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Abstract:
This study provides a basic introduction to agent-based modeling (ABM) as a

powerful blend of classical and constructive mathematics, with a primary focus on

its applicability for social science research. The typical goals of ABM social science

researchers are discussed along with the culture-dish nature of their computer ex-

periments. The applicability of ABM for science more generally is also considered,

with special attention to physics. Finally, two distinct types of ABM applications

are summarized in order to illustrate concretely the duality of ABM: Real-world

systems can not only be simulated with verisimilitude using ABM; they can also be

efficiently and robustly designed and constructed on the basis of ABM principles.

1 Introduction

As in the physical sciences, theoretical modeling in the social sciences typically

entails the specification and analysis of parameterized systems of differential equa-

tions. Many critical insights have been obtained by social scientists using this pow-

erful classical mathematics approach.

Nevertheless, it is extremely difficult to capture physical, institutional, and be-

havioral aspects of social systems with empirical fidelity and still retain analytical
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tractability. Entities in social systems are neither infinitesimally small nor infinitely

many, nor are their identities or behaviors necessarily indistinguishable from one

another. Common simplifications, such as assumed homogeneous behaviors or the

existence of single representative agents, are thus problematic. Moreover, the social

sciences cannot separate observers from “the real world out there.” Rather, social

scientists must consider multiple observers in a continual co-evolving interaction

with each other and with their environment.

This leads us to question whether other forms of traditional mathematics, or even

new forms of mathematics, might better serve the purposes of social scientists. In

short, what is the “right” mathematics for the social sciences? Moreover, if a “right”

mathematics exists for the social sciences, what are the implications for the physical

sciences? And what can the social and physical sciences learn from each other?

As elaborated in Bridges (2009), constructive mathematics is distinguished from

classical mathematics by the strict interpretation of “there exists” (∃) as “we can

construct.” Classical mathematicans accept the law of the excluded middle (LEM):

For any proposition P, either P is true or its negation is true; there is no middle

ground that evades this decidability logic. Thus, classical mathematicians accept

existence proofs based on proof by contradiction: If the negation of P is not true,

then P must be true. In contrast, constructive mathematicians require a direct proof

that P is true in the form of a computational procedure in order to rule out both

the falseness and the undecidability of P. Constructive proofs can, in principle, be

realized as computer programs. Constructive mathematics thus embodies the fun-

damental concepts of information, and the limitations on knowledge, implied by

modern computability theory (Bridges 1999, Eberbach et al. 2004).

This distinction provides a dramatically different perspective on how we perceive

models in our mind in relation to the real-world systems they are intended to rep-

resent. For example, social system modelers using classical mathematics typically

assume (explicitly or implicitly) that all modeled decision makers share common

knowledge about an objective reality, even if there is no constructive way in which

these decision makers could attain this common knowledge. In contrast, social sys-

tem modelers advocating a constructive mathematics approach have argued that the

“reality” of each modeled decision maker ought to be limited to whatever that deci-

sion maker is able to compute (Velupillai 2010).

In this study we argue that Agent-Based Modeling (ABM) is an alternative and

potentially more appropriate form of mathematics for the social sciences. Roughly,

ABM is the computational modeling of systems as collections of autonomous inter-

acting entities. As will be clarified in subsequent sections, ABM is a powerful blend

of classical and constructive mathematical approaches.

Section 2 provides a basic introduction to the ABM methodology as an alterna-

tive form of mathematics, with a primary focus on its applicability for social science

research.1 Section 3 describes typical goals of ABM social science researchers and

1 Detailed discussions of the ABM methodology in relation to the social sciences can be found in
Epstein (2006), Gilbert (2007), Macy and Willer (2002), and Tesfatsion and Judd (2006). Anno-
tated pointers to on-line ABM readings, research groups, and software resources can be found in
Axelrod and Tesfatsion (2010) and Tesfatsion (2010a).
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the “culture-dish” nature of their computer experiments. It also provides pointers

to active ABM social science research areas. The applicability of ABM for science

more generally is considered in Sections 4 and 5, with special attention to physics.

This broader perspective highlights the conceptual similarity and applicability of

agent representations across various scientific disciplines. Section 6 summarizes

two ABM applications that illustrate concretely the duality of ABM: Real-world

systems can not only be simulated with verisimilitude using ABM; they can also be

efficiently and robustly designed and constructed on the basis of ABM principles.

Concluding remarks are provided in Section 7.

2 What is ABM?

2.1 ABM as an Alternative Form of Mathematics

Social systems consist of heterogeneous communicating entities in an evolving net-

work of relationships. One branch of mathematics that deals with networks of rela-

tionships is graph theory, and significant new perspectives and results are emerging

from that field (Albert and Barabási 2002). Another is category theory, which spec-

ifies relationships (morphisms) among collections of objects as first-class citizens

along with the objects themselves (MacLane 1998). Category theory is being pro-

moted as the intellectual successor to set theory, which for generations has been

considered the foundation of mathematics.

Graph theory and category theory are powerful tools supporting deductive rea-

soning in many sciences, including the social sciences. Indeed, as discussed by

Laubenbacher et al. (2009, Section 6.3), certain classes of ABMs representable as

finite dynamical system “objects” with appropriately defined types of morphisms

can be shown to constitute a category. Nevertheless, the classical idea that we can

deduce solutions (or “future states”) for systems a priori, purely from a study of

their structural characteristics, is beginning to be overshadowed by the realization

that many systems are computationally irreducible (Laughlin and Pines, 2000).

More precisely, for systems that are strongly interactive and/or highly sensitive

to initial conditions, it is often not practical (or even possible) to predict their global

outcomes in advance of actual implementation even when their laws of motion are

known. Examples include John Conway’s Game of Life, Aristid Lindenmayer’s L-

systems, Benoit Mandelbrot’s generated fractal sets, Stephen Wolfram’s elementary

cellular automata (class four), and a long list of other foundational contributions too

numerous to mention. Social systems appear to be subject to this form of compu-

tational irreducibility. Not only in practice, but now also in theory, we have come

to realize that the only option we have to understand the global properties of many

social systems of interest is to build and run computer models of these systems and

observe what happens.
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The computer modeling approach advocated here is the relatively young and still-

developing methodology known as Agent-Based Modeling (ABM). In this approach,

systems are modeled as collections of autonomous interacting entities (“agents”)

with encapsulated functionality that operate within a computational world.

As elaborated below, ABM combines constructive and classical modeling ap-

proaches. As is true for real people, agents can only acquire new data about their

world constructively, through interactions. Nevertheless, again like real people,

ABM agents can have uncomputable beliefs about their world that influence their in-

teractions. These uncomputable beliefs can arise from inborn (initially configured)

attributes, from communications received from other agents, and/or from the use of

non-constructive methods (e.g., proof by contradiction) to interpret acquired data.

These uncomputable beliefs enable agents to make creative leaps, to come up with

new ideas about their world not currently supportable by measurements, observa-

tions, or logical extrapolations from existing information – in short, to be Smolin’s

seers (Smolin, Chapter 18, 2002).

The import of this ABM blending of constructive and classical mathematics de-

pends upon the purpose at hand. For example, for descriptive purposes, it permits

human behavior to be captured with greater fidelity than simple algorithmic repre-

sentations. For optimization purposes, it permits a deeper and more creative explo-

ration of large domains, a melding of experience-tempered guesswork with step-

by-step computation that could vastly extend the power of traditional finite search

methods.

ABMs with no runtime interaction with external systems are Turing computable;

hence, in principle, they can be equivalently expressed as finite systems of discrete-

time recursive equations over finite state domains (Axtell, Section 2.1, 2003; Ep-

stein, Chapter 2, 2006; Laubenbacher et al. 2009). However, ABMs can also be

constructed to support persistent run-time interactions between computer agents and

real-world entities via general types of input-output data streams. That is, ABMs can

be data-driven dynamic applications systems (Darema 2005).

Data-driven ABMs are a form of interactive system called Super-Turing Ma-

chines by Eberbach et al. (2004) and Goldin et al. (2006). The latter authors argue

that Super-Turing Machines constitute a new class of computation models capable

of going beyond Turing Machines and algorithms. This claim is disputed in part by

Prasse and Rittgen (1998). Nevertheless, the possibility of constructing ABMs as

open systems with external runtime interactions and information flows has exciting

practical ramifications even if the full computational and philosophical implications

remain controversial (LeBaron and Tesfatsion 2008).

Finally, as will be illustrated concretely in Section 6.3, ABM is more than a

modeling methodology; ABM principles can also be used to construct real-world

systems. Examples include shopbots, automated Internet auctions, smart-grid elec-

tronic devices, and data storage systems. The resulting real-world systems can, in

turn, be simulated by ABMs that mimic their basic architecture and constituent

agent types. This natural duality affords researchers an opportunity, perhaps for the

first time in history, to faithfully match the behavior of computer models to real de-
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ployed systems. This should permit unprecedented predictive power, well beyond

that achievable with either analytical models or traditional simulations.

We therefore view ABM as a bona fide member of the mathematician’s toolbox,

suitable for the study of complex interactive processes in all scientific disciplines.

Nevertheless, ABM is particularly congruent to social systems because of the ease

of mapping agents to recognizable social entities and the natural hierarchical self-

organization readily seen in social systems. We thus see the social sciences, includ-

ing economics, as among the most promising areas for ABM application.

2.2 ABM Agents

Agents in ABM are entities that encapsulate data as well as methods that act on

this data.2 As illustrated in Fig. 1, ABM agents can represent a broad spectrum

of entities ranging from passive physical materials governed by relatively simple

dynamical methods, such as physical decay, to individual or group decision-making

agents (DMAgents) with social capabilities.

Fig. 1 Illustrative partial agent hierarchy for an economic ABM. Upward-pointing (black) arrows
denote “is a” relationships and downward-pointing (red) arrows denote “has a” relationships.

2 Object-oriented programming (OOP) represents “objects” as encapsulated bundles of data and
methods. ABMs are now commonly implemented either directly in OOP languages or by means of
toolkits based on OOP languages. Nevertheless, the current structure of these languages is overly
rigid for many ABM purposes in terms of the permitted forms of encapsulation, distribution, inter-
agent communication, and the envisioned degree of object autonomy (Jennings 2000). Although
work-arounds are possible, ABM researchers would surely benefit from having a “new kind of
programming” built from scratch with greater input from social scientists. Indeed, many initiatives
along these lines are already under way (Tesfatsion 2010b).
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ABM provides wide latitude when it comes to specifying the complexity and

plasticity of agent representations. Analytical tractability is no longer a valid excuse

for simplifications. Rather, for any particular purpose at hand, ABM researchers

must decide the most appropriate level for their initial agent representations, the

degree to which individual agent representations can undergo structural change over

time, and the degree to which agent populations can evolve over time.

For example, an individual ABM agent can have a small number of simple fixed

methods resulting in a relatively small range of if-then individually expressed behav-

iors within its world, similar to the fixed rules in cellular automata (von Neumann,

1951; Wolfram 2002). Just as the simple fixed rules of a chess game can produce

an enormously large space of different games through player interactions, the sim-

ple fixed methods of individual agents within ABMs can produce unexpectedly rich

global system behaviors through agent interactions.

Alternatively, individual ABM agents can have methods permitting more com-

plex behaviors characteristic of people in real life. These behaviors can include:

state-conditioned adaptive response (if this happens, what should I do?); antici-

patory learning (if I do this, what will happen?); intertemporal planning; social

communication; goal-directed learning leading to changes in state-conditioned re-

sponses; and reproduction (birth and death) leading to changes in the composition

of agent populations.

The goals guiding goal-directed learning and action choice for ABM agents can

be inborn or evolved. Moreover, these goals can be open-ended in form: for example,

“maintain high power status,” or “avoid bankruptcy,” or “earn as much as possible”

for oneself or for a group. An ABM agent with open-ended goals is more aptly

described as a tracker rather than as an optimizer or satisficer, and its goal-seeking

methods have no natural finite termination point apart from the termination of the

agent itself.

The data and methods of each ABM agent are encapsulated in the sense that their

form and content can be hidden from other agents. An agent communicates with

other agents only through its public interface, the subset of its data and methods

that other agents are permitted to see.

Agent encapsulation gives ABMs a striking resemblance to real-world systems.

Information hiding (state containment) results in uncertainty in agent interactions,

in the sense that agents can never be entirely certain how other agents will behave.

Even if an agent is acting in accordance with a fixed private behavioral method, it

can appear as a “different entity” in different interactions at different times due to

the differences in its expressed behaviors induced in these interactions.

Moreover, in any ABM that is closed – that is, without external runtime inter-

actions – agent encapsulation enforces the real-world constraint that all calcula-

tions must be carried out by the agents that actually reside within the ABM world.

Free-floating procedures and restrictions influencing ABM world outcomes, such

as global continuity or equilibrium conditions externally imposed across agents,

are not permitted. Conversely, the procedures and restrictions encapsulated in the

methods of a particular ABM agent can only be implemented using the particu-

lar resources available to that agent. An ABM agent that exhausts its resources is
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constrained in its future ability to act effectively within its world. Thus, relative to

traditional equation-based modeling, agent encapsulation in ABM permits a more

realistic representation of real-world systems composed of interacting distributed

entities with limited information, limited possible responses, limited material re-

sources, and limited computational capabilities.

A key aspect of decision-making agents (DMAgents) in ABM is their increased

autonomy relative to the decision makers appearing in analytical social science mod-

els. This increased autonomy arises from agent encapsulation. DMAgents can self-

activate and self-determine their actions on the basis of hidden internal data and

methods. These methods can include pseudo-random number generators (PRNGs)3

permitting randomizations of behaviors and decisions. For example, DMAgents

might use “coin flips” to decide among equally preferred actions or action delays,

mixed strategies in game situations to avoid exploitable predictability, and mutations

(random perturbations) of normal routines to explore new possibilities. Moreover,

the data and methods of DMAgents can change over time as they interact within

their world and learn from these interactions.

Indeed, DMAgents in ABMs should be able to pass the following constructive

replacement test: Given any DMAgent interacting within an ABM through its public

interface, it should be feasible to replace this DMAgent with a person that interacts

through this same public interface. This leads naturally to the idea of a constructive

Turing test: Would a person interacting within an experimental framework involving

a mixture of human and computer-agent participants be able to discern which were

human and which were computer-generated? (Barr et al. 2008).

These proposed tests reflect the dual ability of ABMs to both represent and syn-

thesize real-world systems. Already in ABM we are seeing a blurring of the lines

between direct human control of computer-agent representatives (avatars), model-

ing of human behaviors via computer agents, and self-directed behaviors by au-

tonomous computer agents. These advances in human-computer interfaces could

ultimately revolutionize the theory and practice of social science.

2.3 ABM Horizontal and Hierarchical Organization

ABM agents are distributed in the sense that each agent experiences its own explicit

or implicit locality within its larger world. Even if ABM agents are initially specified

to be structurally identical, they can change or evolve over time to have widely

varying data and methods supporting persistent cross-sectional behavioral diversity.

On the other hand, ABM agents are connected in the sense that each agent is

embedded in a network of links representing some form of interaction (commu-

nication, trades,...) with other agents. The form and strength of these interaction

networks can evolve over time through necessity (e.g., the death of agents) as well

as through choice and chance.

3 Alternatively, “true” random data can be streamed directly into ABM experiments in place of
PRNG-generated data, a possibility that raises interesting philosophical questions.
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ABMs are horizontally scalable. An ABM initially developed on a single com-

puter with a small number of interacting agents to facilitate debugging and compi-

lation can subsequently be expanded to include larger numbers of interacting agents

distributed across multiple machines on a network with the additional memory and

CPU cores used to accelerate the simulation (Axtell 2003). Indeed, in principle,

“cloudbursting” an ABM onto cloud-computing infrastructures would allow scaling

out an ABM to any arbitrary size.4

In addition, ABM facilitates the modeling of hierarchical constructions. ABM

agents can include other agents as members. Examples include household agents

with multiple family members, community agents with multiple households as

members, and nation agents with multiple communities as members. Moreover,

member agents can reason about the larger agent of which they are a constituent

part. Consequently, ABM enables the modeling of systems encompassing nested

self-referential subsystems as commonly seen in the real world.

ABM also permits a more realistic modeling of changes in horizontal and hier-

archical organization (Chang and Harrington 2006). For example, real-world firms

often modify their internal organization over time to better compete with other firms.

The standard economic modeling of firms by means of parameterized equations is

therefore problematic. In contrast, in ABM a firm can be represented as an agent that

includes other agents as members. As depicted in Fig. 1, these member agents might

include “workers,” “managers,” and a “firm owner.” The horizontal extent and hi-

erarchical organization of these member agents can then evolve naturally over time

through hiring, firing, layoffs, resignations, and internal reorganization decisions.

The ability of ABM to model fluidity in horizontal and hierarchical organization

in turn facilitates the modeling of complex real-world innovation processes (Chen

and Chie 2007; Dawid 2006; Gilbert et al. 2001). Consider Google. A key aspect

of Google’s competitive position is the continual development of new search algo-

rithms, new ways of advertising, and so forth. This innovation occurs in at least

two distinct ways. Google continually hires new employees that bring new ideas

into Google from other places. Also, existing Google employees are encouraged

through the local rules of their collective to generate new ideas. Indeed, Google has

claimed that half of its new products come from ideas generated by engineers during

the 20% worktime during which they are free to work on whatever they wish. The

structure and behavior of Google thus exhibits fundamental change over time even

as Google continues to maintain its identity within the world as “Google”.

These types of innovation processes are not easily modeled in terms of parame-

terized equations. ABM on the other hand is particularly well suited for the model-

ing of shifting landscapes involving changes in the behavioral methods of individual

agents as well as evolutionary changes in the composition of agent populations.

4 Cloud computing is Internet-based computing. Cloudbursting permits a computational load to
dynamically expand into additional resources in other private or public clouds as needed.
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3 ABM as an Exploratory Research Tool

3.1 ABM Research Goals

Normative ABM research commonly addresses two basic “what if” questions with

regard to system changes. First, do intended consequences actually arise? Second,

under what conditions might a system change give rise to unintended consequences?

For example, would a change in the pricing rule for a market generate more

efficient outcomes over time, as desired? Or would the change in fact lead to ineffi-

ciency as strategic participants within the system waste resources in their attempts

to exploit the changed pricing rule for their own advantage? Would a change in a

standard operating procedure or a human resource policy lead to improved profits

for a firm, as planned? Or would the change in rules in fact reduce the firm’s profits

due to unanticipated incompatibilities with the corporate culture?

A common goal of descriptive ABM research is to provide possible “generative

explanations” for observed empirical regularities (Epstein 2006). Can an observed

empirical phenomenon be reliably generated by a particular form of ABM starting

from particular forms of initial conditions? For example, can the empirically ob-

served thick tails for stock return distributions be reliably reproduced within ABM

stock market frameworks that include suitably heterogeneous trader agents?

Other forms of ABM research involve qualitative insight. Under what condi-

tions might a system give rise to unanticipated behaviors that lead to deeper intu-

itions about its nature? The quintessential example here is the venerable yet still

unresolved concern of economists such as Adam Smith (1776) and Friedrich von

Hayek (1948) to understand the surprising ability of traders in decentralized market

economies to self-organize into resilient trade networks.

The ideal goal of qualitative ABM research is to characterize the complete dy-

namic landscape for a system. This includes the behaviors exhibited at any equilibria

that might exist as well as the behaviors exhibited in the basins of attraction associ-

ated with these equilibria. It also includes a characterization of any phase transitions

exhibited by a system in response to changes in its structural form or scale. Exam-

ples include the transition of water from steam to liquid to ice in response to reduced

temperature, the transition from unpredictable to predictable outcomes in minority

games as the ratio of the number of resolvable past play histories to the number of

agents increases (Farmer et al. 2005), and the bifurcation of chaotic systems into

foliations of distinct possible long-run behaviors in response to small perturbations

in their parameter values (Devaney and Keen 1989).

Whatever the exact nature of their objectives, ABM researchers must also address

challenging model verification and empirical validation issues (Tesfatsion 2010c).

Verification concerns consistency with objectives: Does an ABM do what a re-

searcher intends, or is there some form of logical or conceptual programming error?

Empirical validation concerns consistency with empirical reality: Does an ABM ap-

propriately capture the salient characteristics of a real-world system of interest, and

does it provide outcomes that cohere with empirical observations?
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3.2 ABM Research as Culture-Dish Experimentation

ABM researchers use controlled computer experiments to investigate how large-

scale effects arise from the micro-level interactions of dispersed autonomous agents.

In principle, as in wetware culture-dish experimentation, the only intervention per-

mitted by ABM researchers is the setting of initial experimental conditions.

In carrying out an ABM experiment, an ABM researcher typically implements

the following eight steps in sequence:

• Step One: Develop an experimental design for the systematic exploration of a

theoretical issue of interest.

• Step Two: Construct a computer world (“culture dish”) consisting of a collection

of constituent agents appropriate for the study of this theoretical issue.

• Step Three: Configure the computer world in accordance with the experimental

design.

• Step Four: Compile and run the computer world with no further external inter-

ference and record world outcomes of interest.

• Step Five: Repeat this “same” computer experiment multiple times for multiple

PRNG seed values to generate an ensemble of runs from which sample distribu-

tions for recorded world outcomes can be derived.

• Step Six: Repeatedly iterate steps three through five until the full range of con-

figurations specified under the experimental design has been explored.

• Step Seven: Analyze the resulting sample distributions for recorded world out-

comes and summarize their theoretical implications.

• Step Eight: Use these theoretical summaries to form hypotheses (conjectures)

that can be brought to historical or real-time data for testing and empirical vali-

dation.

The intended meaning of some of these steps is more fully explained below.

In Step One, for example, a researcher might be interested in exploring whether

differences in learning have systematic effects on the formation of stock price bub-

bles. To examine this issue, the researcher might develop an experimental design

in which traders with variously specified mixes of learning capabilities engage in a

sequence of stock market trades.

With regard to Step Two, the initial data and methods of the computer world

determine the initial physical realm (e.g., spatial landscape) within which the con-

stituent agents interact as well as simulation controls such as simulation stopping

rules and non-perturbational instrumentation devices (e.g., pause buttons). The ini-

tial data and methods of the constituent agents determine the initial sequencing of

their actions as well as the initial pattern of their interactions. For scientific investi-

gations of real-world phenomena, these constructions should correspond to actual or

proposed real-world counterparts and should reflect the physical, institutional, and

behavioral aspects of these real-world counterparts.

The configuration in Step Three typically includes the initial number of con-

stituent agents, the specification of fixed agent attributes (e.g., learning capabili-

ties), initial settings for variable agent attributes (e.g., available resources), and the
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initial spatial or social network determining permissable channels for initial agent

interactions. It also includes the specification of seed values for any pseudo-random

number generators (PRNGs) appearing in agent methods. The (initial) state of the

world then consists of the (initially configured) data and methods for the world and

for each of its constituent agents.

In Step Four the initial state of the world is permitted to evolve, driven solely by

agent interactions. The only further role permitted for the external ABM researcher

in this evolutionary process is the non-perturbational observation and recording of

world outcomes of interest.

In Step Seven the theoretical summaries of experimental findings can often be

enhanced by graphical visualizations. For example, grey-scale or color heatmaps

can be used to display large data sets to facilitate discovery of any emergent global

patterns.

3.3 ABM Research Areas

The range of ABM research is now extensive. Only a few areas of study relevant for

social scientists are noted here to indicate the versatility of the methodology.

Within economics, ABM research areas that have been particularly active in re-

cent years include agricultural and environmental economics, automated markets,

business and management, electricity markets, financial economics, industrial orga-

nization, labor markets, macroeconomics, political economy, and economic network

formation. A list of pointers to ABM research sites in these areas can be accessed at

Tesfatsion (2010d).

Within the social sciences more generally, highly active ABM research areas

include emergence of collective behavior, evolution of cooperation and trust, inno-

vation, institutional design, learning, norms, social influence, and social network

formation. Pointers to selected work in these areas can be accessed at Axelrod and

Tesfatsion (2010).

Finally, ABM interdisciplinary application areas relevant for social scientists

include ecological systems (Grimm and Railsback 2005), epidemiology (Epstein,

2006, Chapter 12), health care management (Huang et al. 1995), information stor-

age and management (Borrill 2005, 2008), land use (Parker et al. 2003), military

planning (Cioppa et al. 2004), transportation systems (Nagel and Wagner 2006),

and urban planning (Batty 2005).
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4 Alternative Modeling Modalities

4.1 God’s-Eye-View or Local-Observer-View?

Science has traditionally been explored by means of analytical models based on

classical mathematical principles. These models have been used to amplify human

intuition about the way our world works. Computer models have frequently been

seen as a poor substitute, a tool for determining approximate solutions to intractable

analytical models.

Yet there is another side to this story. In analytical modeling, as well as in com-

puter modeling used as an approximation tool, systems are typically represented

from a God’s-Eye-View (GEV). The mathematician or programmer presides over

the modeled world like some form of Laplace’s demon, able in principle to discern

the entire course of world events based on a complete understanding of the initial

state of the world as well as its laws of motion.

Recently, however, it has been proven that Laplace was wrong to claim the future

can be predicted without error given sufficient knowledge of the present, even in

a classical non-chaotic universe (Binder 2008; Wolpert 2008). The capabilities of

physical inference devices are inherently limited, not because of chaotic dynamics

or quantum mechanical indeterminism, but rather due to a “Cantor diagonalization”

demonstration that at least some portion of knowledge will always remain unavail-

able to any one inference device.

Constructive mathematics is well-matched to this reality because it relies solely

upon a Local-Observer-View (LOV). The data that a constructive mathematician can

acquire about a system is limited to what the mathematician can obtain by means of

computations.5 As developed by Errett Bishop, constructive mathematics is based

on intuitionistic logic (Bridges 1999), a deductive system6 D that does not include

the law of the excluded middle (P∨¬P) among its rules of inference. Intuitionistic

logic permits three logical possibilities for a proposition: true, false, or undecidable.

A proposition is true (or false) relative to D if its truth (or falsity) can be estab-

lished by a computation within D . A proposition whose truth or falsity cannot be

established by a computation within D is said to be undecidable relative to D . In ad-

dition, the logical status of a proposition can be open relative to D in the sense that

its classification within D has not been established. The uncountably large class of

undecidable and open propositions (problems) relative to D dominates the attention

of many current constructive mathematicians (Ambos-Spies and Fejer, 2006).

5 According to Soare (1996), “a computation is a process whereby we proceed from initially given
objects, called inputs, according to a fixed set of rules, called a program, procedure, or algorithm,
through a series of steps and arrive at the end of these steps with a final result, called the output.”
6 Given a formal language L consisting of formulas (propositions) well-constructed in accordance
with some prescribed syntax, a deductive system expressed in L consists of axioms L ⊆ L to-
gether with a set of binary relations (rules of inference) on L that can be used to derive the theorems
(conclusions) of the system (Dalen 2008).
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ABM supports a LOV modeling approach in the sense that the “reality” of each

ABM agent is confined to the network of agents within which it interacts. An ABM

agent starts with a configuration of data and methods constituting its initial under-

standing of its world. The agent can then migrate from one part of its world to

another, redefining its locality within this world by adding and deleting links with

other agents; yet it is always restricted to interactions with other agents only one link

away. Communication in ABM is thus a percolation process, and it is only through

such percolation processes that new data about the world is acquired and global

properties emerge.

On the other hand, although ABM agents acquire new data constructively through

interactions, they can be configured so that portions of their initial data represent

GEV (uncomputable) assertions about their world. They can also believe GEV as-

sertions communicated to them by other agents, and they can have methods for in-

terpreting data that entail the use of non-constructive deductions (e.g., proof by con-

tradiction). Thus, as is true for real people, the content and timing of the constructive

actions that ABM agents take within their world can be influenced by uncomputable

beliefs.

4.2 Time and Asynchronicity in ABM

An important theoretical and practical concern for ABM researchers is how to spec-

ify the relative timing of agent interactions and the methods by which agents update

their internal states based on these interactions. Careless treatments of these tim-

ing issues can induce undesirable artifacts in simulation outcomes, hide important

potential system behaviors, and even result in a complete inability to generate em-

pirically relevant results (Axtell 2001; Newth and Cornforth 2009; Tosic 2005).

In particular, considerable care must be exercised when running ABM simula-

tions on conventional computer architectures – for example, on existing high per-

formance computing (HPC) platforms – or even on commodity (multiple-vendor

open-standard) hardware platforms that use a non-uniform memory architecture

(NUMA). These basic computer hardware configurations can impose hidden con-

straints on temporal relationships among agents that a modeler does not intend,

beyond simple variations in the behavior of the cache/memory hierarchy from one

simulation run to the next.

For example, key areas of a computing infrastructure in which unintended dis-

tributed simultaneity assumptions can arise include: pre-emptive schedulers in the

operating system when running multiple processes on a single processor; multi-

threading within each process; communication through a shared memory bus on a

symmetric multiprocessor; a common clock driving multiple cores at once on the

same chip; and a single isochronous global clock in a single-instruction multiple-

data (SIMD) graphic processing unit used for agent modeling in an array. If this

listing leaves the reader with the impression that it is almost impossible not to have

some potentially problematic simultaneity assumptions lurking somewhere in their
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computational infrastructure, then a crucial point will have been effectively con-

veyed.

More fundamentally, resolution of timing issues forces ABM researchers to think

deeply about the nature of the reality they are supposedly modeling. Conventional

modeling of dynamical systems is frequently based on an implicit assumption that

there exists a global (absolute or Newtonian) clock. This clock permits the perfectly

synchronized updating of all components of the system state vector at each suc-

cessive time step, where a time step is represented as an instant or interval along

a real time line. The empirical artificiality of global clocks permitting perfect syn-

chronization is abundantly clear. Most real systems are massively asynchronous in

nature, and any implied simultaneity across distributed systems has long since been

proven false in physics. Yet to what extent, and in what manner, should ABM re-

searchers work to achieve a more empirically compelling modeling of time and true

asynchronicity?

Unfortunately, even the best available theories from physicists (Barbour 2001,

2009; Markopoulou 2000; Rovelli 2008; Smolin 2002) and philosophers (Markosian

2010; Price 1996) provide little definitive insight into the nature of time; like the

quantum measurement problem, it continues to be an enigma. Computer scientists

appear to be even further behind in their understanding, typically endorsing a pre-

relativistic and pre-quantum Newtonian concept of a background time (Herlihy and

Shavit, Chapter 2.1, 2008).

This leaves ABM researchers in a conundrum. If the computer platforms avail-

able for ABM simulations, as well as the very theoretical foundations on which

ABM simulations are built, embody empirically questionable notions of time and

simultaneity, what can an ABM researcher do?

This is where the fundamental role of “interactions” in ABM comes into play.

Each ABM agent can have an entirely independent sense of time that bears no re-

lation to the flow or passage of time perceived by other agents. Nevertheless, the

agents can still experience “change” as a result of the interactions between them,

and they can observe an ordering of events (generally unique to each observer). The

changes experienced by each agent can be accumulated in the information retained

by the agent, and also in the instrumentation provided to observe and record system

outcomes.

In particular, running ABMs as genuinely asynchronous interactive systems

could permit them to reflect the forms of self-synchronization observed in many

natural phenomena (Strogatz 2003) and in spatial game situations (Newth and Corn-

forth 2009). For example, consider an ABM consisting of a collection of fully in-

dependent agents in a weakly-asynchronous interaction network. It might be utterly

intractable to “synchronously” explore the random sequential execution of agents

with anything but a coarse resolution in time: imagine a 100 microsecond primary

cycle, and consider how long it would take to explore combinatorial alternatives

down to a 1 microsecond or even a 1 nanosecond resolution. However, running the

ABM as a genuinely asynchronous simulation might permit self-synchronization to

arise as a natural temporal phenomenon rather than as an artifact of a synchronous

straight-jacket imposed to simplify implementation at the expense of empirical fi-
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delity. Genuinely asynchronous modeling remains an important research topic for

ABM researchers (Tosic 2005).

In summary, the explicit and implicit restrictions on timing and updating in the

implementation of ABMs should be brought to the fore in the analysis and pub-

lication of ABM research results. This would permit peer researchers to examine

the robustness of reported outcomes to seemingly inconsequential changes in these

restrictions.

4.3 Simple or Complex Modeling of Human Behaviors?

A scientific model should be a condensed representation of some phenomenon: as

simple as possible but no simpler. By stripping away unnecessary details, the mod-

eler seeks to identify the salient conditions that enable the model to faithfully reflect

the phenomenon under investigation. Stripping away superfluous detail allows the

modeler to expose deeper principles driving the observed outcomes.

For descriptive studies, two approaches can be distinguished. The first approach

is to start with simple behaviors, adding more complex behaviors only as needed

to explain an observed regularity. The second approach is to start with the types of

complex behaviors observed in natural settings, field experiments, or human-subject

laboratory experiments, and then to progressively simplify the behaviors until the

ability to generate an observed regularity is lost.

On the other hand, normative (goal-oriented) studies require different consider-

ations. For such studies, agent behavior becomes an experimental treatment factor

rather than a descriptive representation.

For example, suppose the goal is robust system performance. A researcher will

then need to examine system performance under a wide range of possible scenarios,

including stress-tests involving low-probability events having highly adverse social

impacts. Ideally, the agent representation of human behavior under these alterna-

tive scenarios should span the full range of possibilities. What if people respond

calmly? What if they panic? Moreover, what might be the longer-term effects on

system performance if people learn from their experiences and modify their future

behaviors?

Alternatively, suppose the goal is successful individual performance within a

specified system setting. A researcher will then need to conduct a series of “what if”

experiments involving alternative individual strategies, possibly including newly en-

visioned strategies never before tried in practice. Moreover, these individual strate-

gies might have to involve learning and even learning-to-learn aspects to permit

flexible response to the possible behaviors of other system participants.

In view of these considerations, ABM researchers are exploring a wide range

of behavioral and learning specifications for the agents included in their models

(Tesfatsion 2010e). These specifications take into account the behaviors actually

observed in field and lab studies, but they also permit the study of new kinds of

behaviors potentially suitable for achieving variously specified goals.
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5 Is ABM the Right Mathematics for the Physical Sciences?

The traditional goal of physics has been to explain properties of matter that are

relatively free of historical contingency (Farmer et al. 2005). The greatest scientific

achievements of physicists have involved issues arising in the very large (gravity

and cosmology) and in the very small (quantum level). “Observers” in these two

extreme realms measure and assign states to the systems they observe. However,

these observers have traditionally been interpreted as external moving spatial frames

of reference rather than any form of conscious being localized in some space.

The social sciences occupy a middle ground between these two extreme realms.

Social scientists, by definition, must address the problem of human interaction im-

pinging on world events. These interactions leave traces on the human interactors

themselves, changing their memories, their knowledge, their future interaction pat-

terns, and their expressed behaviors in these future interactions. In consequence, so-

cial systems are intrinsically heterogeneous and path dependent. This has led some

physical scientists to question the scientific status of the social “sciences.”

Nevertheless, many physicists have expressed the belief that physics cannot be

considered complete until it provides a unified theory that encompasses all of na-

ture, from general relativity to quantum physics. Understanding a natural world such

as ours – a world that contains living entities – would require confronting the diffi-

culties posed by having multiple observers imbedded within this world whose mea-

surements are necessarily local and relative to each other and whose interactions can

potentially alter its dynamic course.

In particular, physicists recognize the observer-dependent nature of cosmolog-

ical knowledge (Döring and Isham 2010, Markopoulou 2002, Smolin 2002). For

example, Smolin (2002, p. 32) writes:

“...we should not be surprised if both cosmology and social theory point us in the same
direction. They are the two sciences that cannot be formulated sensibly unless we build
into their foundations the simple fact that all possible observers are inside the system they
study.”

Also, recent developments in quantum physics have focused on the modeling

of interactions (information exchange) among relative entities rather than the mea-

surement of absolute physical properties by some omniscient observer. In particular,

according to the recently developed theory of relational quantum mechanics (RQM)

there are no observer-independent states (Rovelli 1996). The distinctions between

observer and observed, and between cause and effect, are replaced by a symmet-

ric notion of mutual observers interacting with each other and leaving behind their

informational footprint as irreversible processes that dissipate energy when infor-

mation is erased.

RQM thus interprets quantum mechanics to be a theory describing the informa-

tion one system can have about another, acquired only through interactions, rather

than a theory providing a GEV perspective on the physical states of systems (Smer-

lak 2006, van Fraassen 2010). A further implication of RQM is insight into the non-

commutative matrix mechanics characteristic of quantum theory, which implies that
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the order of events defines the reality of what is measured. In RQM, the history

(or order of events) measured by each observer creates the reality that this observer

perceives as the evolution of the system.

These developments in physics support a key concept that appears to be mirrored

in all of our fundamental laws of physics: there is no preferred frame of reference

for any measurement. Rather, all frames are equally valid; and each observer will

register a unique view of any measurement, including the order of observed events,

from its own relative vantage point.

In addition, the implication of physical theories relying on “symmetry breaking”

is that the properties of even very basic physical systems can be determined in part

by historical conditions. For example, remarking on the multiple low-energy states

of a polymer of amino acids, Laughlin et al. (2000, Section IV) note: “The prop-

erty of having such a set of low-energy states is connected with the idea of replica

symmetry breaking: Different copies of the same system may well fall into different

long-lived states through accidents of detailed molecular motion.”

In summary, physics shares with the social sciences an interest in understand-

ing the complicated interactions of entities composed of more elementary entities

behaving in accordance with potentially simpler rules. Physics also shares with the

social sciences the need to account for multiple observers with different perspectives

on reality whose measurements necessarily entail perturbative interactions with per-

sistent (information flow) traces. Finally, physical theories based on broken symme-

tries suggest that systems of interest to physicists can display what social scientists

refer to as “path dependencies,” i.e., dependencies on historical conditions.

These aspects of physical reality are precisely the kind of complexity that ABM

tools and ABM design principles have been developed to handle. ABM permits the

modeling of asynchronous interactions among heterogeneous hierarchically-nested

agents, each operating in terms of its own local coordinate system. Each ABM agent

acquires data about its world through interactions with other agents and uses this

data to build and maintain a coherent picture of a world centered about itself.

The question then arises whether the modeling problems faced by physicists at-

tempting to derive unified theories of nature are in fact all that different from the

modeling problems faced by social scientists. If not, ABM methods now being

adopted for social science research might ultimately have a fundamental role to

play within a larger scientific realm.

6 Two Illustrative ABM Applications

6.1 Overview

This section briefly describes two ABM applications to illustrate concretely the

dual ability of ABM to both simulate and synthesize real-world systems. The first

application involves the development and use of an ABM testbed for the perfor-
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mance evaluation of restructured wholesale power markets. The second application

involves the use of ABM design principles to develop a new type of architecture for

the storage and management of information.

6.2 Electricity Market Design

In 2003 the U.S. Federal Energy Regulatory Commission (FERC) recommended

the adoption of a common market design for U.S. wholesale power markets (FERC

2003). As indicated in Fig. 2, and elaborated in Joskow (2006), versions of this

design have been implemented (or adopted for implementation) in North American

energy regions in the Midwest, New England, New York, the Mid-Atlantic States,

California, the Southwest, and Texas.

Fig. 2 North American energy regions that have adopted versions of FERC’s wholesale power
market design. Source: www.ferc.gov/industries/electric/indus-act/rto/rto-map.asp

A core feature of FERC’s design is a reliance on locational marginal pricing

(LMP) to manage transmission grid congestion. Under this pricing system, the price

charged to wholesale buyers and received by wholesale sellers at a particular trans-

mission grid bus location at a particular point in time is the least cost to the system

of providing an additional increment of power at that bus location at that time.

For the past several years a group of researchers at Iowa State University has

been developing and using an agent-based testbed AMES (Agent-based Modeling of

Electricity Systems) to explore the performance characteristics of wholesale power

markets operating under FERC’s design (Tesfatsion 2010f). As indicated in Fig. 3,

AMES models strategic trading among a dispersed collection of Load-Serving En-

tities (LSES) who bid to buy power at wholesale and Generation Companies (Gen-
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Fig. 3 Core features of FERC’s wholesale power market design that have been incorporated into
the AMES Wholesale Power Market Testbed.

Cos) who offer to sell power at wholesale. These trading activities take place within

a two-settlement (real-time and day-ahead) energy market system administered by

a not-for-profit Independent System Operator (ISO), with congestion managed by

LMP. The power flows resulting from these trading activites are constrained by the

physical characteristics of an underlying AC transmission grid.

AMES experiments have been conducted using multi-period versions of a com-

monly used 5-bus ISO training case and a standard 30-bus IEEE test case. Key

experimental treatment factors have included GenCo learning capabilities, the form

of GenCo supply offers, the price-sensitivity of LSE demand bids, and price caps

imposed by the ISO for the mitigation of market power.

Fig. 4 Average LMP outcomes on day 1000 for the 5-bus test case with and without GenCo learn-
ing as the price-sensitivity of demand varies from 0% (R=0.0) to 100% (R=1.0).

One experimental finding has been the relative ease with which the GenCos can

learn to exercise market power through economic and physical capacity withhold-
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ing, even when LSE demand bids are 100% price sensitive (Li et al. 2010). As seen

in Fig. 4, this capacity withholding results in a rise in LMP levels that is particularly

dramatic for treatments in which the price-sensitivity of demand is low.

Another experimental finding involves “ISO net surplus” collections in day-

ahead energy markets (Li and Tesfatsion 2011). ISO net surplus is determined each

hour as the difference between the LMP payments received by the ISO from energy

buyers (the LSEs) and the LMP payments distributed by the ISO to energy sellers

(the GenCos). Congestion arising on a transmission grid in any hour necessarily

results in separation between the LMPs at two or more transmission grid bus loca-

tions, which in turn necessarily results in a non-negative ISO net surplus collection

for that hour.

As indicated by the experimental findings reported in Figs. 5 and 6, ISO net

surplus and GenCo net earnings are simultaneously enhanced in circumstances un-

favorable to market efficiency: namely, when demand exhibits low price sensitivity

and GenCos have learning capabilities permitting them to exploit this lack of price

sensitivity. The truly surprising finding here is just how substantial the net surplus

collections of the not-for-profit ISO can be in these circumstances: similar in size to

GenCo net earnings, and in some cases even exceeding GenCo net earnings.

Fig. 5 No-Learning Treatment: LSE payments, GenCo revenues, ISO net surplus, and GenCo net
earnings on day 1000 for the benchmark (no learning) 5-bus test case as the price-sensitivity of
demand varies from 0% (R=0.0) to 100% (R=1.0).

Fig. 6 Learning Treatment: Average LSE payments, GenCo revenues, ISO net surplus, and GenCo
net earnings on day 1000 for the 5-bus test case with GenCo learning as the price-sensitivity of
demand varies from 0% (R=0.0) to 100% (R=1.0).
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Empirical investigations confirm that ISO net surplus collections in actual North

American energy regions operating under LMP can indeed be substantial (Li and

Tesfatsion 2010). For example, in 2008 these ISO net surplus collections ranged

from US$121 million in New England (ISO-NE) to US$2.66 billion in the Mid-

Atlantic States (PJM).

6.3 Agent-Based Storage and Management of Information

A real-world example where ABM principles enable a dramatic simplification in

system design is in the storage and management of information (Borrill 2005).

Fig. 7 A traditional enterprise information storage system. Raw resources on the left (storage
devices) are utilized by subsystems that manage primary, secondary, tertiary and archival storage by
means of various discrete functions that tend to be poorly integrated. Resulting resource utilization
is shown on the right.

Enterprise information storage systems have traditionally been designed in a top-

down manner by a human architect. This architect receives inputs in the form of

system requirements, feasible technologies, and available products, from which a

“blueprint” is created and presented to an information technology (IT) team for im-

plementation.
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Unfortunately we have now gone far beyond the ability of any individual ex-

pert or expert team to anticipate the evolving information storage requirements of

a dynamic enterprise. As illustrated in Fig. 7, this has led in practice to the need

to incrementally overlay existing storage systems with new functions, resulting in

unwieldy and inefficient systems with hard-to-predict performance characteristics

and brittle response to perturbations (failures, disasters, attacks).

The result is an on-going complexity crisis in the storage and IT industries. Chief

information officers are frequently trapped between a rock and a hard place. They

are compelled to employ and train an ever-increasing number of IT administrators

to manage the overall operation of the many disparate subsystems comprising their

information storage systems. Because of the centralized design of these systems,

the administrators are naturally seduced into managing such systems from a sin-

gle “crow’s nest” perspective, a tactic popularly referred to as “all behind one pane

of glass.” The similarity between this centralized management design, the “client-

server” architectural style of most software engineers, and the God’s-Eye-View

(GEV) adopted in traditional systems modeling, is not coincidental.

The resulting price in complexity paid by this GEV design practice shows up

when we try to scale these systems. Scaling increases the number, connectivity, and

diversity of a system’s elements, and results in cognitive overload for the admin-

istrators in the crow’s nest whenever a non-routine failure or error occurs. This is

particularly apparent during crises, such as equipment failures, natural disasters, and

criminal/terrorist attacks (both physical and cyber).

A common defensive tactic has been to ensure there is only “one throat to choke,”

meaning that a single vendor is made responsible for the entire information-storage

operation in order to eliminate finger-pointing when things inevitably go wrong.

However, this tactic involves major risk because the vendor is then in a monopoly

position relative to the enterprise; it can dictate prices for its services and products,

and it can take its time when developing needed upgrades, because the enterprise is

a captive customer.

What this traditional approach to information storage has done, in effect, is to

build human administrators into the systems while at the same time reducing their

achievable reliability. Human beings are notoriously error-prone and often induce

failure modes by their own inadvertent actions. Human beings are also bandwidth

limited; they have limited cognitive ability to respond appropriately to large system

perturbations occurring in short periods of time. Traditional information storage

systems are thus prone to disaster, and recovery from these disasters – particularly

for large systems – has proven to be very complex and time-consuming. Moreover,

recovery can involve significant collateral damage to the businesses involved as well

as to the local economy as commercial operations are curtailed until these and other

IT systems are restored to their intended state of operation.

A primary motivation for considering the redesign of traditional information stor-

age systems has been to find a way to dramatically reduce the time to recover these

systems after a disaster. Recognizing that information storage systems inevitably

evolve into complex systems encompassing many distributed interacting subsys-

tems, researchers have converged on an alternative architecture based on ABM de-
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sign principles to address the many “wicked” problems that occur in such environ-

ments (Borrill 2008).

This alternative ABM-based information storage system architecture is schemati-

cally depicted in Fig. 8. The architecture operates in a manner similar to a “network

automaton” (Smith et al. 2009) in which resources grow and migrate as needed

through an evolving network, driven by nearest-neighbor rendezvous and inter-

actions. For the storage system, the individual (autonomous, encapsulated) stor-

age cells represent the deployed units of hardware. Initially these storage cells

are identical and substitutable. The system then auto-configures; storage cells form

nearest-neighbor relationships with their peers and recursively build (and continue

to evolve) the network topology. Given this physical infrastructure, it becomes triv-

ial to deploy storage objects (files) over the infrastructure that are each treated as

an agent – that is, as an abstract storage object encapsulating data, metadata, and

if-then rules for (meta)data disposition conditional on the occurrence of certain

events. Examples of such storage objects include regular files, virtual machine im-

ages, databases, and media such as pictures or movies.

Fig. 8 An enterprise information storage system based on ABM design principles. The resulting
system has a substantially simpler architecture yet displays greater robustness to perturbations and
greater adaptivity to the evolving needs of geographically dispersed human users. The heatmap
expresses one form of emergent behavior, namely, the most-recently-used data remain at the front
of the network while the least-recently-used data migrate to the rear of the network.
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The agents (storage objects) in the resulting ABM-based information storage sys-

tem can freely roam, replicate, and evaporate down to some specifiable minimum

number able to guarantee data persistence in the face of system perturbations. The

relationship of an abstract file agent to its dynamically evolving set of peer replicas

enables the ABM to respond in ways that no programmer or administrator would

ever have the time, attention, or ingenuity to invent. Moreover, while the underlying

methods that drive agent interactions can be exceedingly simple (ingest, push, pull,

evaporate), they can also produce rich examples of emergent behaviors. For exam-

ple, as indicated by the heatmap depiction in Fig. 8, data can migrate automatically

across a system’s resources (even if geographically distributed) on the basis of latest

time of use, resulting in the creation of a self-tiered network.

Another advantage of information storage systems built in accordance with ABM

principles is that their relatively simple architecture facilitates performance testing

under normal lifecycle-management scenarios as well as under emergency disaster-

recovery scenarios. In particular, it is relatively straightforward to copy the real sys-

tem configuration into an ABM simulator that models the same resources, agents,

and network topology (extracted from instrumentation in the real system), using the

same rules as the real system.

This simulator can then be used to conduct various “what-if” experiments that

would be prohibitively expensive or disruptive to carry out on the real system. For

example, the simulator might be used to investigate the direct effects of system

disturbances on bandwidth, capacity, and recovery time, and to provide guidance

for improving the robustness of the system against such disturbances. It might also

be used to improve system efficiency by identifying ways to reduce connectivity

or resource usage while at the same time maintaining essentially the same service

capabilities at levels visible to human users.

Furthermore, disaster preparedness in personnel training, emergency procedure

planning, and other social phenomena under disaster scenarios could easily be built

into the simulation. This would permit the testing of personnel responses to unusual

events, including their necessary interactions with the data storage system as they

initially evacuate their posts and as they later return to these posts to reinstate service

to their customers.

7 Conclusion

This article has taken readers on a brief guided tour of ABM. Although applicability

for the social sciences has been stressed, we have also touched on intriguing con-

nections with ongoing methodological developments in constructive mathematics,

computability theory, cosmology, and quantum physics.

It is perhaps unsettling to realize that the foundations of all of these disciplines

are currently in ferment. The uncomfortable truth is that our universe is not the

perfectly ordered and deterministic place envisioned by Laplace and Hilbert but the

rich, unruly, and largely uncomputable world of Kurt Gödel, Alonzo Church, Alan
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Turing, Errett Bishop, and David Deutsch. What a wondrous development it would

be if a methodology such as ABM, specifically designed for the study of complex

interactive systems, were to enable common light to be shed across these seemingly

disparate disciplines.
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