortunately, the notion of understandability is neither standardised nor
systematically assessed, yet. At the same time, there is no consensus on what
exactly providing an explanation should mean when decisions are supported
by a black box. However, several authors agree that not all black boxes are
equally interpretable—meaning that some black boxes are more susceptible to
understand than others for our minds. For example, Fig. 1 is a common way to
illustrate the differences in black-box interpretability.
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Fig. 1. Interpretability/performance trade-off for some common sorts of black-box pre-
dictors

Even though informal – as pointed on in [22], given the lack of ways to
measure “interpretability” – Fig. 1 effectively expresses why more research is
need on understandability. In fact, the image essentially states how the better
performing black boxes are also the less interpretable ones. This is a problem in
practice since only rarely predictive performances can be sacrificed in favour of
a higher degree of interpretability.

To tackle such issues, the XAI research field has recently emerged. Among
the many authors and organisations involved in the topic, DARPA has proposed
a comprehensive research road map [24], which reviews the main approaches to
make black boxes more understandable. There, DARPA categorises the many
currently available techniques aimed at building meaningful interpretations or
explanations for black-box models, it summarises the open problems and chal-
lenges, and it provides a successful reference framework for the researchers inter-
ested in the field. Unfortunately, despite the great effort in defining terms,
objects, and methods for the research line, a clear definition of fundamental
notions such as interpretation and explanation is still missing.

2.1 Related Work

Notions such as explanation, interpretation, and transparency are mentioned,
introduced, or informally defined in several works. However, a coherent frame-
work has not yet emerged. This subsection recalls some significant contributions
from the literature discussing concepts of explanation and interpretation – or
any variant of theirs. Our goal here is to highlight the current lack of consensus
on the meaning of such terms, for which we propose a possible, unambiguous
alternative in the next sections.

Similarly to what we do here, Lipton [15] starts his discussion by recognising
how most definitions of ML interpretability are often inconsistent and underspec-
ified. In his clarification effort, Lipton essentially maps interpretability on the
notion of transparency, and explanation on the notion of post-hoc interpretation.
Then, he enumerates and describes the several possible variants of transparency,
that are (i) simulatability – i.e., the practical possibility, for a human being, to
“contemplate the entire model at once” and simulate its functioning on some
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data – which characterises, for instance, generalised linear models; (ii) decom-
posability – i.e., the possibility, for the model to be decomposed in elementary
parts whose functioning is intuitively understandable for humans and helpful
in understanding the whole model – which characterises, for instance, decision
trees; and (iii) algorithmic transparency – i.e., the possibility, for a human being,
to intuitively understand how a given learning algorithm, or the predictors it
produces, operate – which characterises, for instance, k-nearest-neighbors tech-
niques. Similarly, post-hoc interpretability is defined as an approach where some
information is extracted from a black box in order to ease its understanding.
Such information have not necessarily to expose the internal functioning of the
black box. As stated in the paper: “examples of post-hoc interpretations include
the verbal explanations produced by people or the saliency maps used to analyze
deep neural networks”.

Conversely, Besold et al. [3] discuss the notion of explanation at a funda-
mental level. There, the authors provide a philosophical overview on such topic,
concluding that “explanation is an epistemological activity and explanations are
an epistemological accomplishment—they satisfy a sort of epistemic longing, a
desire to know something more than we currently know. Besides satisfying this
desire to know, they also provide the explanation-seeker a direction of action that
they did not previously have”. Then they discuss the topic of explanation in AI
from a historical perspective. In particular, when focussing on ML, they intro-
duce the following classification of IS systems: (i) opaque systems – i.e., black
boxes acting as oracles where the logic behind predictions is not observable or
understandable –, (ii) interpretable systems – i.e., white boxes whose functioning
is understandable to humans, also thanks to the expertise, resources, or tools –,
and (iii) comprehensible systems—i.e., “systems which emit symbols along with
their outputs, allowing the user to relate properties of the input to the output”.
According to this classification, while interpretable systems can be inspected to
be understood – thus letting observer draw their explanations by themselves–
comprehensible systems must explicitly provide a symbolic explanation of their
functioning. The focus is thus on who produces explanations, rather than how.

In [10], the interpretability of ML systems is defined as “the ability to explain
or to present in understandable terms to a human”. Interpretations and expla-
nations are therefore collapsed in this work, as confirmed by the authors using
the two terms interchangeably. The remainder of that paper focuses (i) on iden-
tifying under which circumstances interpretability is needed in ML, and (ii) how
to assess the quality of some explanation.

The survey by Guidotti et al. [13] is a nice entry point to explainable ML. It
consists of an exhaustive and recent survey overviewing the main notions, goals,
problems, and (sub-)categories in this field, and it encompasses a taxonomy of
existing approaches for “opening the black box”—which may vary a lot depend-
ing on the sort of data and the family of predictors at hand. There, the authors
define the verb to interpret as the act of “providing some meaning of explain-
ing and presenting in understandable terms some concepts”, borrowing such
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a definition from the Merriam-Webster1 dictionary. Consequently, they define
interpretability as “the ability to explain or to provide the meaning in under-
standable terms to a human”— a definition they again borrow from [10]. So, in
this case as well the notions of interpretation and explanations are collapsed.

In [22], Rudin does not explicitly define explainability or interpretability, and
she refers to interpretable or explainable ML almost interchangeably. However,
she states some interesting properties of interpretability, which influenced our
work. In particular, she acknowledges that “interpretability is a domain-specific
notion”. Furthermore, she links interpretability of information with its complex-
ity – and, in particular, its sparsity –, as the amount of cognitive entities the
human mind can handle at once is minimal (∼7 ± 2 according to [16]). As far
as explainability is concerned, apparently, Rudin adopts a post-hoc perspective
similar to the one in [15], as she writes, “an explanation is a separate model
that is supposed to replicate most of the behaviour of a black box”. In the
remainder of that paper, the author argues how the path towards interpretable
ML steps through broader adoption of inherently interpretable predictors – such
as generalised linear models or decision trees – rather than relying on post-hoc
explanations which do not reveal what is inside black boxes—thus preventing
their full understanding.

Finally, the recent article by Rosenfeld et al. [21] is similar in its intents to
our current work. There, the authors attempt to formally define what explana-
tion and interpretation respectively are in the case of ML-based classification.
However, their work differs from ours in several ways. In particular, they define
interpretation and explanation differently from what we do. In fact, according
to the authors, “interpretation” is a function mapping data, data schemes, and
predictors to some representation of the predictors internal logic, whereas “expla-
nation” is defined as “the human-centric objective for the user to understand”
a predictor using the aforementioned interpretation function. Other notions are
formally defined into the paper, such as for instance, (i) explicitness, (ii) fair-
ness, (iii) faithfulness, (iv) justification, and (v) transparency. Such concepts are
formally defined in terms of the aforementioned interpretation and explanation
functions. The reminder of that paper then re-interprets the field of XAI in terms
of all the notions mentioned so far.

3 Explanation vs. Interpretation

This section introduces the preliminary notions, intuitions, and notations we
leverage upon in Sect. 3.1 and subsequent sections, in order to formalise our
abstract framework for agent-based explanations. We start by providing an intu-
ition for the notion of interpretation, and, consequently, for the act of interpret-
ing something. Accordingly, we provide an intuition for the property of “being
interpretable” as well, stressing its comparative nature. Analogously to what we
did with interpretation, we then provide intuitions for terms such as explanation
and its derivatives.
1 https://www.merriam-webster.com/dictionary/interpret.

https://www.merriam-webster.com/dictionary/interpret
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About Interpretation. Taking inspiration from the field of Logics, we define the
act of “interpreting” some object X as the activity performed by an agent A –
either human or software – assigning a subjective meaning to X. Such meaning
is what we call interpretation. Roughly speaking, an object X is said to be
interpretable for an agent A if it is easy for A to draw an interpretation for
X—where “easy” means A requires a low computational (or cognitive) effort
to understand X. For instance, consider the case of road signs, which contain
symbols instead of scripts to be easily, quickly, and intuitively interpretable.

We model such intuition through a function IA(X) �→ [0, 1] providing a degree
of interpretability – or simply interpretability, for short – for X, in the eyes of
A. The value IA(X) is not required to be directly observable or measurable
in practice, since agents’ mind may be inaccessible in most cases. This is far
from being an issue, since we are not actually interested in the absolute value of
IA(X), for some object X, but rather we are interested in being able to order
different objects w.r.t. their subjective interpretability. For instance, we write
IA(X) > IA(Y ), for two objects X and Y , meaning that the former is more
interpretable than the latter, according to A. For example, consider the case
of a neural network and a decision tree, both trained on the same examples
to solve the same problem with similar predictive performances. Both objects
may be represented as graphs. However, it is likely for a human observer to
see the decision tree as more interpretable—as their nodes bring semantically
meaningful, high-level information.

Summarising, we stress the subjective nature of interpretations, as agents
assign them to objects according to their State of Mind (SoM) [19] and back-
ground knowledge, and they need not be formally defined any further.

A

X'X

IA(X') > IA(X)

IA(X')IA(X)

X' = E(X)

Fig. 2. Explanation vs. Interpretation: a simple framework

About Explanation. We define “explaining” as the activity of producing a more
interpretable object X ′ out of a less interpretable one, namely X, performed by
agent A. More formally, we define explanation as a function E(X) �→ X ′ mapping
objects into other objects, possibly, in such a way that IA(X ′) > IA(X), for some
agent A. The simple framework described so far is summarised in Fig. 2.

Notice that human beings tend to collapse into the concept of “explanation”
the whole sequence of steps actually involving both explaining and interpreting,
according to our framework. This happens because, if the explained object X ′

is as interpretable for the listening agent B as it is for the explaining agent
A, then both A and B are likely to be satisfied with X ′. Conversely, it may
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also happen the explanation E adopted by A produces an object X ′, which is
more interpretable than X for A but not for B. Similarly to how two persons
would handle such an unpleasant situation, we envision that interaction and
communication may be adopted to break such impasses in multi-agent systems.

In the following sections, we develop such an idea, describing how our simple
framework could be extended to support ML-based intelligent systems.

3.1 A Conceptual Framework for XAI

In AI several tasks can be reduced to a functional model M : X → Y mapping
some input data X ⊆ X from an input domain X into some output data Y ⊆ Y
from an output domain Y.

In the following, we denote as M the set of all analogous models M ′ : X → Y,
which attempts to solve the same problem on the same input data—usually, in
(possibly slightly) different ways. For instance, according to this definition, a
decision tree and a neural network, both trained on the same data-set to solve
the same classification problem with similar accuracies, are analogous—even if
they belong to different families of predictors.

At a very high abstraction level, many tasks in AI may be devoted to com-
pute, for instance:

– the best M∗ ∈ M, given X ⊆ X and Y ⊆ Y (e.g. supervised ML),
– the best M∗ and Y , given X (e.g. unsupervised ML),
– the best Y ∗, given X and M (e.g. informed/uninformed search),
– the best X∗, given Y and M (e.g. abduction, most likely explanation), etc.

according to some goodness criterion which is specific for the task at hand.
In the reminder of this section, we discuss how explanation may be defined

as a function searching or building a – possibly more interpretable – model w.r.t.
the one to be explained. For this process to even make sense, of course, we require
the resulting model to be not only analogous to the original but also similar in
the way it behaves on the same data. We formalise such a concept through the
notion of fidelity.

Let M,M ′ ∈ M be two analogous models. We then say M has a locally
good fidelity w.r.t. M ′ and Z if and only if Δf(M(Z),M ′(Z)) < δ for some
arbitrarily small threshold δ ≥ 0 and for some subset of the input data Z ⊂ X.
There, Δf : 2Y × 2Y → R≥0 is a function measuring the performance difference
among two analogous models.

Local Interpretations. When an observer agent A is interpreting a model M
behaviour w.r.t. some input data Z ⊆ X, it is actually trying to assign a
subjective interpretability value IA(R) to some representation R = r(M,Z) of
choice, aimed at highlighting the behaviour of M w.r.t. the data in Z. There,
r : M × 2X → R is representation means, i.e., a function mapping models into
local representations w.r.t. a particular subset of the input domain, whereas R is
the set of model representations. For instance, in the case M is a classifier, R may
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M(X) M'(Z)

R R'
A

IA(R') - IA(R) > ε

M' = E(M, Z)

∃ Z⊆X : Δf(M(Z), M'(Z)) < δ

R = r(M, X) R' = r'(M', Z)

IA(R')IA(R)

Fig. 3. Local explanation and interpretation of model M

be a graphical representation of (a portion of) the decision boundary/surface for
a couple of input features.

There may be more or less interpretable representations of a particular model
for the same observer A. Furthermore, representations may be either global or
local as well, depending on whether they represent the behaviour of the model
for the whole input space, or for just a portion of it. For example, consider the
case of a plot showing the decision boundary of a neural network classifier. This
representation is likely far more interpretable to the human observer than a
graph representation showing the network structure, as it synthesise the global
behaviour of the network concisely and intuitively. Similarly, saliency maps are
an interpretable way to locally represent the behaviour of a network w.r.t. some
particular input image. So, a way for easing interpretation for a given model
behaviour w.r.t. a particular sort of inputs is about looking for the right repre-
sentation in the eyes of the observer.

Local Explanations. Conversely, when an observer A is explaining a model M
w.r.t. some input data Z ⊆ X, it is actually trying to produce a model M ′ =
E(M,Z) through some function E : M × 2X → M. In this case, we say M ′ is
a local explanation for M w.r.t. to Z. We also say that M ′ is produced through
the explanation strategy E.

Furthermore, we define an explanation M ′ as admissible if it has a valid
fidelity w.r.t. the original model M and the data in Z—where Z is the same
subset of the input data used by the explanation strategy. More precisely, we
say M ′ is δ-admissible in Z w.r.t. M if Δf(M(Z),M ′(Z)) < δ.

Finally, we define an explanation M ′ as clear for A, in Z, and w.r.t. the
original model M , if there exists some representation R′ = r(M ′, Z) which is
more interpretable than the original model representation R. More precisely, we
say M ′ is ε-clear for A, in Z, and w.r.t M if IA(R′) − IA(R) > ε for some
arbitrarily big threshold ε > 0.

Several explanations may actually be produced for the same model M . For
each explanation, there may be again more or less interpretable representations.
Of course, explanations are useful if they ease the seek for more interpretable
representations. Thus, providing an explanation for a given model behaviour
w.r.t. a particular class of inputs is about creating ad-hoc metaphors aimed at
easing the observer’s understanding.
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M M'

A

IA(R') - IA(R) > ε
R R'

M' = E(M)

Δf(M, M') < δ

IA(R)

R = r(M) R' = r'(M')

IA(R')

Fig. 4. Global explanation and interpretation of model

Global/Local Explanations. The theoretical framework described so far – which
is graphically synthesised in Fig. 3 – is aimed at modelling local interpretations
and explanations, that are, the two means an explanator agent may exploit in
order to make AI tasks’ outcomes more understandable in the eyes of some
explanee.

Conversely, when the goal is not to understand some model outcome, but
the model itself, from a global perspective – or, equivalently, when the goal is
to understand the model outcome w.r.t the whole set of input data X –, the
theoretical framework described so far is simplified as shown in Fig. 4, where the
dependency on the input data is omitted from functions E, Δf , and r. This is
possible because we consider the global case as a particular case of the local one,
where Z ≡ X.

Finally, we remark that the case where a model M is to be understood on
a single input-output pair, say x and y = M(x), is simply captured by the
aforementioned local model, through the constraint Z = {x} and M(Z) = {y}.

3.2 Discussion

Our framework is deliberately abstract in order to capture a number of features
we believe to be essential in XAI. First of all, our framework acknowledges – and
properly captures – the orthogonality of interpretability w.r.t. explainability.
This is quite new, indeed, considering that most authors tend to use the two
concepts as if they were equivalent or interchangeable.

Furthermore, our framework explicitly recognises the subjective nature of
interpretation, as well as the subtly objective nature of explanation. Indeed,
interpretation is a subjective activity directly related to agents’ perception and
SoM, whereas explanation is an epistemic, computational action which aims at
producing a high-fidelity model. The last step is objective in the sense that it
does not depend on the agent’s perceptions and SoM, thus being reproducible
in principle. Of course, the effectives of an explanation is again a subjective
aspect. Indeed, a clear explanation (for some agent) is a more interpretable
variant of some given model—thus, the subjective activity of interpretation is
again implicitly involved.

The proposed framework also captures the importance of representations.
This is yet another degree of freedom that agents may exploit in their seek for
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a wider understandability of a given model. While other frameworks consider
interpretability as an intrinsic property of AI models, we stress the fact that a
given model may be represented in several ways, and each representation may be
interpreted differently by different agents. As further discussed in the remainder
of this paper, this is far from being an issue. This subjectivity is deliberate, and
it is the starting point of some interesting discussions.

Finally, our framework acknowledges the global/local duality of both expla-
nation and interpretation, thus enabling AI models to be understood either gen-
eral or with respect to a particular input/output pair.

3.3 Practical Remarks

The ultimate goal of our framework is to provide a general, flexible, yet minimal
framework describing the many aspects concerning AI understandability in the
eyes of a single agent. We here illustrate several practical issues affecting our
framework in practice, and further constraining it.

According to our conceptual framework, a rational agent seeking to under-
stand some model M (or make it understandable) may either choose to elaborate
on the interpretation axis – thus looking for a (better) representation R of M
– or it can elaborate on the explainability axis—thus producing a novel, high
fidelity model M ′, coming with a representation R′ which is more interpretable
than the original one (i.e., R).

Notice that, in practice, the nature of the model constrains the set of admissi-
ble representations. This means that a rational agent is likely to exploit both the
explanation and interpretation axes in the general case—because novel represen-
tations may become available through an explanation. we argue and assume that
each family of AI models comes with just a few natural representations. Because
of this practical remark, we expect that, in real-world scenarios, an agent seek-
ing for understandability is likely to “work” on both the interpretation and the
explanation axes.

For instance, consider decision trees, which come with a natural represen-
tation as a tree of subsequent choices leading to a decision. Conversely, neu-
ral networks can either be represented as graphs or as algebraic combinations
of tensors. In any case, neural network models are commonly considered less
interpretable than other models. In such situation, a rational agent willing to
make a neural network more understandable may choose to combine decision
trees extraction (explanation) – possibly focusing on methods from the litera-
ture [1,4] – to produce a decision tree whose tree-like structure (representation)
could be presented to the human observer to ease his/her interpretation. The
decision-tree like representation is not ordinarily available for neural networks,
but it may become available provided that an explanation step is performed.

Another interesting trait of our framework concerns the semantics of clear
explanations. The current definition requires explanation strategies to consume a
model M with a given representation R and to produce a high-fidelity model M ′

for which a representation R′ exists, which is more interpretable than R. Several
semantics may fit this definition. This is deliberate, since different semantics may
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come with different computational requirements, properties, and guarantees. For
instance, one agent may be interested in finding the best explanation—that is,
the one for which each representation is more interpretable than the most inter-
pretable representation of the original model. Similarly, in some cases, it may be
sufficient – other than more feasible – to find an admissible explanation—that
is, a high-fidelity model for which some representation exists that is more inter-
pretable than some representation of the original model. However, the inspection
of the possible semantics and their properties falls outside the scope of this paper
and is going to be considered as a future research direction.

4 Assessment of the Framework

The abstraction level of the presented framework has also been conceived in
order to capture most of the current state of the art. Along this line, this section
aims at validating the fitting of the existing contributions w.r.t. the framework
presented in Sect. 3.1: if our framework is expressive enough, it should allow most
(if not all) existing approaches to be uniformly framed, to be easily understood
and compared. To this end, we leverage on the work by Guidotti et al. [13],
where the authors perform a detailed and extensive survey on the state-of-the-
art methods for XAI, by categorising the surveyed methods according to an
elegant taxonomy. Thus, hereafter, we adopt their taxonomy as a reference for
assessing our framework.

The taxonomy proposed by Guidotti et al. essentially discriminates among
two main categories of XAI methods. These are the “transparent box design”
and the “black-box explanation” categories. While the former category is not
further decomposed, the latter comes with three more sub-categories, such as
“model explanation”, the “outcome explanation”, and the “model inspection”.
Notice that, despite the authors’ definition of “explanation” does not precisely
match the one proposed in this paper, we maintained the original categorisation.

The remainder of this section navigates such a taxonomy accordingly, by
describing how each (sub-)category – along with the methods therein located –
fits our abstract framework.

4.1 Model Explanation

The mapping of the methods classified as part of the “model explanation” sub-
category into our framework is seamless. Hence, it can be defined as follows:

Let M be a sub-symbolic classifier whose internal functioning representation
R is poorly interpretable in the eyes of some explanee A, and let E(·) be some
global explanation strategy. Then, the model explanation problem consists of
computing some global explanation M ′ = E(M) which is δ-admissible and
ε-clear w.r.t. to A, for some δ, ε > 0.

For instance, according to Guidotti et al., possible sub-symbolic classifiers are
neural (possibly deep) networks, support vector machines, and random forests.
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Conversely, explanation strategies may consist of algorithms aimed at (i) extract-
ing decision trees/rules out of sub-symbolic predictors and the data they have
been trained upon, (ii) compute feature importance vectors, (iii) detecting
saliency masks, (iv) detecting partial dependency plots, etc.

In our framework, all the algorithms mentioned above can be described as
explanation strategies. Such mapping is plausible given their ability to compute
an admissible, and possibly more explicit models out of black boxes and the
data they have been trained upon. However, it is worth to highlight that the
clarity gain produced by such explanation strategies mostly relies on the implicit
assumption that their output models come with a natural representation which
is intuitively interpretable to the human mind.

4.2 Outcome Explanation

Methods classified as part of the “outcome explanation” sub-category can be
very naturally described in our framework as well. In fact, it can be defined as
follows:

Let M be some sub-symbolic classifier whose internal functioning represen-
tation R = r(M,Z) in some subset Z ⊂ X of the input domain is poorly
interpretable to some explanee A, and let E(·, ·) be some local explanation
strategy. Then, the outcome explanation problem consists of computing some
local explanation M ′ = E(M,Z) which is δ-admissible and ε-clear w.r.t. to
A, for some δ, ε > 0.

Summarising, while input black boxes may still be classifiers of any sort, explana-
tion, and explanation strategies differ from the “model explanation” case. In par-
ticular, explanation strategies in this sub-category may rely on techniques lever-
aging on attention models, decision trees/rules extraction, or well-established
algorithms such as LIME [20], and its extensions—which are essentially aimed
at estimating the contribution of every input feature of the input domain to the
particular outcome of the black box to be explained.

Notice that the explanation strategies in this category are only required to
be admissible and clear in the portion of the input space surrounding the input
data under study. Such a portion is implicitly assumed to be relatively small in
most cases. Furthermore, the explanation strategy is less constrained than in the
global case, as it is not required to produce explanations elsewhere.

4.3 Model Inspection

Methods classified as part of the “model inspection” sub-category can be natu-
rally defined as follows:

Let M be a sub-symbolic classifier whose available global representation R =
r(M) is poorly interpretable to some explanee A, and let r(·), r′(·) be two
different representation means. Then, the model inspection problem consists
of computing some representation R′ = r′(M) such that IA(R′) > IA(R).
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Of course, solutions to the model inspection problem vary a lot depending on
which specific representation means r(·) is exploited by the explanator, other
than the nature of the data the black box is trained upon. Guidotti et al. also
provide a nice overview of the several sorts of representations means which may
be useful to tackle the model inspection problem, like, for instance, sensitivity
analysis, partial dependency plots, activation maximization images, tree visual-
isation, etc.

It is worth pointing out the capability of our framework to reveal the actual
nature of the inspection problem. Indeed, it clearly shows how this is the first
problem among the ones presented so far, which only relies on the interpretation
axis alone to provide understandability.

4.4 Transparent Box Design

Finally, methods classified as part of the “transparent box design” sub-category
can be naturally defined as follows:

Let X ⊆ X be a dataset from some input domain X , let r(·) be a representa-
tion means, and let A be the explanee agent. Then the transparent box design
problem consists of computing a classifier M for which a global representation
R = r(M,X) exists such that IA(R) > 1 − δ, for some δ > 0.

Although very simple, the transparent-box design is of paramount importance
in XAI systems as it is the basic brick of most general explanation strategies.
Indeed, it may be implicit in the functioning of some explanation strategy E to
be adopted in some other model or outcome explanation problem.

For instance, consider the case of a local explanation strategy E(M,X) �→
M ′. In the general case, to compute M ′, it relies on some input data X and the
internal of the to-be-explained model M . However, there may be cases where the
actual internal of M are not considered by the particular logic adopted by E.
Instead, in such cases, E may only rely on X and the outcomes of M , which are
Y = M(X). In this case, the explanation strategy E is said pedagogical—whereas
in the general case it is said decompositional (cf. [1]).

In other words, as made evident by our framework, the pedagogical methods
exploited to deal with the model or outcome explanation problems must inter-
nally solve the transparent box design problem, as they must build an inter-
pretable model out of some sampled data-set and nothing more.

5 Towards the Social Dimension of Explainability

In previous sections, we mostly focus on understandability from the single-agent
perspective. Conversely, in this section we move from the intra-agent perspective
– relying on the framework presented in Sect. 3.1 – to the inter -agent one—where
two or more interacting agents are involved [8].

Our discussion stems from the observation that the agent extracting/eliciting
information In other words, no agent explains something to itself. Furthermore,
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in a multi-agent setup, it is plausible to have agents characterised by heteroge-
neous (potentially exclusive) capabilities and knowledge bases. In this situation,
transferring knowledge and demanding for explanations may not even be possible
without a social connotation. Indeed, the social, interactive dimension of under-
standability is well recognised (e.g., in the social sciences), and some authors are
already suggesting the XAI research community should take it into account [17].
Accordingly, we argue that our framework should be extended in this direction.

In particular, we envision two main actors

explanator—formulating and sharing an explanation, and the
explanee—consuming and possibly demanding the explanation

needing to establish a mutual-understanding. The explanator and the explanee
can be a software agent, a human, or a grouped combination of them.

The possible social scenarios to share explanations can be generalised in 1-to-
1, 1-to-n, and m-to-n. Thus, the framework presented in Sect. 3.1 – which mostly
focuses on the single-agent perspective – needs further extensions to tackle the
challenge of understandability in a multi-agent scenario.

Mutual understanding is not just an algorithm, nor is it some cognitive activ-
ity that an agent can perform by itself; it is instead a formalised protocol involv-
ing two or more parties. Therefore, aiming at scaling our framework to the MAS
setup, we envision the following behaviours to be modelled.

As the interpretation function is subjective by construction, a piece of given
information can be considered interpretable by agent A but not by another agent
B. Consequently, if agent A is willing to make a model X understandable by
another agent B, a joint agreement about the representation of the explanation
has to be established. We define mutual understanding as a request-response
protocol involving at least one agent acting as explanator and one agent acting
as explanee—both either virtual or humans. Such an agreement may involve the
establishment of a common taxonomy and knowledge reconciliation [14,23].

The protocol can begin with the explanator taking the initiative to share
an explanation or with an explainee requiring it. The object of the explanation
is the desire to understand the behaviour of a given model M w.r.t some data
X—which is naturally represented through R = r(M,X). Assuming that the
explanator can rely on a wider dataset X ′ ⊇ X than the one the explanee is
relying upon (i.e., X), it may respond in several ways:

– it may produce an alternative representation R′ = r′(M,X ′) of M on some
data X ′ ⊇ X, expecting that R′ may result more interpretable than R in the
eyes of the explanee

– it may produce an explanation for M in X ′ by leveraging on some internal
strategy E, hoping that the natural representation R′′ = r′′(E(M),X ′) of
E(M) in X ′ may result more interpretable than R in the eyes of the explanee

In turn, the explanee may provide feedback based on its subjective interpreta-
tion of the proposed representation. The protocol may thus go through one or
more request-response rounds. The object of the further iteration(s) can be (i)
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a specific component of the explanation – possibly demanding for a new level of
granularity of the explanation – or (ii) the entire explanation that might need
a complete rehearsal to be eventually understood. To prevent possible endless
(diverging) explanations, we have to discriminate their underlying scenario. E.g.:

1-to-1—Once reached the most granular representation of an information, the
agent say “no more additional information are available” concluding the iter-
ations and declaring the failure of the explanation;

1-to-n—In case of misalignment on the understanding of a given explanation,
techniques from defeasible reasoning [11] might be exploited to avoid the
failure of the explanation;

m-to-n—Likewise the previous scenario, it is envisioned to possibly implement
defeasible reasoning. Moreover, mechanisms enabling explanation-support
among the n explanator might be developed to overcome the failure for lack
of specification.

Another factor raising the complexity of the mutual-understanding is the possible
heterogeneous composition of the explanator(s) or explanee(s) (e.g., a composi-
tion of both virtual and humans actors). A possible solution might be to generate
clusters (e.g., sub-pools of explanators and explainees) and generate reconciled
and personalised explanations. Including the human factor in the social explain-
ability demands to consider elements such as expectations, trust, State of Mind
(SoM), emotions and multi-modal formats of the explanation (e.g., natural lan-
guage and graphical).

Finally, it is worth to be mentioned that the idea of leveraging on interaction
to reach mutual understanding shares some similarities with several works from
the planning literature, such as [6,7], For instance, in [7], agents support humans’
understanding via model reconciliation, that is, a corpus of methods aimed at
letting a human receive explanations w.r.t. the sequence of actions computed
by a planning agent. In particular, such methods (i) define explanation in a
planning-specific way, and (ii) involve interaction among the human (explanee)
and the agent (explanator). However, despite some common insights, we argue
our framework is original w.r.t the area of explainable planning. Indeed, whereas
works in this area mostly focus on planning – which is an important subset of
symbolic AI – our work mostly focuses on sub-symbolic AI—a difference which
heavily affects how understandability is defined and pursued. Furthermore, while
other works target scenarios involving both humans and software agents, we
explicitly target both this case and the agents-only one.

6 Conclusion

Despite the many efforts of the XAI community in addressing opacity issues
in ML-based intelligent systems, most works in this area still rely on natural-
language-based definitions of fundamental concepts such as explanation and
interpretation. Accordingly, in this work, we firstly explore the inconsistencies
still affecting the definitions of interpretability and explainability in some recent
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impactful papers. Then, to overcome the limitations of natural language defi-
nitions, we propose an abstract framework for XAI deeply rooted in the MAS
mindset—which is the main contribution of this paper. To assess the proposed
framework, we compare it against existing studies in the field of XAI, showing
how it can naturally and unambiguously provide clear definitions for the main
sorts of tasks laying under the XAI umbrella. Finally, we propose some ways
to scale the intra-agent to the inter-agent explainability and elaborate on the
potential social implications characterising the dynamics among the agents.

References

1. Andrews, R., Diederich, J., Tickle, A.B.: Survey and critique of techniques for
extracting rules from trained artificial neural networks. Knowl.-Based Syst. 8(6),
373–389 (1995). https://doi.org/10.1016/0950-7051(96)81920-4

2. Anjomshoae, S., Najjar, A., Calvaresi, D., Främling, K.: Explainable agents and
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