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Agent-Based Modeling for Scale Evolution of Plug-In 
Electric Vehicles and Charging Demand 

 

Wei Yang, Junyong Liu, Yue Xiang, Chenghong Gu 
 
 

Abstract—Scale evolution pattern recognition f plug-in electric 
vehicles (PEVs) and charging demand modeling are essential for 
various involved sectors to promote PEV proliferation and 
integration into power systems. Considering that the market 
penetration development of PEVs will drive the evolution of 
charging demand, an integrated dynamic framework based on 
agent-based modeling technology is proposed in the paper by 
combining scale evolution model with charging demand model. 
Heterogeneous consumers presenting different preferences in 
making vehicle purchase decisions and the interactions with other 
consumers via social dynamics are taken into consideration in the 
scale evolution model. The driving patterns, charging behavior 
habits, and charging strategies are systematically incorporated 
into the charging demand model. Case studies demonstrate the 
feasibility and effectiveness of the proposed methodology. 
Furthermore, the factors that affect the market evolution of PEVs 
and the charging demand are also simulated and analyzed. 

Keywords—plug-in electric vehicle; charging demand; scale 
evolution; agent-based modeling 

I. INTRODUCTION 
Transportation electrification has been regarded as one of the 

most promising solutions for petroleum consumption reduction 
and environment protection because of the benefits associated 
with plug-in electric vehicles (PEVs). However, as an emerging 
industry, there are still significant barriers to widespread 
adoption of the new electrical vehicle technology, from both 
social and technical aspects [1]. On the other hand, the charging 
demand of PEVs is an additional burden on the power system, 
and the safety and reliability of power systems will be 
challenged with a large population of PEVs plugged in 
simultaneously [2]-[3]. In order to promote the proliferation of 
electric vehicles and friendly integrating PEVs into power 
systems, the scale evolution patterns of PEVs and charging 
demand profiles need to be analysed. It is also the essential 
foundational issue for charging electricity network planning 
and evaluating the impacts on power systems. These two issues 
are also interacting, and specifically, the scale evolution of 
PEVs will drive charging demand to evolve over time. 

The PEVs diffusion pattern is so sophisticated to be 
accurately captured, as it is a long-term dynamic process jointly 
influenced by various factors, such as products attributes, 
consumers’ preferences, policy incentives and social dynamics. 

In addition, at the early stage of PEVs development, the lack of 
precedent scale information is another challenge. Despite of 
these challenges, several studies have been conducted to 
address the issue [4]. The well-known Bass model was adopted 
in [5]-[6] to predict the scale of electric vehicles under the 
assumption that the social network is fully connected and 
homogenous. Gompertz growth and Logistic models were used 
in [7] to forecast the adoption rate of hybrid electric vehicles in 
the UK, where the life cycle net cost of technologies has taken 
into consideration. Considering the interactive and complicated 
relationship between different influence factors, the system 
dynamics approach was introduced in [8] for electric vehicle 
scale forecasting through modeling the multiple feedback loops 
of multivariable nonlinear systems. In general, the modeling 
techniques used by these models can be categorized as 
aggregated top-down model, which models the innovation 
diffusion procedure at macro market level without considering 
the heterogeneity of each consumer.  

By contrast, the agent-based modeling (ABM) technique 
describes the automobile market by modeling consumers’ 
vehicle purchasing behaviors at an individual level [4], [9]. The 
ABM holds the philosophy that macro-level patterns emerge 
with the aggregation of micro-level behavior of individuals and 
their interactions and thus it is convenient to integrate 
individual characteristics, needs, preferences and social 
networks. Hence, ABM has drawn increasing attention in the 
innovation diffusion field [10]. A probabilistic multi-agent 
model was constructed in [11] for studying people’s willingness 
to buy electric vehicles based on a limited number of relevant 
questionnaires. In [12], an agent-based model was developed to 
study the market share evolution of passenger vehicles in 
Iceland. The vehicles compete for market penetration through a 
vehicle choice algorithm that accounts for social influences and 
consumers' attractiveness for vehicle attributes. A spatially 
explicit agent-based vehicle consumer choice model was 
designed in [13] to explore sensitivities and nonlinear 
interactions between various potential influences on plug-in 
hybrid vehicle market penetration.  

As for the charging demand of PEVs, numerous studies have 
been conducted and various techniques have been adopted to 
deal with the properties of charging demand profiles. In [14]-
[15], based on the probability density functions (PDFs) of 
driving patterns derived from travel statistics, Monte Carlo 
Simulation was conducted to model the stochastic charging 
load. Besides, fuzzy-logic inference systems were designed in 
[16]-[17] to emulate the decision-making processes of charging 
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and characterize the charging behavior of drivers. Furthermore, 
a stochastic model for charging behavior of EVs was 
established in [18] based on non-homogeneous semi-Markov 
processes. In addition, queuing theory was widely employed in 
[19]-[21] to describe the charging behavior of multiple PEVs in 
charging station and residential community. In addition, 
various charging strategies were proposed in [22]-[25] to 
alleviate the adverse impact due to PEVs integration on the 
power system through changing charging load profiles. 
However, few studies have considered the scale evolution 
pattern of PEVs when modeling charging demand, which is 
inadequate for long-term implementation as charging demand 
dynamically evolves with the development of PEVs. Hence, it 
is necessary to study the charging demand characteristics from 
the perspective of evolution. 

To effectively understand and quantify the interdependent 
relationship between PEVs scale and charging demand, an 
integrated dynamic framework combing scale evolution model 
and charging demand model is proposed in this paper. 
Individual agents are used to emulate consumers’ vehicle 
purchasing decision processes in the scale evolution model. In 
the model, the annual total cost of ownership, technology 
maturity, social effect, environment benefits and the charging 
infrastructure deployment are incorporated in the choice 
algorithm. Additionally, consumer daily driving patterns, PEVs 
drivers’ charging behavior habits, and the charging strategies 
are taken into consideration in the charging demand model. 

The rest of this paper is organized as follows: In Section II, 
the integrated framework of the proposed model is presented. 
The scale evolution model is proposed in Section III. The 
charging behavior model and charging strategies are developed 
in Section IV. In Section V, case studies are performed and 
analyzed. Finally, conclusions are given in Section VI. 

II. FRAMEWORK OF PROPOSED MODEL 
Considering the interactive relationship between PEVs scale 

and charging demand, the integrated analytic framework 
proposed in this paper is depicted in Fig. 1. 
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Fig. 1 Integrated analytic framework of the proposed model  

At the upper level , the associated attributes for consumer 
agents of the study area are obtained according to demographic 
information, including current vehicle states, consumer 
preferences, typical years of car ownership, annual vehicle miles 
travelled, et al. Then, synthetic heterogeneous consumer agents 
are created to act vehicle purchasing behavior under the 
condition of  known vehicle attributes and policy environment, 
with the interaction between consumers considered. Finally, the 
market evolution of PEVs can be achieved through aggregating 

each of agents purchasing decisions each year. at the lower level, 
after the scale of PEVs is obtained from previous procedures, 
the synthetic driving profiles of all PEV drivers are generated 
with Monte Carlo simulation based on travel statistics. In 
addition, the charging rules according to different charging 
strategies are set to model the charging behavior of each PEV 
agent. Finally, by aggregating all PEVs’ charging demand in the 
district, the charging demand profiles can be obtained. The 
simulations can be implemented over time to explore the long-
term evolution patterns.  

III. SCALE EVOLUTION MODEL OF PEVS 

A. Consumer behaviour modeling 
The purchase decision model of consumer agents is 

demonstrated in Fig. 2. Each individual consumer agent has its 
own personality traits towards products, which are mainly 
determined by socio-demographic attributes, such as income, 
education level and social status [26]. Consumers are 
heterogeneous with respect to their preferences and purchase 
decisions. For example, agents with low income are more 
sensitive to product price, whereas, agents with higher income 
might be less sensitive price but more concerned with 
performance. According to consumer behavior theory, after 
need recognition, consumer agents would comprehensively 
evaluate all the products available under the current decision 
environment to decide which product to choose. Here, the 
interactions with reference groups should also be taken into 
consideration, such as the recommendation of friends and 
neighbours. The assessment criteria and selection methodology 
will be  specified in the following subsection. 
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Fig. 2 The purchase decision model  

B. Consumer choice probability 
The involvement of consumers when buying durable product 

like vehicles is always relatively high due to high costs. Apart 
from cost-benefit analysis and performance evaluation, many 
factors play a role in buying decisions for prospective 
consumers, particularly attributes attached with vehicles, such 
as environment benefits. Additionally, as discussed previously, 
the purchasing behavior of other consumers will also affect the 
final decision due to social dynamics and peer effect. By taking 
various factors into consideration, the comprehensive utility for 
consumers purchasing different vehicle options is formulated as:  



C T S E
ij i ij i ij i ij i ijU U U U Uα β γ δ= + + +          (1) 

Where, Uij denotes the utility of purchasing vehicle j by 
consumer agent i; C

ijU , T
ijU , S

ijU  and E
ijU  are the economical 

utility, technological utility, social utility and environmental 
utility of purchasing vehicle j by consumer i, respectively; and 
α, β, γ, δ are consumer preferences for each attribute. 
(1) Economical utility 

The annual total cost of ownership is adopted to evaluate the 
economic potential of each alternative, which consists of the 
discounted cash-flow of capital expenditure Cinv and annual 
operating expenditure Cope [27]-[28]. It is formulated as 
follows: 
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Where, CaTCO is the annual total cost of ownership of evaluated 
vehicle by consumer agent i; Pveh, Tpur and Ssub are the vehicle 
retail price, purchase tax and subsidy provided by government, 
respectively; RV is the resale value considering the annual 
depreciation rate rdep after T years; the annual operating cost 
includes energy consumption cost Cenergy, maintenance cost Cm, 
use tax Tuse as well as insurance cost CIs; re is the energy 
consumption rate of the vehicle (L/100km or kWh/100km), Pe 
is the energy price (CHY/L or CHY/kWh), Dveh is the annual 
distance traveled by the vehicle; and the insurance cost is 
calculated according to empirical formula (7), kIs is used to 
represent the effect of non-mandatory part and discount. 

The economical utility of purchasing vehicle j by consumer 
i is defined as   

{ }
{ }
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Where, 
a TCO
jC  is the annual total cost of owning vehicle j by 

consumer i. 
(2) Technological utility 

Due to lack of actual statistics about PEVs and  its rapid 
development pace, the technological maturity is used as a 
comprehensive indicator for reflecting vehicle performance 
instead of various specific attributes, such as acceleration, 
capacity, etc. Conventional internal combustion engine (ICE) 
vehicle technologies have been tested for many years and thus 
the technological utility of ICE is set as 1. According to the 
basic chemical and physical laws, the more close to the limit, 
the longer it is required to improve the technology level. Thus, 
the logistic growth curve model is used to describe the 
evolution pattern of electric vehicle technology maturity, which 
is formulated as: 

1
1 t

T
bU

ae−=
+

                   (9) 

Where, a and b are the parameters. 
(3) Social utility 

As stated before, consumers are linked with reference groups 
through the social network, and the purchase 3ehaviour of 
friends or neighbours are valued when making the purchase 
decisions. Thus, social utility is presented to reflect the “peer 
effect”, which is defined as the vehicle penetration within 
reference groups: 
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Where, Ki is the number of agents linked with agent i in social 
network; N is the total number of agents; A is the adjacency 
matrix indicating the relationship among agents, if agent i links 
with agent k, then Aik=1, else Aik=0; x represents the adoption 
status, if agent k adopts vehicle j, then xkj=1, else xkj=1. A small-
world network is generated randomly according to the method 
in [29], which is used to describe the connection relation. 
(4) Environmental utility 

As environmental friendly innovative products, electric cars 
have significant non-monetary value advantages compared to 
conventional cars. Some users are willing to pay a premium for 
these positive attributes of PEV, which can be reflected in a 
willingness-to-pay-more (WTPM) manner [27]. According to 
Rogers’ “Diffusion of Innovations”, different adopter groups in 
the adoption of PEVs can be characterized, e.g. innovators, 
early adopters, majority and laggards. The empirical value of 
WTPM for each group can be obtained through survey. In this 
paper, the environmental utility is presented to describe this 
aspect, and the environmental utility of PEVs is set as 1 due to 
zero emissions while operation. The environmental utility of 
ICE is formulated as: 

1 WTPMEU = −                 (11) 
(5) Recharging effect 

The imperfection of charging facilities and relatively low 
range are important factors constraining the development of 
electric vehicles. Thus, the charging convenience index is 
constructed to indicate the recharging effect during purchase 
behaviors. It is determined by the installation of household 
charging facilities, the configuration of public charging 
facilities, the average daily driving distance of users and the 
range of electric vehicles, expressed as: 

( )1 h cdr e
L

ε− += − ×                (12) 

Where, r is the charging convenience; d is daily driving 
distance; L is the battery range of PEV; h is the difficulty factor 
of household charging facility installation; c is the coverage of 
public charging facilities; ε is scaling parameter.  
(6) Consumer choice probability 

Based on the multinomial Logit (MNL) model framework 
[12], the consumer choice probability is developed in this paper 
by incorporating all factors that affect consumers’ vehicle 
purchase behavior described in previous sections. The purchase 
probability of PEV by the consumer is presented in (13): 
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Where, UPEV and UICE are the utility of purchasing PEV and 
ICE options, respectively. 

C. Scale evolution modeling 
From the micro-level perspective, the market evolution of 

PEVs is mainly determined by consumers purchasing decisions 
each year, and hence ABM is adopted to model individual 
consumer with different attributes and preferences over vehicle 
purchasing behavior. The flowchart of the market evolution 
model is depicted in Fig. 3. 
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Fig. 3 Flowchart of the evolution model of PEVs 

The simulation procedures are detailed as follows: 
1) According to input datasets, generate the parameters of 

the market evolution model (e.g. consumer preference, 
innovation attitude, current vehicle condition and annual 
driving distance, etc.) and environmental parameters 
(e.g. technical development pattern, fuel price, subsidy, 
etc.). Program the electric vehicle evolution simulation 
systems, and create consumer agents of the first year. 

2) For each consumer agent, perform vehicle purchasing 
decision making processes including need recognition, 
information search, alternatives evaluation, purchase 

and post-purchase based on the theory of consumer 
behavior. The first-time buyer needs to purchase a new 
car, and if the current age of the vehicle is greater than 
its lifetime, then the consumer decides to purchase a new 
vehicle. Then search all relevant information for vehicle 
purchase. If PEV is not available this year or the 
perceived market share and the annual cost of PEV 
cannot satisfy the threshold, then the consumer will buy 
a conventional car. Otherwise, the utility of each vehicle 
and consumer choice probability is calculated, and the 
purchase behavior performs accordingly. 

3) Cumulate the stock of PEVs in this year. 
4) If it is the target year, then the evolution simulation is 

terminated and output results, update attributes of each 
consumer agent, such as the vehicle age, and create the 
increment consumer agents. Then go back to step 2) for 
the next year. 

IV. CHARGING BEHAVIOR MODEL  
It is noted that home charging is regarded as the most 

economical and convenient way for private consumers to charge 
their PEVs, which is mainly considered in this paper.  

A. Willingness to charge 
The charging habits of electric vehicle users are different, 

which can be divided into two categories: " charge after the trip" 
and "charge when needed". Assuming that the charging behavior 
habits among users are independent from each other, then the 
charging behavior habit of an electric vehicle cluster 
approximately obeys the binomial distribution B(n, p), where p 
is the probability of generating charging intention at the end of 
travel, and n is the number of PEV users.  

Therefore, the willingness to charge their vehicles during the 
charging demand calculation process is determined through the 
following two steps: 1) Set the distribution probability of the 
PEV user cluster p, where p∈[0,1]; 2) For each PEV user, 
generate a random number R subjective to U(0, 1), when R≤p, 
the PEV user has the intention to charge after trip, namely W=1; 
when R>p, if the state of charge (SOC) of the PEV is lower than 
the threshold θ, the user produces the charging intention, that is 
W=1, otherwise, the user does not have the charge intention, 
namely W=0. 

B. Charging strategies 
Due to that the charging strategy will influence charging 

demand profile dramatically, different charging strategies are 
presented. 

(1) Dual charging 
In this strategy, the charging process of all PEVs starts with 

the rated charging power at the moment when arriving with 
charging intention till disconnected from the distribution 
network or the SOCs satisfy the expectations without any 
interruptions. 

(2) Time-of-Use pricing 
Considering the guidance of time-of-use (TOU) charging 

prices, PEV users will try to charge when the price is relatively 



low to improve economy. The objective is to make the following 
optimization decision: 

dep
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( )={ 0, }P t P                       (16) 
Where, Δt is time interval, P(t) is charging power at time t, 

ρ(t) is charging price at time t, P  is the rated charging power, 
tdep is departure time, tarr is arriving time, Sexp is the expectation 
SOC of PEV users. 

(3) Distributed smart charging 
A distributed charging management framework for the PEVs 

is developed to smooth load curves, which is shown in Fig. 4. 
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Fig. 4 Structure of the distributed charging strategy 

Regional system operator agent (RSOA) will update the 
charging price signals during each round after receiving all of 
the charging schedules of electric vehicle agents (EVA). Then it 
will send it back to each EVA for updating their charging 
schedules again, till an equilibrium has been achieved. It is noted 
that the price signal is not the charge price for electricity bill 
settlement, but a virtual control signal associated with the 
regional load consisting of conventional load and charging 
demand. The price signal is formulated as: 

max
1

( ) ( ) ( )
N

i
i

t k D t P t Pγ
=

 = +  
∑                (17) 
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N

i
i

P D t P t
=

+ ∑                  (18) 

Where, D(t) is the conventional load at time t, Pi(t) is the 
charging schedule of EVA_i, N is the scale of PEVs, k is a 
positive parameter. 

It can be seen that the price signal is influenced by 
charging behavior of all electric car users, indicating that PEV 
users compete for the limited low-price energy resources. 
Hence, the charging behavior of other users need to be 
considered in each round of bidding decisions of EVA. After 
receiving relevant information (price signal, the average value 
of the charging plans), EVA updates its charge plan through the 
following optimization model aiming at minimizing the charge 
cost and deviation from mass behavior [25]:  
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C. Charging demand modeling 
The flowchart of charging demand calculation under home 

charging scenarios is depicted in Fig. 5.   
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Fig.5  Flowchart of charging demand calculation 

1) Obtain PEV scale information in the y-th year, generate 
and assign driving profiles to each PEV according to travel 
statistics, including arriving time, departure time and daily 
distance travelled [30]. 

2) For each PEV agent, perform the charging behavior. 
Firstly, calculate SOC when arriving home: 

( )= ( )arr dep
mS t S t
L

−                  (24) 

Where, m is the daily traveling distance . 
Then, if it has the intention to charge, search the relevant 

information and charge the PEV according to charging 
strategies with charging power P(t), and the state transition 
equation of each PEV is: 

( )( 1) ( ) P t tS t S t
B

η ∆
+ = +                 (25) 

Where, η is the charging efficiency, B is the battery capacity. 
3) Cumulate charging demand in the study area. 
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4) If it is the target year, terminate and output the 
results otherwise continue to simulate for the next year. 

 

V. CASE STUDY  

A. Parameters setting 
An urban area is taken as an example to verify the proposed 

model through simulating the evolution patterns of PEVs as 
well as the charging demand during 20 years. The effect of 
various impact factors are also analyzed. The basic parameters 
are set as follows according to regional statistical yearbook and 
other related statistical data: the number of households in this 
area is 87726, and there are 52635 vehicles consisting of 99% 
ICE and 1% PEV in the base year, the growth rate of vehicle 
scale is =0.15-0.012tλ till achieving saturated state. The 
annual depreciation rate of ICE and PEV are set as constants 
rdep=20%, discount rate p=6%, annual vehicle kilometers 
traveled is subject to normal distribution N(12000, 30002), and 
the vehicle lifetime is set as 10 years. The percentage 
distribution of vehicle age is {0.2, 0.15, 0.13, 0.12, 0.1, 0.08, 
0.07, 0.05, 0.05, 0.05} in the base year. The basic information 
of ICE and counterpart PEVs are shown in Tab. 1. 

TAB. 1 BASIC INFORMATION OF VEHICLES 
ICE PEV 

Displacement 
(L) 

Tuse 
(CNY/year) 

Pveh 

(CNY)  
re 

(L/100km) 
Percentage 

(%) 
L 

(100km) 
B 

(kWh) 

Below 1 180 4~6 5~7 3.07 1.2~1.5 10~16 
1.0~1.6 360 6~10 6~10 20.81 1.5~2 16~30 
1.6~2.0 420 10~15 7~12 37.43 2~2.5 30~35 
2.0~2.5 720 15~40 8~15 26.97 2.5~3 35~45 
2.5~3.0 1800 40~80 9~18 10.06 3~4 45~60 
3.0~4.0 3000 

80~200 12~20 1.66 4~6 60~100 
Above 4.0 4500 

The consumer preferences are set based on the results of the 
user preference parameter identification in [12] and [31] 
through survey based methodologies. Due to the limitations of 
battery technologies, the retail prices of PEVs are about twice 
the price of a conventional car of the same class in the base year, 
but the price difference will gradually reduce with the 
breakthrough of technologies and scale effect. The electricity 
price is set as 0.8 Yuan/kWh, and gas price in base year is 6 
Yuan/L. The purchase tax for conventional cars is 1/11.7 of the 
retail price, but the electric vehicles are exempt from purchase 
taxes. The subsidy for promoting PEVs is shown in Tab. 2. 

TAB. 2 SUBSIDY FOR PROMOTING ELECTRIC PASSENGER CARS 
Battery range R /km 100≤R＜150 150≤R＜250 R≥250 

National subsidy (CNY) 25,000 45,000 55,000 
Local subsidy (CNY) 25,000 45,000 55,000 
The expectation SOC of the PEVs are set as 0.9, the charging 

efficiency is 0.9, and typical rated charging power P is set as 
{2.2kW, 3.6kW, 6.6kW, 8.8kW}. The conventional load curve 
of the studied area is depicted in Fig. 6, and the maximum load 
is 0.35GW with an annual growth rate 3%. 

 
Fig. 6 Conventional load profile of residential area 

B. PEVs scale evolution analysis 
As the gasoline price, retail price as well as policy incentives 

are important exogenous baseline factors that construct the 
environment for consumers to make purchase decisions, three 
different scenarios are defined as follows: 

Optimistic scenario: the gasoline price increases with annual 
growth rate 6%, the retail price difference reduces 10% every 
year and the subsidy for PEVs decline 10% annually. 

Medium scenario: the gasoline price increases with annual 
growth rate 3%, the retail price difference reduces 8% every 
year and the subsidy for PEVs decline 15% annually. 

Pessimistic scenario: the gasoline price increases with annual 
growth rate 1%, the retail price difference reduces 5% every 
year and the subsidy for PEVs decline 20% annually. 

(1) PEVs scale evolution patterns  
The scale evolution patterns of PEV and ICE during 20 years 

under three different scenarios, as well as the total population 
of vehicles are shown in Fig. 7. Overall， it can be seen that 
the scale of PEV increases continuously over time with factors 
favoring PEV evolving and the consumers acceptance for PEV 
improving, while the population of ICE increases at first but 
declines gradually due to more and more consumers choosing 
PEV instead of ICE after a period of time. And the evolution 
pattern of PEV under optimistic scenario is a kind of S curve 
complying with the general rule of innovation diffusion, which 
illustrates the rationality of the model to a certain extent.  

 
(a) Evolution pattern of PEV    (b) Evolution pattern of ICE 
Fig.7 Scale evolution of vehicles under different scenarios  

Although the vehicles evolution trends in different scenarios 
consistent, but the specific shape does show a big difference. 
Specifically, under the optimistic scenario, the penetration of 
PEV increases slowly in the first 5 years due to technology 
immaturity, imperfect charging infrastructure deployment as 
well as low consumer recognition. With the improvement of 
these factors, the PEV scale steps into rapid development stage 
after 5th year, and the underline driving force can be explained 
as: the rising gasoline price, decreasing PEV price and the 
maturing technology make PEV competitive compared with 
ICE for consumers, and in turn the social utility of PEV 



increases with the growing number of PEV adopters, hence the 
growth rate of PEV adoption exaggerates further, which can be 
seen as a positive feedback system. Regarding ICE, the scale of 
ICE grows until the 9th year and shrinks thereafter under 
optimistic scenario, which will be exceed by the scale of PEVs 
around the 16th year. And the penetration of PEVs is almost 
80.3% in the 20th year under this scenario. However, under 
medium scenario, the scale of PEV takes off after 7th year, and 
the population of ICE begin to shrink at 11th year, and 45.1% of 
the vehicles are PEV in the 20th year. Furthermore, the scale of 
PEVs increases rapidly after 10th year, and the penetration of 
PEVs is only 16.6% in 20th year.  

(2) Influencing factors analysis  
For analysis the impact of various factors on PEV diffusion 

pattern, different parameters are set accordingly, and the 
simulation results are shown in Fig. 8. It can be seen from Fig. 
8 (a) that the scale of PEV grows relatively slow during 20 years 
without subsidy for PEV compared with medium scenario and 
constant subsidy. Therefore, the incentive policy is vital to 
cultivate the initial PEV market, which can bring more early 
adopters for PEV through compensating the higher price. 
However, the impact power of subsidy would reduce gradually, 
and the growth of PEV scale can be sustain itself when a certain 
number of PEV adopters exist. In addition, Fig. 8 (b) 
demonstrates the effect of range anxiety and social dynamics. 
It is obvious that the recharging effect is a great barrier for the 
development of PEV, and it is important to reasonably deploy 
charging facilities to alleviate this defection. Furthermore, by 
comparing the evolution pattern of PEV without considering 
social utility and the diffusion pattern under medium scenario, it 
shows that social utility would exacerbate market inertia, 
indicating that the impact of social factors cannot be ignored 
during innovation diffusion process. 

 
(a) Influence of policies   (b) Influence of social and charging factors 

Fig.8 Scale evolution of PEV with different parameters 

C. Charging demand analysis 
For evaluating the potential impacts on power systems due to 

PEVs integration from long-term, two indicators are presented, 
i.e. the ratio of daily electrical energy demand of PEV to 
conventional load (RED) and the ratio of maximum charging 
power with conventional load power (RCP). The simulation 
results of these two indicators during 20 years under different 
scenarios are illustrated in Fig. 9. It can be seen from fig. 9(a) 
that the evolution trends of RED are similar with the scale 
evolution patterns of PEV and the impacts of PEV integration 
from energy perspective are not that severe, as the RED is just 
0.05% in the base year, and 5.7% in the 20th year even under 
optimistic scenario. However, the impacts of PEV from power 
perspective are much more obvious due to the overlapping 

effect between charging peak and conventional demand peak, 
and the values of RCP grow to 25.9%, 15.6% and 5.2% in 20th 
year from 2.9% in base year under optimistic, medium and 
pessimistic scenarios, respectively. Thus, with the development 
of PEVs, the charging demand becomes non-ignorable and will 
challenge the planning and operation of power system, and the 
charging service network and power distribution network need 
to be rationally planned and constructed to accommodate the 
evolution of PEVs 

 
(a) Evolution patterns of RED   (b) Evolution patterns of RCP  

Fig.9 The potential impacts of PEVs integration under different scenarios 

As stated before, the charging behavior habit is an important 
factor affecting the charging demand characteristics, so different 
distribution probabilities are chosen and the charging demand 
curves with p=0, p=0.5 and p=1.0 under optimistic scenario are 
shown in Fig. 10. It can be seen that the charging peak is delayed 
and reduced with the decrease of p, due to more “charge when 
needed” users would reduce the charging coincidence factor. In 
addition, it also shows that the charging peak occurs around 
20:00 consistent with conventional load, which would amplify 
the negative impact. Hence, charging management strategies 
need to be deployed to friendly integrate a large population of 
PEVs into power system without violate the constraints. 

 
Fig.10 Charging demand under different behavior habits 

.  
Fig.11 Charging demand of PEVs with different charging strategies  

The charging demand of PEVs in 20th year with different 
charging strategies are shown in Fig. 11. As we can see that, the 
integration of charging demand will impact distribution system 
dramatically with dull charging and TOU pricing strategy, 
which will create new load peak, especially for the TOU pricing 
strategy, an sudden peak is observed due to users start to charge 
their PEV at the beginning of the valley price. However, the 
distributed charging strategy can accommodate PEVs friendly 



without any risk of violating the constraints of distribution 
system, and flatten the load profile to improve the operation 
efficiency of the distribution system. 

VI. CONCLUSION  
Considering the interactive relationships between PEVs 

scale and charging demand, an integrated dynamic framework is 
proposed in this paper to detect the possible evolution patterns 
of PEVs from a long-term perspective. Many factors affecting 
the evolution of PEVs, e.g. economy, social, environment and 
charging convenience, are incorporated into the vehicle choice 
model to emulate consumer vehicle purchase behavior. 
Furthermore, within the charging demand model, PEV users 
perform charging behavior according to different charging 
strategies, such as dull charging, TOU pricing guidance and 
distributed smart charging, and the effect of charging habit is 
also considered.  

Case studies demonstrate the feasibility of the proposed 
methodology, and a few conclusion can be obtained: 1) The 
scale of PEVs grows slowly in the early stage, while with the 
improvement of relevant factors, the growth rate will accelerate 
and PEVs have a tendency to gradually replace ICEs; 2) The 
incentive policy for PEVs is vital to cultivate the initial market, 
but the driving power of subsidy would reduce gradually as the 
growth of PEV scale; 3) Social dynamics would exacerbate the 
market inertia, which cannot be ignored during innovation 
diffusion process; 4) The charging demand is highly dependent 
on the scale evolution of PEVs, and the specific shape of 
charging load is determined by users habits and charging 
strategies; 5) The impact of electric vehicles on the power grid 
is mainly reflected by charging power demand instead of 
electrical energy requirement; 6) Proper charging strategies can 
alleviate the adverse impact due to PEVs integration and 
improve the operation efficiency of power systems.  
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