
How is it possible that a whole ancient civilization disap-
peared? Was this caused by climate changes? What type
of recruitment strategy among social insects is best

adapted to their particular environment? How much time does
it take to evacuate an airport if people have limited perception
caused by smoke as well as restricted mobility? What if many of
these people travel in groups or families? How long does it take
for commuters to reach their destinations if an important arte-
rial in the Los Angeles area is closed? These are the kind of ques-
tions that can be and are answered by agent-based modeling
and simulation (ABMS). 

In this paradigm, simulated human beings or animals are
modeled as agents, interacting with some of their peers as well
as with their environment. The environment, as in many mul-
tiagent systems, plays a key role and must therefore be careful-
ly taken into account. For instance, passengers seeking to leave
the airport just mentioned try to find the shortest way to an
exit, which may be partially hindered by debris. These are only
some examples of scenarios — also characterized as complex
adaptive systems — that can be investigated using ABMS. The
core idea here is to use simulated agents for producing a phe-
nomenon that shall be analyzed, reproduced, or predicted. This
generative, bottom-up nature of modeling and simulation pro-
vides great potential for dealing with problems in which con-
ventional modeling and simulation paradigms have difficulties
capturing the core features of the original system. 

In what follows, this particular modeling and simulation par-
adigm, its concept, properties, and application are introduced
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n This article gives an introduction to agent-
based modeling and simulation (ABMS). After
a general discussion about modeling and simu-
lation, we address the basic concept of ABMS,
focusing on its generative and bottom-up
nature, its advantages as well as its pitfalls.
The subsequent part of the article deals with
application-oriented aspects, including selected
tools and well-known applications. In order to
illustrate the benefits of using ABMS, we focus
on several aspects of a well-known area related
to simulation of complex systems, namely traf-
fic. At the end, a brief look into future chal-
lenges is given.



and discussed. To this end, concepts about model-
ing and simulation in general, and about ABMS in
particular, are introduced and discussed in the next
two sections. Then, some popular environments
for ABMS are briefly presented. Applications and
case studies are then discussed. We remark that,
due to lack of space, we have opted to focus on two
particular domains: social science simulation (one
of the earliest application domains) and traffic sim-
ulation (given the increasing interest in trans-
portation- and traffic-related applications). Readers
interested in a broader view on applications may
refer to Phan and Amblard (2007) or Uhrmacher
and Weyns (2009). We then conclude the article
with a discussion on future challenges. 

Modeling and 
Simulation in General 

For many decades, development, analysis of, and
experimentation with models have been a part of
the instruments of basically all domains of science
and engineering. Modeling is the development of
a model as a representative of a system. Simulation
can be defined as experimenting or executing a
model. There are numerous textbooks on model-
ing and simulation, such as Law (2007) and Gilbert
and Troitzsch (1999), that provide good introduc-
tions to modeling and simulation in general or
with a focus on particular areas. 

Since the idea behind modeling and simulation
is to use a model instead of a real system, the best
possible correspondence between the former and
the latter is essential. Therefore validity is a key
issue. An acceptable degree of validity of course
clearly depends on the objective of the model and
the simulation. Possible objectives may be increas-
ing the understanding of the original system, opti-
mizing it, or predicting the reaction of the system
to particular measures. 

There are several different approaches for mod-
eling that use different representation formalisms
and simulation methods. The best choice of a
modeling paradigm depends on properties of the
system under investigation and on the goals of the
simulation study. Different paradigms can be char-
acterized by the underlying time representation
(continuous versus discrete) or the granularity of
the model elements (macroscopic, microscopic). 

Agent-Based Modeling and Simula-
tion: Concepts and Features 

Agent-based modeling and simulation — some-
times also called multiagent simulation or multia-
gent-based simulation — applies the concept of
multiagent systems to the basic structure of simu-
lation models. One may also find the term agent-

directed simulation used as a more general notion
(Ören et al. 2000).

In ABMS, active components or decision makers
are conceptualized as agents, being modeled and
implemented using agent-related concepts and
technologies. Thus, one can define agent-based
modeling (ABM) as a representation of an original
or reference system that is conceptualized as a mul-
tiagent system. In the present text we use the term
ABMS to refer to the general modeling and simula-
tion paradigm, reserving ABM to the particular task
of modeling and agent-based simulation (ABS) for
the execution of a model. 

The core idea of ABMS is that, instead of merely
describing the overall, global phenomenon, this
phenomenon can be rather generated from the
actions and interactions of the multiagent system.
This bottom-up nature is the most important fea-
ture of ABMS (Epstein 2007). Thus, ABMS is partic-
ularly suitable for the analysis of complex adaptive
systems and emergent phenomena in social sci-
ences, traffic, biology, and others. Such emergent
phenomena are “unforeseen” patterns or global
behaviors that are not derivable from properties of
its constituents. Thus, an emergent structure or
behavior is generated by locally interacting enti-
ties, despite the fact that it is only observable on a
global, macroscopic scale, thus being not directly
deducible from local behaviors. In ABM, these
interacting entities can be naturally associated
with agents. Generating the phenomenon from
low-level actions and interactions is especially
valuable because it helps understand the causes
and circumstances of their occurrence. 

To create an agent-based model, the following
three elements have to be explicitly dealt with.
First, the set of agents is the most characteristic ele-
ment. These agents are autonomous with respect
to the other entities within the simulated environ-
ment. Next comes the specification of the interac-
tions of the agents among themselves and with
their shared environment. Since these interactions
are responsible to produce the overall outcome,
the design of all involved aspects is central. Inter-
actions need not be explicitly represented within,
for example, organizational structures. Rather,
they may occur implicitly, as is the case with stig-
mergic interactions. However, in the implemented
ABS, although organizational structures may not
be obvious as such, it is important that they be
explicitly considered. The third element, the sim-
ulated environment, contains all other elements.
These may be resources, other objects without
active behavior, as well as global properties. 

Whereas the previous three elements are part of
ABM, for actual execution, it is necessary to have a
simulation infrastructure. We remark here that the
latter is sometimes misleadingly referred as a sim-
ulation environment. In principle, the infrastruc-
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ture should not influence the outcome of the ABS
in the same way that the use of a particular pro-
gramming language should not influence the
result of a particular calculation. Yet in practice
technical aspects such as the particular order in
which the set of agents is updated in a simulation
platform are central. A more detailed discussion of
the differences between the simulated environ-
ment and the simulation environment is given in
Klügl, Fehler, and Herrler (2005). 

For the sake of illustration of how the three ele-
ments are related, consider a simple ABS with pred-
ators (wolves), prey (sheep), and some resource
that serve as food for the prey (for example, grass).
The set of agents in this ABM are the wolves and
the sheep. The behavior of the agents consists of
performing a random walk, while interactions
occur when two agents are close enough to each
other. Those interactions are implemented as parts
of the agent behavior. For example, if a wolf
encounters a sheep, it eats the sheep and increases
its energy level. The possible interactions between
agent types are given in table 1. 

The simulated environment would consist of
the spatial representation where grass objects are
scattered. Note that grass is not affected by the
interaction with wolves. It would also contain
some global variables associated with temperature
and humidity, which change according to some
function and influence the availability of grass.
Hence, its appearance and disappearance is an
environmental process. The simulation infrastruc-
ture could be any of those that appear later in this
text (see the section on simulation tools). The
infrastructure is responsible for the time advance,
for visualization, as well as for generating and
exporting data such as the number of wolves over
time. 

Advantages and Relation to Convention-
al Simulation Techniques 
ABMS opens up many opportunities and has
advantages with respect to conventional modeling
and simulation paradigms. Due to the explanatory
power that arises from its generative nature, it
allows observation and analysis of model dynam-
ics on at least two levels: the local agent and the
macroscopic level, the latter being generated from
the actions and interactions on the former. To this
aim, a modeler can use arbitrarily complex agent
designs, meaning that there is no restriction on the
complexity of the agent reasoning, on the sophis-
tication of its internal structure, or on its interac-
tion abilities. This freedom of design also includes
heterogeneity of the agent population or of the
environment. Also, multiagent learning methods,
explicit optimization, reorganization, and evolu-
tionary processes may be integrated. Hence, ABMS
also offers new opportunities in cases that have so

far been successfully tackled by conventional
methods. A good example is how to model human
operators and their influence in simulation of
manufacturing processes. In conventional models,
probability distributions for delays and errors are
the established means to model that influence.
Using ABMS, one may include simulated humans
as agents into the model. These agents cause not
only random delays but also may use “intelligent”
strategies to cope with unforeseen situations. This
last example also illustrates that ABMS can be seen
as an intuitive paradigm since an actor in the orig-
inal system may be directly modeled as a simulat-
ed agent. The representation gap between the orig-
inal system and the model is smaller than in
conventional modeling, as one does not need to
transform entities in probability distributions or
aggregate them in variables. This also affects the
visualization of the model: the entities that a
human observer is familiar with in the real world
are explicitly captured and visualized in the mod-
el. 

Nowadays, in most application domains that
use ABMS, modeling and simulation in general has
been acknowledged before as a useful tool. In these
domains, successful macro- and microscopic simu-
lations were developed using partial differential
equations, cellular automata, queuing networks,
Petri nets, object-oriented simulations, economet-
ric models, and others. 

Differences between ABMS and macroscopic
approaches are quite obvious. The basic idea
behind the latter is that the complete system is tak-
en as one object whose state is represented by state
variables, which are updated with time. The
macroscopic approach has many advantages. First,
once the set of mathematical formulas describing
the system is known, the complete model is fully
determined in a clear language. Second, the result
can be reproduced easily, once the integration
algorithm and its parameters are known. However,
the mathematical apparatus underlying macro-
scopic models is only accessible to particularly
trained people. Besides, some underlying assump-
tions made are spatial homogeneity and homo-
geneity among the individuals in the population,
and that it is not necessary to formulate a condi-
tional behavior or other singularities. These
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Table 1. Interactions in a Prey-Predator Model.

 wolf sheep grass 

wolf reproduce feed-on – 

sheep being-eaten reproduce feed-on 

grass – – – 



assumptions are acceptable if the system consists
of a large number of individuals so that differences
are averaged out or an explicit treatment of het-
erogeneity does not lead to further gains. These
assumptions may lead to oversimplifications
resulting in irrelevant simulation output. Parunak,
Savit, and Riolo (1998) and Bagni, Berchi, and Car-
iallo (2002) give detailed comparison between
macro- or equation-based simulations and ABMS. 

In addition to comparing agent-based to macro-
scopic approaches, another question that arises is
what distinguishes ABMS from other convention-
al microscopic approaches to simulation, given
that these two are quite related. ABMS also has
advantages over the several existing conventional
simulation approaches for microscopic models.
Klügl et al. (2004), focusing on a comparison
between queuing networks, Petri nets, and ABS,
concluded that the core advantage of ABMS in
comparison to these well-known and precisely
defined frameworks lies in the capability of formu-
lating truly flexible actor behavior. The main dif-
ference between agent-based approaches and cel-
lular automata is grounded on the idea that in
cellular automata, the dynamics are spatially
bound, uniform, and based on a fixed neighbor-
hood of each cell. On the other hand, in ABMS,
although an agent is also an entity that is situated
in some spatial environment, its connections to
the neighbors are not necessarily hard wired.
Moreover, althought a cell is fixed, the agent may
move. 

Finally, since an implemented model may be
seen as software with a specific set of requirements,
the differences between ABMS and standard agent-
oriented programming need to be clarified. In sim-
ulation, there is no system to design anew, but a
given reference system whose behavior and struc-
ture should be analyzed or predicted. Although
developing a simulation might involve similar
forms of activities when compared to developing
and implementing software, the basic goals of con-
struction versus reproduction are different. Simu-
lation analysis has to do with abstraction of all rel-
evant elements of the overall system. Whereas in
standard agent-oriented programming the envi-
ronment sets the constraints for the agents, in sim-
ulation the environment is a major part of the
model, containing an explicit representation of
space. Also, the treatment of the virtual or simu-
lated time is mostly not related to real time. 

Potential Pitfalls of ABMS 
The previously mentioned advantages come at a
cost. The high degree of freedom in the design
phase may pose serious challenges to less experi-
enced modelers. A critical issue is often that the
necessary level of detail is unclear. Which elements
have to be part of the model, which modules can

be left out or abstracted using, for example, a prob-
ability distribution? The fewer details a model has,
the fewer assumptions have to be justified. Also,
fewer parameters have to be calibrated, and the
implementation and handling of the model
become easier. However, if the model is too sim-
plistic, the significance of the results might be
compromised (Edmonds and Moss 2004). 

Due to the generative nature of ABMS, the devel-
opment process seems to be more often based on
exploring alternative designs than a conventional
simulation. There is currently a lot of research on
transferring agent-oriented software engineering
approaches to developing ABSs (see, for example,
Gomez-Sanz, Fernandez, and Arroyo [2010] or
Klügl and Bernon [2011]). General modeling
processes that are adapted to ABMS to some
extents have been suggested in Drogoul, Vanber-
gue, and Meurisse (2002), in Gilbert (2007), and in
North and Macal (2007). The only suggested ABS
methodology can be found in Kubera, Mathieu,
and Picault (2011). They focus especially on reac-
tive agents and start from a detailed analysis of
their interactions. There are particular inherent
problems in the development of an ABS that can
only be handled partially by the currently existing
methods. One example that makes tuning and cal-
ibration of ABSs difficult is brittleness of the mod-
el outcome. Changes in one parameter value may
affect the full population of agents leading to a
completely different overall result. Izquierdo and
Polhill (2006) characterized such critical parame-
ters as “knife edge parameters.” Examples are sharp
thresholds responsible for a change in the agent
behavior, such as an energy threshold when it
comes to triggering the reproduction of a predator
agent. 

Implementation of a model is still a problem
despite the number of tools for ABS (see the next
section). Sometimes the model is simply too large.
Size here relates either to the complexity of the
behavioral models of the agents, or to the number
of agents, or to the size of the environment.
Whereas the last two go back to implementation
issues that can be addressed by using high-perfor-
mance and distributed computing, the first may
pose conceptual problems related to justifying
assumptions, clean handling of parameters, and
others. 

Reproducibility of results was identified as a
major problem (Axtell et al. 1996), mostly arising
from incomplete documentation of the agent-
based models, even if reproduction of results is the
basic ingredient in all scientific works. Wilensky
and Rand (2007) advise how to prepare a model so
that it supports reproduction. In fact, weak and
insufficient documentation has led to the intro-
duction of the ODD Protocol (Overview, Design
concepts, Details) for model documentation
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(Grimm et al. 2006). Due to the variety of agent-
based models, an approach such as ODD, which is
more a guideline on the necessary types of infor-
mation rather than on languages to use, is an
appropriate basis for model documentation. 

Finally, validation poses severe problems for
ABMS from both a scientific and practical point of
view. Only in rare cases and domains are there
enough empirical data available for a full valida-
tion. More often, tackling a high level of detail pos-
es problems when it comes to proving that the
model captures the most important properties of
the original system. This is even more serious
regarding models that involve humans, their rea-
soning, and decision making. Without reliable
data, the modeler must go back to simpler plausi-
bility checking. As validation is such a central issue,
it has been discussed in a number of contributions.
Klügl (2008) suggests different phases involving at
least two levels: the agent level and the macrolevel.
Windrum, Fagiolo, and Moneta (2007) analyze gen-
eral methods for empirical validation and their
application to ABMS, whereas Barreteau and others
(2003) count on the involvement and repeated
reviewing by system experts and stakeholders. Also,
participatory ABMS — see for example (Guyot and
Honiden 2006) — can support testing and valida-
tion of an ABS. Yet, it can also be used for model
elicitation, that is, for supporting the identification
of actors, their goals, and behaviors. 

When to Use ABMS 
Considering the advantages and pitfalls, one can
conclude that ABMS is particularly appropriate for
systems that present the following characteristics,
partially inspired by the requirements listed in
Hare and Deadman (2004): 

Systems that draw their dynamics from flexible and
local interaction. Variable population sizes, struc-
tures, and interactions can be difficult to consider
in other simulation paradigms.

Systems that require the representation of hetero-
geneity regarding not only states but also behav-
ioral rules. This may be hard to model in paradigms
that assume homogeneity.

Multilevel systems that require observation on sev-
eral levels, especially when there is no connection
between them. This is the case with emergent phe-
nomena.

Systems where decision making happens on differ-
ent levels of aggregation. Microlevel decision mak-
ing concerns the behavior of the individuals,
whereas higher-level decision making is done by
some regulatory authority or entity. Feedback loops
affect individuals as well as aggregate levels.

Systems that include learning or evolutionary
processes at individual and at population level.

Systems that incorporate intelligent human behav-

ior such as sociotechnical systems, where flexible
team or group tasks have to be modeled.

Systems in which the assumptions necessary for an
equilibrium-based modeling are too strong. Such
assumptions may refer to homogeneity of space,
uniform decision making, perfect information,
rationality, and others. According to Epstein (2007),
agent-based simulations “... may have the effect of
decoupling individual rationality from macroscop-
ic equilibrium.”

Systems in which the focus is not on a stationary
equilibrium but rather on the phenomena and
behaviors that lead to it. Thus the transient dynam-
ics must be analyzed.

Tools for ABS 
In this section some established tools for ABS are
introduced. Note that although they all do well
when it comes to ABS, their support during the
modeling phase varies greatly. Despite the exis-
tence of several tools, the focus here is on general-
purpose and freely available ones. A more exten-
sive treatment of some tools mentioned below can
be found in Railsback, Lytinen, and Jackson
(2006). Also in JASSS1 from time to time surveys of
current ABS tools are published. 

Swarm
Swarm2 is one of the earliest tools for implementa-
tion of ABSs and complex systems. It is in fact com-
posed of libraries that provide the core from where
developers can build their ABSs, as well as perform
collection and analysis of data, display, and con-
trol parameters of the model. The original libraries
were based on Objective-C but currently Java can
also be used. Although libraries are provided, a user
without programming skills may have to spend
some time with the coding. There is no explicit
default representation of the environment. In
Swarm, there is the possibility of an agent being a
swarm itself, in which case the behavior of this
agent emerges from the behavior of the agents
inside it. This way, hierarchical models can be built
by grouping swarms. 

Recursive Porous Agent 
Simulation Toolkit
The Recursive Porous Agent Simulation Toolkit
(Repast)3 is also a platform based on Java. In the
same spirit as Swarm, Repast provides a library of
classes for the most common tasks associated with
the implementation of an ABS. Besides, since the
initial focus of Repast was social science, it includes
some tools that are useful in this domain such as
network analysis. Recently, the Repast Symphony
was introduced, which is a visual modeling tool
based on state charts. 
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Shell for Simulated Agent Systems 
The Shell for Simulated Agent Systems (SeSAm)4

provides a fully visual interface for the develop-
ment of ABMS. Contrarily to the requirements
Swarm puts on its users, the user of SeSAm does
not need to know any programming language. The
code (even regarding data presentation, definition
of plots, and other kinds of analyses) is assembled
together by means of a graphical interface. The ker-
nel of a SeSAm simulation is the system’s model
itself, which is built using activity diagrams. Pre-
defined primitives for agent actions, perceptions,
and their processing can be enhanced by user-
defined functions. A special type of agent is the
“World” that determines how the environment
behaves and may manage different kinds of spatial
representations. 

MASON
MASON,5 a library based on Java, aims at facilitat-
ing the programming of large-scale simulations.
The reasoning underlying MASON is to be com-
pact in order to gain in performance. Hence, it is
especially attractive for performance-demanding
applications, but it requires programming skills.
MASON supports serialization and not only two
but also three-dimensional visualization, separated
from the simulation kernel. 

NetLogo
NetLogo6 was designed with the end user in mind.
It has basically three interfaces. The first is a kind
of editor for programming the model itself, where
the language resembles Starlogo. NetLogo’s second
interface permits the visualization of the environ-
ment and its parameters and also allows the user to
play with the model parameters by means of slid-
ers. The third interface contains a structured docu-
mentation. NetLogo is turning increasingly popu-
lar due to its extensive documentation, the
existence of good tutorials, and a large library of
preexisting models. 

Other Tools
Many other tools are commonly listed in reposito-
ries related to ABMS.7 However many of them were
specifically designed for particular purposes. For
illustration we arbitrarily selected the following
two. MadKit for instance builds upon an organiza-
tional model of agents’ societies. Therefore it is
useful in domains where one aims at simulating
intra- and interorganizational processes. However,
if the problem at hand is not necessarily focused
on such an organizational model, it may not be the
best tool for the problem. Similarly, CORMAS is a
programming environment that targets natural
resources management. During the last years, more
and more agent platforms were used for imple-
menting simulation applications. Although they

support the agent-based concepts, they miss the
infrastructure that is specific for simulations, such
as integration of input data, handling virtual time,
model instrumentation, data collection, and oth-
ers. Depending on the particular focus and objec-
tive of the simulation (for example, support belief
desire intention [BDI] agent architecture), it might
indeed be a good idea to use standard agent-pro-
gramming tools. 

Comparison of the Tools
The previously mentioned general-purpose tools
can be compared regarding the following dimen-
sions: programming language, underlying simula-
tion model, interface, predefined primitives, and
type of agents. 

Regarding the programming language for actu-
ally implementing the models, as mentioned, most
of the tools assume Java knowledge. Two excep-
tions are SeSAm and NetLogo. Regarding the
underlying simulation elements (agents, interac-
tions, environment), in all frameworks, these have
to be separately modeled and brought together in
the actual simulation, following the bottom-up
generative approach of ABMS. In Swarm, the
agents that integrate the model have to be defined
before the environment. In SeSAm, the focus is
both on the environment and on the agents (defin-
ing attributes, goals, activities, and others.). 

All frameworks provide predefined primitives for
ABS, but ABM is facilitated to different extents
depending on the tool. A graphical user interface
helps the user to build the model (but in some cas-
es it has to be specified elsewhere). When such an
interface is not provided, the programming load
increases, eventually preventing the use by nonex-
perts. Such a graphical interface for modeling is
well explored in SeSAm. In NetLogo, the graphical
user interface is present but it serves basically as an
editor where the code must be written. 

Regarding agents’ types of behaviors, all tackle
reactive agents and none directly supports planning
or other cognitive tasks. This is accomplished only
by specific toolkits and not by the general frame-
works mentioned. However, especially for social
simulation of anthropological systems, features to
model mental states in agents are highly desirable.

Applications 
Nowadays, ABMS concepts are applied in basically
all domains. ABMS can be seen as a possible “killer
application” of agent technology. Because of the
wide range of application areas (from archeology
to zoology), it is impossible to give a comprehen-
sive overview. Therefore, we next focus on two
areas: social science (as the first application
domain), and traffic simulation (as one that is
receiving a lot of attention). 
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Applications in Social Sciences 
Schelling (1969) was basically the first to consider
individuals in a simulation. In his scenario dealing
with residential segregation, he has proposed a
neighborhood modeled by means of squares in a
grid, where in each there can be an individual
(household). For each household, the eight neigh-
bors are observed regarding how many share a giv-
en household characteristic (in Schelling’s case,
skin color). If this number is below a given thresh-
old, then this household is transferred to a ran-
domly selected and unoccupied position in the
grid. This process is repeated until all households
no longer move. 

This kind of approach seems quite obvious to us
now, 40 years later. However, it represents the
breaking of a paradigm and has opened up the way
for ABMS. For instance, using the then prevailing
paradigm of differential equations, Schelling
would have been able to model the time compo-
nent, but not the spatial interactions. 

Sugarscape
Sugarscape (Epstein and Axtell 1996) is a mile-
stone in ABMS due to the fact that with a simple
model the authors were able to show the emer-
gence of various social phenomena. It is an artifi-
cial system consisting of a landscape (the sug-
arscape proper) and agents. The landscape
consists of regions with different quantities of
sugar. Agents have a vision (the distance they can
see when foraging for sugar), a metabolism (con-
suming sugar), and other attributes coded in their
artificial genetic code. These agents have local
rules to decide about their movement in the land-
scape, about trading behavior, combat, and other
kinds of interaction with the environment. By
moving in the landscape, agents harvest sugar
and burn it at a rate that is given by their own
metabolism. If all sugar in the individual storage
is burned, then the agent simply dies. Sugarscape
agents also engage in sexual reproduction, trans-
mitting genes that are responsible for, for exam-
ple, vision as well as parts of the storage. 

With this basic model the authors were able to
generate, for example, a skewed distribution of
wealth. Other phenomena reported later as exten-
sions were introduced, such as spatial segregation
(for example, two tribes), a second resource
(spice), and environmental factors such as pollu-
tion caused by some economical activity. Regard-
ing the former, because of population growth in
one or both tribes, agents are forced to forage fur-
ther away thus initiating some interaction
between tribes. The introduction of spice allows
trade among the agents (metaphor for an eco-
nomic market), while pollution yields changes in
the environment, affecting foraging and others. 

The Artificial Anasazi Project models the

Kayenta Anasazi of Long House Valley (Arizona,
USA) over the period 800 to 1300 A.D., at which
point the Anasazi mysteriously disappeared. One
issue of the Anasazi enigma is whether environ-
mental factors alone can account for their disap-
pearance. According to Epstein, “in bringing
agents to bear on this controversy, we have the
benefits of (a) a very accurate reconstruction of
the physical environment (hydrology, aggrada-
tion, maize potential, and drought severity) on a
square hectare basis for each year of the study
period, and (b) an excellent reconstruction of
household numbers and locations.” Due to a col-
laboration with anthropologists, plausible rules of
agent behavior were identified (see Dean et al.
[2000)] for a report of phase I of the project,
which includes those rules). 

One result of the project has been the demon-
stration that the environmental rules accounted
for important features of the Anasazi’s demogra-
phy (for example, decline in population around
1300). However, they did not generate the out-
right disappearance that occurred. Authors’ inter-
pretation is that subsistence considerations alone
do not fully explain the enigma. Despite this, the
authors make the point that ABMS permits a new
kind of empirical research, while also allowing a
novel kind of interdisciplinary collaboration. 

Other Case Studies in Social Sciences
Relevant studies are related to anthropology,
political science, and economics. Epstein (2007)
presents a list that includes, for example, the
reproduction of the alignment of 17 nations
regarding alliances during the Second World War,
and the generation of the relevant statistical dis-
tribution of prices in an agent-based trading mod-
el. Regarding economical sciences in particular,
ABMS differs, for example, from experimental
economics whose aim is to understand why spe-
cific rules are applied by humans, and from mod-
els based on dynamic stochastic general equilibri-
um. The latter are often criticized. For instance, a
recent article in The Economist magazine8 men-
tions that conventional models ”perform well
enough in a business-as-usual economy. They do
badly in a crisis however, …, as there is no equi-
librium during crashes.” This article raises the
question about using a single, conventional mod-
el based on rational expectations and top-down
design to model increasingly complex markets,
given that there are alternatives. Although the
article emphasizes that there is less agreement on
what should replace those models, it mentions
ABMS as one promising alternative. This issue is
more extensively discussed in the framework that
concerns agent-based computational economics;
see for instance Tesfatsion and Judd (2006). 
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Simulating Games
Metaphors stemming from game theory can be
used to investigate social interactions. In minority
games for instance one is interested in studying sit-
uations that involve coordination of many agents
in social systems (also known as collectives), in
which most of the individual decisions are not
independent. In such cases, there is no a priori best
strategy for a single player since the outcome of a
game depends on others. This was the focus of B.
Arthur (1994), who introduced a coordination
game called the El Farol Bar Problem (EFBP), later
generalized by Challet and Zhang (1997). The
interest in simulating minority games is explained
by the fact that they resemble binary decisions that
happen in our daily lives, such as route choice in
traffic, sell-or-buy stocks, and others. Given that
these scenarios are inherently distributed, they are
appealing candidates for ABMS. Another popular
subject in ABMS has been the simulation of the
prisoner’s dilemma (for example, Epstein [2007],
chapter 9). 

Applications in Traffic Simulation 
In traffic-related simulation, ABMS’s advantage is
manifold. First, it is able to capture necessary
details at entity level as well as to reproduce the
bottom-up way of generating phenomena as real
traffic participants do. Second, it enables modeling
of complex decision making considering multiple
factors and dynamic information (including learn-
ing and en route adaptive behavior). Third, the
behavior of individual drivers or platoons of vehi-
cles can be visualized, monitored, and validated,
thus facilitating testing and debugging. Fourth,
ABS supports complex travel decisions on different
levels of granularity in space and time. Finally, one
of the major advantages of ABMS is its ability to
handle heterogeneity or idiosyncrasies at the level
of individual agents. This can be used, for exam-
ple, to model individual drivers’ behavior. In route
choice scenarios in particular, essentially, each
driver has a strategy to pick the best route. Howev-
er, commuting increasingly depends on informa-
tion broadcast, which can have a serious impact on
stability of traffic conditions (Wahle et al. 2000).
Thus ABMS is an important tool in understanding
such impacts. 

On the other hand, traffic simulation poses
interesting challenges to ABMS, concerning mod-
eling and design of interaction among
autonomous decision-making agents, as well as
between an agent and its (complex, dynamic) envi-
ronment. Traffic simulation is also interesting from
a methodological point of view, by dealing with
the necessary level of detail and required knowl-
edge, and by integrating the different levels of
abstraction present in traffic systems. 

In the remainder of this section, examples of

case studies in this domain are discussed. Becausse
of lack of space we restrict ourselves to simulation
of demand assignment (for example, route choice)
but remark that ABMS has been used in several cas-
es related to simulation of traffic flow, control (for
example, using traffic lights), management, testing
new paradigms, air-traffic control, and pedestrian
and crowd simulation. Practically all these works
were implemented using some kind of general-pur-
pose simulation tool such as MASON as in Balan
and Luke (2006), or SeSAm as in the works by Baz-
zan and Klügl. Some have developed and used spe-
cific traffic simulation tools such as MATSim
(Balmer et al. 2008), DRACULA (Rossetti et al.
2002), and ITSUMO (Bazzan, Oliveira, and Silva
2010) to investigate issues that are well related to
multiagent system such as multiagent learning
(Bazzan 2009; Desjardins, Laumonier, and Chaib-
draa 2009). Finally, some use standard object-ori-
ented languages to construct simulators to test new
management and control paradigms such as the
reservation-based approach by Dresner and Stone
(2004) or the market-based one (Vasirani and
Ossowski 2011). 

Travel Demand Generation
Determining the travel demand is normally the
first phase in traffic simulation. The output is the
number of trips from a given origin to a given des-
tination. Determining travel demand is tradition-
ally a data-driven activity based on demographic
data and interviews, statistics on workplaces and
households, car ownership, and others. Whereas
this kind of trip-based approach prevailed in the
past, agent-based approaches are mostly related to
activities (activity-based approach). Here, the daily
schedule of a typical human that belongs to a par-
ticular behavior class is reproduced. It consists of
activities that happen in particular locations, and
trips that cause location changes. Origin, destina-
tion, and also departure time are determined based
on the respective activity/trip. Here, the motiva-
tions for using agents are manifold: the ability to
represent complex socioeconomic properties and
other sources of heterogeneity; individual adapta-
tion and learning of daily plans; integration of oth-
er levels of decision making such as mode and
route choice. Therefore it is not surprising that a
number of works use ABMS for travel demand
studies. 

The research team led by Arentze and Timmer-
mans has developed activity-based models for
demand generation grounded on existing theories
in psychology and economics. In Arentze and Tim-
mermans (2005) the use of Bayesian networks is
proposed for developing a model of mental maps
as an individual representation of the user’s envi-
ronment, which typically contains incomplete and
incorrect information. Rindsfüser, Klügl, and
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Freudenstein (2004) proposed a model of an intel-
ligent agent for adapting a daily activity schedule
with respect to external events. Starting from the
definition of a habitual daily program as a coarse
pattern, this pattern is extended and adapted on
demand, as a reaction to the traffic situation and
nonhabitual activities. While this tool works as a
first prototype, MATSim (Balmer et al. 2008),9 has
produced positive outcomes in large-scale cases, as
for instance the simulation of a full day of traffic in
the complete Zürich area. In MATSim each agent
possesses a set of complete daily schedules, includ-
ing details of the route choice. Schedules of all
agents are simulated, evaluated, and optimized by
means of genetic algorithms for adapting the
plans. 

Traffic-Related Choice Processes
A number of publications suggest the application
of ABMS to different travel-related choice process-
es such as route and mode choice. Agent-based
approaches seem to be particularly relevant when
networks are dynamic or when dynamic informa-
tion is available. In the following we present a
number of works that illustrate the use of ABMS
especially applied to choices regarding traffic
(mode, route, departure time, and others.), focus-
ing on case studies that aim at determining the
influence of providing information to drivers (by
broadcast, embedded devices, or Internet) on their
behaviors. These fit mainly two categories: the sce-
nario is abstracted using metaphors from game
theory, or the choices occur in more fine-grained
scenarios. We start with the former. 

Abstract scenarios are mostly inspired by con-
gestion or minority games. The basic idea is that
agents have to decide simultaneously between two
or more routes; those that select the less crowded
one receive a higher reward. Agents’ repeated deci-
sion making is coupled to some adaptation or
learning strategy so that the next choice is adapt-
ed to the reward feedback. Based on this, the user
equilibrium may be reached, which means that no
agent can improve its reward by switching routes
without worsening any other agent. Examples of
such abstract two-route scenarios can be found in
Klügl and Bazzan (2004) and in Chmura and Pitz
(2007). In both cases, reinforcement learning is
used to let agents learn which route to take. The
reward is aligned with the global goal (balanced
use of both roads) so that the theoretical equilibri-
um is reached. However, and more significantly,
both were validated against data coming from lab-
oratory experiments conducted to analyze the
behavior and the learning schemes used by sub-
jects in a commuting scenario, and both were able
to reproduce the general pattern of route choices
made by those subjects. Going beyond the labora-
tory experiments, Klügl and Bazzan (2004) have

tested the effects of adding a second phase in deci-
sion making by the agents. In this, the initial deci-
sion acts as input to a computation that yields a
forecast, which is then forwarded to all or part of
the agents. Thus, the agents not only learn about
selecting a route in the first phase, but also how to
evaluate the information received in the second
phase. One important result of this study was that
a certain share of agents that ignore traffic forecasts
turned out to be necessary for an efficient agent
adaptation. This has consequences, for instance,
for the deployment of route-guidance devices such
as those that come with navigation systems: infor-
mation must be given in a very selective or per-
sonalized way. Departing from simple two-route
scenarios, Bazzan and Klügl (2005) showed that
providing information can be also useful in the
context of the Braess paradox (adding a new link in
the network may actually end up increasing the
travel time for everyone). 

In these game-theoretic scenarios, the reward of
agents when selecting a route is calculated by an
abstract function that considers the number of all
agents that selected that alternative. This is a very
abstract view and does not resemble the actual
dynamics of traffic situations. Therefore it is only
useful in coarse-grained studies such as pretrip
route choice. Objectives such as finding the appro-
priate form of information that leads to equilibri-
um states cannot be accomplished with such
abstract scenarios. Therefore we next discuss works
that were implemented in a less abstracted level. 

With the same goal as Klügl and Bazzan (2004),
but departing from a two-route choice, Yamashita
and Kurumatami (2009) have proposed a coopera-
tive car navigation system with route information
sharing, in which each vehicle transmits its current
position, destination, and route to a route infor-
mation server. This estimates future traffic conges-
tion using the current congestion information.
Estimates are then fed back to each vehicle, which
uses this estimation to replan its route. 

Classical simulation tools from transportation
engineering have also been used, combined with
techniques from AI and multiagent systems. Pan-
wei and Dia (2006) use a fuzzy neural architecture
where socioeconomic parameters are represented
as fuzzy variables for simulating decision making
about whether or not to keep their initial route
decision when new information is available. This
extends previous works by the group, which were
based on a BDI agent architecture. A BDI architec-
ture was previously used in Rossetti et al. (2002) —
here implemented in Agentspeak(L) — to extend
the DRACULA simulator, and to compare decision
making in situations using no information, using
information given only before the start of the trav-
el, and using information given both before and
during the travel. 
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Of course the increase in complexity regarding
the architecture of the agents raises the issue that
creating explicitly layered agent architectures for
modeling drivers in traffic simulations is a natural
extension. Therefore this also appears in Burmeis-
ter, Doormann, and Matylis (1997), one of the first
agent architectures for traffic simulation; in Ehlert
and Rothkrantz (2001) for individual driving
styles; in Bazzan, Wahle, and Klügl (1999), which
combines a BDI-based layer for route choice with a
reactive layer for actual driving; in Balmer et al.
(2004), which combines physical mobility and
mental decision-making layers; and in DesJardins,
Laumonier, and Chaib-draa (2009), combining an
action layer for vehicle control actions and a coor-
dination layer for action choice. 

Challenges for the Future 
As stated in the previously mentioned article from
The Economist, there are alternatives to economic
models based on dynamic stochastic general equi-
librium. For instance, Farmer and Axtell have pro-
posed the construction of an immense agent-based
model of the entire global economy. Similar con-
siderations apply for modeling global pandemics
and their possible containments as suggested by
Epstein (2009). This could be accomplished by one
or both of the following measures. First, an enor-
mous simulation effort could be set, fed by a mas-
sive, real-time amount of data. Second, there could
be a suite of agent-based models, each projecting a
possible future. 

In both cases central issues that arise are: where
the data would come from; how to guarantee
anonymity; validation; how to handle distribution
(of data and processes) and combine models.
Regarding the latter, although there is a lot of work
carried out in the area of general distributed simu-
lation, the combination of different agent-based
models developed by different authors as well as
their simulation in a massively distributed setup
has still to be solved for realistic models. Capturing
complex large-scale phenomena can also be sup-
ported by new hybrid modeling approaches com-
bining partial models on multiple levels of aggre-
gation or detail. Different modules could use
different modeling paradigms, as for instance the
combination of an agent-based approach (to deal
with the parts where many details have to be cap-
tured), with a macroscopic approach (to cover
parts where the spatial dynamics or heterogeneity
are not relevant for the simulated scenario under
investigation). There are specific models, such as
the one described by Lepagnot and Hutzler (2009),
that combine multiple paradigms. Yet for a gener-
al applicability, a great deal of research has still to
be done. For this purpose, the simulation of traffic-
related systems offers great potential for the com-

binations of paradigms just mentioned, since
many different methodologies have been success-
fully employed to parts of each component of such
a system. A vision would be to have a library of
building blocks, each of them capturing a partial
model of a particular agent group, a particular
environmental model, or just one specific agent, or
even an activity. The development of such a library
was recently mentioned in a wish list for the future
of ABMS (Hamill 2010). 

For large-scale agent-based models to turn into
reality, massive amounts of data sets for input and
empirical validation are necessary. Hence, new
techniques for gathering such data have to be
developed and applied. In the case of traffic simu-
lation for example, this starts to be reality with GPS
and other mobile devices for route tracking. Also,
participatory simulation approaches involving
stakeholders and experts into an ongoing simula-
tion may be further developed toward new valida-
tion techniques resulting in more reliable and
believable models. 

As more and more researchers from the area of
agent-oriented software engineering become inter-
ested in simulation applications, we expect also a
methodological advance for ABMS in the future.
This includes all steps from a precise formulation of
the simulation objective to automatic generation of
model documentation. However, for really being
able to provide useful methodological support, the
modeling process per se has to be better under-
stood. Because of the generative, bottom-up nature
of ABMS, emerging processes are a challenge that is
often addressed by trial and error. Teaching ABMS
should not be restricted to teaching how to use a
particular tool or program in a particular language.
Thus, Hamill (2010) identifies the availability of
easy-to-use tools as one of the key challenges for
the next 15 years. In addition to the previously
mentioned building blocks, she sees the necessity
for convincing models that are useful not only for
research, but also in practice, as one of the great
issues behind the development of ABMS as an
established modeling and simulation paradigm. 
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Notes 
1. jasss.soc.surrey.ac.uk .

2. www.swarm.org/index.php/Swarm main page.

3. www.repast.sourceforge.net. 

4. www.simsesam.org.

5. cs.gmu.edu/~eclab/projects/mason. 

6. ccl.northwestern.edu/netlogo. 
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7. see, for example, www.agent-based-models.com/blog/
resources/simulators and www2.econ.iastate. edu/tesfat-
si/acecode.htm. 

8. www.economist.com/node/16636121. 

9. www.matsim.org.
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