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‘ 
Abstract. This paper presents our investigation on an agent-based model 
of Genot,ype Editing. This model is based on several characteristics that 
are gleaned from the RNA editing system as observed in several organ- 
isms. The incorporation of editing mechanisms in an evolutionary agent- 
based model provides a means for evolving agents wit,h heterogenous 
post-transcriptional processes. The study of this agent-based genotype- 
editing model has shed some light into the evolutionary implications of 

RNA editing as well as established an advantageous evolutionary com- 
putation algorithm for machine learning. We expect that our proposed 
model may both facilitate determining the evolntionary role of RNA edit- 
ing in biology, and advance the current state of research in agent-tmsed 
optimization. 

1 Introduction 

Evidence for the important role of non-protein coding RNA (ncR.NA) in com- 

plex organisms (higher eukaryotes) has accumulated in recent years. “ncRNA 

dominates the genomic output of the higher organisms and has been shown to 

control chromosome architecture, mRNA turnover and the developmeiital tim- 

ing of protein expression, and may also regulate transcription and alternative 

splicing.” ([  101, p 930). 

RNA Editing ([2]; [l]), a process of post-transcriptional alteration of genetic 

information, can be performed by ncR.NA structures (though it can also be per- 

formed by proteins). The term initially referred to  the insertion or deletion of 

particula,r bases (e.g. uridine), or some sort of base conversion. Basically, RNA 

Editing instantiates a non-inheritable stochastic alteration of genes, which is 

typically developmentally and/or environmentally regulated to  produce appro- 

priate phenotypical responses a t  different stages of development or to states of 

the environment. 

The most famous RNA editing system is that of the African Trypanosomes 

[2]. Its genetic material was found to possess strange sequence features such 

as genes without translational initiation and terminatioii codons, frame shifted 

genes, etc. Furthermore, observation of mR.NA’s showed that niany of them were 

significantly different from the genetic material from which they had been tran- 

scribed. These facts suggested that inRNA’s were edited post-transcriptionally. 



It was later recognized that this editing was performed by guide R.NA’s (gRNA’s) 

coded mostly by what was previously thought, of as non-functional genetic ma- 

terial [ 161. In this particular genetic system, gRNA’s operate by inserting, and 

sometinies deleting, uridines. To appreciate tlie effect of this edition let us con- 

sider Fig. 1. The first example (p. 14 in [2]) shows a massive uridine insertion 

(lowercase u’s); tlie amino acid sequence that would be obtained prior to any 

edition is shown on top of the base sequence, and tlie amino acid sequence ob- 

tained after edition is shown in the gray box under the base sequence. The second 

example shows how, potentially, tlie insertion of a single uridine can change dra- 

matically tlie amino acid sequence obtained; in  this case, a terriiiiiation codon 

is introduced. It is important to retain that a iiiRNA molecule can be more or 

less edited according to the concentrations of the editing operators it encouii- 

ters. Thus, several different proteins coded by the same gene may coexist in an 

organism or even a cell, if all (or some) of the mR.NA’s obtained from the same 

gene, but edited differently, are meaningful to the t,ranslation mechanism. 

Scr GI y GI u LVS --- I 1 

AuGuuuCGuuGuAGAuuuuuAuuAuuuuuuuuAuuA 

1 bicrPhe Arg Cys Arg Phe Leu Leu Pht: I’heLcu [xu I 
Gln Glu Gly Arg GIy Lys - 6 -  

-n--- - 
CAGGAGGGCCGUGGAu AAG 

Fig. 1. U-insertion in Trypanosomes’ RNA 

The role of R.NA editing in the development of more complex organisms has 

also been shown to be important. Lomeli et al. [9] discovered that the extent, of 

R.NA editing affecting a type of receptor cha,nnels responsible for the mediation 

of excitatory postsyiiaptic currents in the central nervous system, increases in 

rat brain development,. As a consequence, the kinetic aspects of these channels 

differ a.ccordiiig to the time of their creation in the brain’s developmental pro-’ 

cess. Ailother exaiiiple is that the development, of rats without a gene (ADAR1) 

known to be iiivolved in RNA editing, terminates midterm [ 171. This showed 

tliat RNA Editing is more prevalent and important than previously thought. 

More recently, Hoopengardner et al. [GI found that R.NA editing plays a central 

role in  nervous system function. Indeed, many edited sites recode conserved and 

functionally important amino a.cids, some of which may play a role in nervous 

system disorders such as epilepsy and Parkinson Disease. 

Altho~gli R.NA editing seems to play an essential role in the developmeiit of 

some genetic systeiiis and more a,nd more editing mechanisms have been iden- 

tified, not much has been advanced to understand the potentrial evolutionary 

advantages, if any, that; R.NA editsing processes may have provided. To acquire 

insights for answering this question, we started a systematic study of a Genetic 

Algorithm with Edition (GAE) initially proposed by R.ocha [13]: [14]. Specif- 



ically, we have employed a simple GAE model and reported some results on 

how Genotype Editing niay provide evolutionary advantages ([7], [8] and [15]). 

Here, we continue this study by presenting further results obtained from a more 

realistic, agent-based model of Genotype Editing. Our goal is to gain a deeper 

understanding of the nature of RNA editing and exploit its insights to improve 

evolutionary coniputation tools and their applications to complex problems. In 

the next section, we summarize our prior work in Genetic Algorithms with Geno- 

type Edition and discuss how we build on this work to produce the agcnt-bnscd 

model for Genotype Edition. 

2 Modeling Genotype Edition 

2.1 Genetic Algorithm with Edition 

In science and technology Genetic Algorithms (GA) [5] have been used nq coni- 

putational models of natural evolutionary systcnis and as adaptive algorithms 

for solving optimization problems. Table 1 depicts the process of a simple genetic 

algorithm 

Table 1. Mechanism of a simple GA. 

1. Randomly generate an initial population of 1 agents 

2. Evaluate each agent‘s (phenot,ype) fitness. 

3. R.epeat until Q offspring have been created. 

a. select a pair of parent agents for mating; 

I). apply genotype crossover operator; 

c.’ apply genotype miitation operator. 

4. Replace the current, poprilation with the new population. 

5. Go to Step 2 iintil terminat,ing condit,ion. 

each defined by a n-bit, genotype string (a.k.a. chromosome) 

GAS operate on a population of artificial organisms, or agents. Each agent is 

comprised of a genotype and a phenotype. Evolution occurs by iterated stochastic 

variation of genotypes, and selection of the best phenotypes in an environment 

according to a fitness function. In machine learning, tlie phenotype is a candidate 

solution to some optimization problem, while tlie genotype is an encoding of 

that solution by means of a domain independent representation, namely, binary 

strings (or chromosomes). In traditional GAS, this code between genotype a.nd 

phenotype is a direct and unique mapping. In biology, however, there exists 

a multitude of processes, taking phce between the transcription of genes and 

their expression, responsible for the establishment of a one-to-many rela.tion 

between genotype and phenotype. For instance, it was shown that RNA editing 

has the power to dramatically alter gene expression [12] (p. 78): “cells with 

different mixes of (editing mechanisms) may edit a transcript from the same 

gene differently, thereby making different proteins from the same opened gene.” 

In a genetic system with RNA editing, in other words, before a gene is trans- 

lated into the space of proteins it may be altered through interactions with other 



t,ypes of molecules, namely RNA editors such as gRNA’s. Based upon this anal- 

ogy, Roclia [13], [14] expanded the traditional GA with a process of stochastic 

edition of the genotypes of agents, prior to being translated into phenotypes 

(solutions). The editing process is inipleinented by a set of editors with different 

editing functions, such as insertion or deletion of symbols in the origiml geno- 

type strings. Before these genotype strings can be translated into the space of 

phenotypes, they must “pass” through successive layers of editors, present in 

different concentrations. In each generation, each genotype string has a certain 

probability (given by tlie concentrations) of encountering an editor in its layer. If 

an editor matches some subsequence of the genotype string when they encounter 

each other, the editor’s function is applied and tlie genotype string is altered. 

The GA with Edition (GAE), defined in [7], [8] and [15]: is summarized in the 

following paragraphs: 

The GAE model consists of a faniily of T m.-bit strings, denoted as (El, Ea, . . . , 
Er.), that is used as tlie set of editors for the genotypes of the agents in a pop- 

ulation. The length of tJie editor strings is assumed much smaller than that of 

the genotype strings: m << ‘n, usually an order of imgnitude. An edittor Ej is 

said to match a substring, of size m., of a genotype string, S, at position k if 

ec = .sk+i, i = 1 , 2 , .  . . ,772, 1 5 k 5 n - TTL, where ec and si denote tlie it’& bit 

value of Ej and S, respectively. For each editor, Ej,  there exists an associated 

editing function, F j ,  that specifies how a. particular editor edits tlie genotype 

strings. For instance, when the editor niatches a portion of a genotype string, a 

mimber of bits are inserted into or deleted from the latter. 

If the editing function of editor Ej is to add one specific allele at S L . + ~ + ~  

when E? matches S at  position I C ,  then all alleles of S from position IC + m, + 1 to 

n. - 1 are shifted one position to the right (the allele at position n, is removed). 

Analogously, if tlie editing function of editor Ej is to delete an allele, an a,llele at 

~ k + , , ~ + ~  is deleted when Ej matches S at  position k .  All tlie alleles after position 

k + m. + 1 are shifted in the inverse direction (one randomly generated allele is 

assigned at position 77.). 

Finally, let the concentration of the editor faniily be defined by (vl ,  112, . . . , v r ) ,  

where the concent,ration of editor Ej is denoted czs q: tlie probability that S en- 

counters Ej .  Figure 2 depicts the model. With these settings, tlie algoritliiii for 

the GAE is essentially the same as tlie regular GA, except that step 2 in Table 1 

is now redefined as: 

“For each agent‘s genotype in the population, apply each editor Ej with 

probability v j  (i.e., concentration). If Ej matches the agent’s genotype string 

S,  then edit S with the editing function associa.ted with Ej and evaluate the 

resulting agent’s fitness.” 

It is iniportant to notice that the “post-transcriptional” edition of genotypes 

is not a process akin to mutation, because editions are not inheritable. Just like 

in biological systems, it is the unedited genotype that is reproduced. One can 

also note that Genotype Editing is not a process akin to the Baldwin effect as 

we discussed in previous work ([8], [15]). 
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Fig. 2. Schematic of GAE 

2.2 

In this Inper, we extend the simple GAE model to a more rea,listic agent-based 

GAE model. Wlierea.5 tlie GAE model defines a single family of editors for tlie 

entire population, tlie agent-based model we introduce liere allows for hetero- 

geneous agents, each with a distinct editor faiiiily. Therefore, instead of every 

chromosome eiicounteriiig the same editors with tlie same probability, in  the 

agent-liased niodel of Genotype Editing (ABMGE) ea,ch agent's chromosomes 

are edited by its own editor family. Figure 3 depicts an agent in tlie ABMGE 

model. 

Table 2 shows the algorithni for the ABMGE. In this model, tlie edit,or family 

for each agent, once generated, is fixed, and crossover and muta.tion (step 3.11 

and 3.c) are applied only to tlie agents' genotypes. 

One way to highlight the difference between the two models is to notice that 

in the GAE model, there a,re essentially two separa,te populations: an evolv- 

ing population of genotype strings and a fixed, small, editor population (fail- 

ily). l\/loreover, in the simple GAE the entire popiila,tion of agents faces exactly 

tlie same "post-transcriptional" editors. In contrast, in tlie ABMGE model, tlie 

evolving agents face heterogenous post-transcriptiorIn1 editors. As fit agents are 

selected for reproduction, their editor farnilies propagate to tlie next generation. 

Here we do not allow for variation of tlie editor faiiiily; thus, tliere is no evolu- 
tion of better editors. We leave such a study for a future article, and focus here 

exclusively on allowing lieterogeiieoiis genotype edition in an agent population. 

In static and dynaiiiic environiiieiits our results in [7 ] .  [8] and [15] have demon- 

strated how lioniogeiieous genotype editing, as iiiiplemented ill tlie GAE model, 

Agent Based Model of Genotype Editing 



s; \.. I .. n 

I Edited Genotype 

X, 
Phenotype 

Fig. 3. Schenktic of an agent in ABMGE 

Table 2. Mechanism of ABMGE. 

1. Randomly generate an initial agent popnlation, each agent 
consisting of a mbit chromosome and a family of editors. 

2. Edit each agent’s chromosome nsing the agent’s editor fainilj 
and evaluate each agent’s fitness. 

3. Repeat until 1 offspring have been created. 
a. sclect a pair of parents for mating; 
11. apply genotype crossover operat,or; 
c. apply genotype mutation operator. 

4. Replace the current populat,ion with the new population. 
5. Go to Step 2 until terminating condition. 

can iinprove the standard GA search performarice by suppressing the effects of 

hitchhiking. We have also showed that editing frequency plays a critical role in 

the evolutionary advantage provided by the editors: only a moderate degree of 

editing processes facilitates the exploration of the search space. Therefore, one 

needs to choose proper editor parameters to avoid over or under-editions. We 

offered guidelines for choosing editing paramet,ers in those publications. Here, 

we present a conqmxtive study of GAE and ABMGE, and demonstrate how 

this agent-baed inodel can enhance the search performance. 

3 Empirical Results 

How rapid is evolutioimry change, and what, determines the rates, patterns, 

and causes of change: or lack thereof? Answers to these questions can tell us 

much about the evolutionary process. The study of evolutionary rate in the 

context of GA usually involves defining a performance nieasure that embodies 

the idea of rate of improvement, so that its change over time can be monitored 

for investigation. In inany practical problems, a traditional performance measure 

is the “best-so-fa,r” curve that plots the fitness of the best individual that has 



been seen thus far by generation n.. As a step towa.rds a deeper understanding 

of how Genotype Editing works, we employ a testbed, the small “Royal Road” 

S1 due to its simplicity for tracing the evolutionary advancement [7]. 

Table 3. Small royal road function SI 

= 11111***********************************; c I  = 10 

s2 = *****11111***************”***************. , c2 = 10 

sJ = **********lllll*************************; cq = 10 

sq =*******+******tllll~********************. cq = 10 

sy, = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  cy, = 10 
sG =*************+*r*********11111**********; cG = 10 
s7 = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  c7 = 10 

= ***********************************11111: c8 = 10 

Table 3 illustrates the schematic of the small Royal Road function SI .  This 

function involves a set of schemata S = {SI,. . . , SS} and the fitness of a genotype 

bit string (chromosome) n: is defiiied as F ( x )  = ~ s E S ~ S ~ s ( n : ) ,  where each c,  is 

a value assigned to the schema s as defined in the table; o,(x) is defined as 1 if 

x is an instance of s and 0 otherwise. In this function? the fitness of the global 

optiinuni string (40 1’s) is 10 x 8 = 80. 

We have shown that several factors play a role in the CAE’s search power - 

e.g., size of the familv of editors, editor length, editor con.cen,fmtion and editor 

f imct ion [7], [8]. Since a niultitude of parameter combinations axe possible, we 

conduct nunierous ABhlIGE runs wliere the four parameters above are randomly 

generated in the beginning of each run and then fixed until the end of tha,t 

r im The results a,re then averaged over the number of the runs so that, we may 

compare the performance discrepa,iicy of different search algorithms. 

The settings of the edit,or parameters in each ABMGE run are: the size of 

editor family, r ,  is a randoiiily generated integer from 1 to 5;  each editor is a 

randomized bit-string of a ra,ndomly chosen nuniber of bits from 1 to 5 (which 

is fixed at the beginning of each run); the editor concentration is randomly 

generated in [0,1]; and the editor function inserts or deletes a randomly chosen 

number of bits from {1,2,3}, as well.’ In addition, throughout this section, we 

always use a population of 40 agents where each agent is comprised of a genotype 

string, selection is via binary tournament [3], and crossover and mutation rates 

of 0.7 and 0.005, respectively. 

Figure 4 displays the results on averaged best-so-far performance over 300 

runs for the ABMGE, GAE and traditional GA.2 One can see that the ABMGE 

clearly outperforms the GAE, and also outperforms the traditional GA (with the 

same parameters as the ABMGE, but without editors). In the ABMGE? editor 

In the case of insertion, the edit,or adds a random substring each time, but the lengt,h 

of the siilxtring (the nuniber of bits) is fixed thoiighoiit the course of each rim. 

The valiie of the averaged best-so-far performance is calculated by averaging the 

best-so-fars obtained at each generation for all 300 runs; and SO is the averaged 

editing frequency, where the vertical bars overlaying the perforniance measure ciirves 

represent the %-percent confidence intervals. This applies to all the results presented 

i n  this paper. 
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Fig. 4. Avcraged best-so-far performance 

families that, generate fit a.gents can propagate with the genetic iiiformatioii of 

agents, thus providing an evolutionary advantage. These results highlight t h t  

the ABMGE, by allowing heterogeneous editor families, is thus evolutionarily 

advantageous. 

Figure 5.a depicts the averaged editing frequency (the total number of times 

all editors edited chromosomes in a generation) for the ABMGE, which is sub- 

st,antially smaller than that of the GAE. One can notice that in the case of the 

GAE, where the averaged best-so-fars attained is far from the optimum, the 

editing frequency does not, significantly drop to zero near the end of the ex- 

periments. It appears that the GAE's agent population continues utilizing the 

editors to explore the search space. Indeed, its corresponding populatioi-l diver- 

sity, displa.yed in Figure 5.11, is far from zero.3 This indicates that the system 

settles into a dynamic equilibrium in which the exploratory power of the editing 

process is balanced by the exploitative pressure of selection. 

In the case of the ABMGE, whose best-so-far fitness is much closer to the 

optimum, the striking difference is that the corresponding editing frequency 

declines dramatically as the ABMGE's population evolves, and tends to drop 

significantly at, the end of the experiments. This shows that the editing process; 

when advaiitageous editing occiirs, ultimately comes to alinost an end and the 

population diversity is considerably lost. These results are consistent with (but 

better thaai) what we have obtained in [7] arid [8] for homoge~~eoiis genotype 

edition. 

To measure diversity at the it" locus of a GA string, a simple bitwise diversity metric 

is defined as [ll]: D, = 1 - 210.5 - p i l ,  where pi is the proportion of Is at locus i in 

the current gcneration. Averaging t,he bitwise diversity metric over all loci offers a 

of 1 when the proportion of Is a t  cadi locus is 0.5 and 0 when all of the loci a.re 

fixed to either 0 or 1. Effectively it. measures how close the allele freqiiency is t.o a 

random poprilat,iori (1 being closest,). 
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Fig. 5. Averaged editing freq~iency and population diversity 

4 Conclusion and Future Work 

We have presented a conipa,rative study of ABhiIGE and GAE based on four edi- 

tor parameters - size of tlie fa.mily of editors, editor length, editor concentration 

a.nd editor function. We have demonstrated that the agent-based model of het- 

erogeneous Genotype Edition can improve the search performance of traditional 

GA and GAE. 

We have also shown that as tlie population of agents converges to a single 

phenotype (or a few phenotypes), editing frequency typically draimtically de- 

crease so that the editing process ultimately coines to an end. It is interest,ing 

to note t1ia.t this insight is consistent with plienoniena observed in biology. In- 

deed, we know [2] that in the course of evolution RNA Editing was partially or 

completely eliminated ill inany lineages of eukaryotic organisms containing mi- 

tochondria, by reverse transcription of partially edited mRNA's, which validates 

our siniulation results above. In this sense, our results share some superficial 

similarities with tlie work of Hiiiton and Nowlan [4], but we have discussed the 

differences elsewhere ([8] and [15]). 

In this paper we have thiis far discussed the ABMGE solely with consta,nt 

para.ineters (in each run), such EW fixed concentrations, of editors and a stable 

environment. In fut,ure work we will allow variation to be applied to editor fain- 

ilies, thus enabling proper co-evolution of editors and genotypes. Furthermore, 

in order to iuvestigate how RNA Editing niay be advantageous in dynamic en- 

vironments, we will also allow the coilcentrations of editors to be associated 

with environmental changes in order to introduce a control mechanism leading 

to phenotypic plasticity and greater evolvability. We have started such a study 

for the sinipler GAE with good results [15], but intend to extend it to tlie AB- 

MGE here presented. Together with the insights acquired previoiisly, we expect 

that this research will enable us to (1) conduct more biologically realistic exper- 

iments which niay lead us towards a better understanding of the advantages of 

RNA editing in nature, and (2) develop novel agent-based computation tools for 

dea.ling with complex, dynamic real-world problems. 
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