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Abstract. In many domains, agent-based system modeling competes with
equation-based approaches that identify system variables and evaluate or
integrate sets of equations relating these variables. The distinction has been of
great interest in a project that applies agent-based modeling to industrial supply
networks, since virtually all computer-based modeling of such networks up to
this point has used system dynamics, an approach based on ordinary differential
equations (ODE’s). This paper summarizes the domain of supply networks and
illustrates how they can be modeled both with agents and with equations. It
summarizes the similarities and differences of these two classes of models, and
develops criteria for selecting one or the other approach.

1. Introduction

In many domains, agent-based modeling competes with equation-based approaches
that identify system variables and evaluate or integrate sets of equations relating these
variables. Both approaches simulate the system by constructing a model and
executing it on a computer. The differences are in the form of the model and how it is
executed. In agent-based modeling (ABM), the model consists of a set of agents that
encapsulate the behaviors of the various individuals that make up the system, and
execution consists of emulating these behaviors. In equation-based modeling (EBM),
the model is a set of equations, and execution consists of evaluating them.1 Thus
“simulation” is the general term that applies to both methods, which are distinguished
as (agent-based) emulation and (equation-based) evaluation.

Understanding the relative capabilities of these two approaches is of great ethical
and practical interest to system modelers and simulators. The question is important
ethically because the duty of simulators ought to be first of all to the domain being
simulated, not to a given simulation technology, and the choice of technology should
be driven by its adequacy for the modeling task as well as its intrinsic interest to the
modeler. The question is important practicall y because most funding sources are
driven by domain-dependent agendas and want to put their resources behind the
simulation technology that wil l provide the best results.

                                                       
1 When “ABM” and “EBM” are arthrous or plural, ‘M’ means “model” rather than “modeling.”
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This paper explores the question in the problem domain of manufacturing supply
networks, and giving examples of both ABM’s and EBM’s (Section 2). It discusses
the relation between these two approaches at a high level (Section 3), and then
compares their practical performance in three specific areas (Section 4). A concluding
section includes recommendations for advancing and propagating ABM’s.

2. The DASCh Experience

In our laboratory, the contrast between the two broad categories of models arose in
the context of the DASCh project (Dynamical Analysis of Supply Chains) [12, 13],
which explores the dynamical behavior of a manufacturing supply network. This
section describes the application area, summarizes the structure and behavior of the
agent-based model that was the focus of our research, and exhibits a system dynamics
model of the same system to exemplify an equation-based approach.

2.1 What is a Supply Chain?

Modern industrial strategists are developing the vision of the “virtual enterprise,”
formed for a particular market opportunity from independent firms with well -defined
core competencies [10]. The manufacturer of a complex product (the original
equipment manufacturer, or “OEM”) may purchase half or even more of the content
in the product from other firms. For example, an automotive manufacturer might buy
seats from one company, brake systems from another, air conditioning from a third,
and electrical systems from a fourth, and manufacture only the chassis, body, and
powertrain in its own facilities. The suppliers of major subsystems (such as seats) in
turn purchase much of their content from still other companies. As a result, the
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Fig. 1. A Simple Automotive Supply Network
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“production line” that turns raw materials into a vehicle is a “supply network” (more
commonly though less precisely called a “supply chain” ) of many different firms.

Fig. 1 illustrates part of a simple supply network [1, 8]. Johnson Controls supplies
seating systems to Ford, General Motors, and Chrysler, and purchases the components
and subassemblies of seats either directly or indirectly from over one hundred fifty
other companies, some of which also supply one another. Issues of product design and
production schedule must be managed across all these firms in order to produce
quality vehicles on time and at reasonable cost.

In general, supply networks form an hourglass (Fig. 2), with an OEM at the center.
Raw materials, parts, and subassemblies move up through the lower half of the
hourglass to reach the
OEM, and finished
goods make their way
through the upper half
to the final consumer.

Fig. 2 is over-
simplified. Linkages
among firms are not
restricted to the
hierarchical patterns
shown, and a single
firm may appear in
both halves of the
hourglass. Still, the
general pattern is one
of convergence of
materials to the OEM,
and then distribution of the product out to end users. The two halves of the hourglass
exhibit different dynamical behavior, driven by different mechanisms for forecasting
demand through time. In the input (lower) half of the hourglass, the manufacturer can
distribute a forecast of demand to its suppliers. There is no such centralized source of
demand information in the distribution (upper) half of the hourglass, and the
manufacturer must estimate demand from statistical analysis of the orders received
over time. A typical algorithm, and the one that we use, is a weighted average of past
orders over some time horizon, giving higher weight to more recent orders.

Supply networks, like most systems composed of interacting components, exhibit a
wide range of dynamical behavior that can interfere with scheduling and control at the
enterprise level. Data analytic approaches based on assumptions such as stationarity
are not generally effective in understanding these dynamics, because the commercial
environment changes too rapidly to permit the collection of consistent data series long
enough to support statistical requirements.

2.2 An Agent-Based Model

DASCh explores the dynamics of a supply network by constructing and
experimenting with an ABM that can maintain a given set of conditions as long as
desired, permitting the collection of statistically relevant time series. Though
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Fig. 2. Supply networks form an hourglass shape.
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artificial, this environment allows us to explore the dynamical nature of the supply
network and can lead to important insights of great practical significance.

Model Structure. DASCh includes three species of agents. Company agents
represent the different firms that trade with one another in a supply network. They
consume inputs from their suppliers and transform them into outputs that they send to
their customers. PPIC agents model the Production Planning and Inventory Control
algorithms used by company agents to determine what inputs to order from their
suppliers, based on the orders they have received from their customers. These PPIC
agents currently support a simple material requirements planning (MRP) model.2
Shipping agents model the delay and uncertainty involved in the movement of both
material and information between trading partners.

The initial DASCh
experiments involve a
supply chain with four
company agents (Fig. 3: a
boundary supplier, a
boundary consumer, and
two intermediate firms
producing a product with
neither assembly nor
disassembly). Each
intermediate company
agent has a PPIC agent.
Shipping agents move
both material and
information among
company agents.

This simple structure
was intended as a starting
point. We expected it to exhibit relatively uninteresting behavior, on which the impact
of successive modifications could be studied. In fact, it shows a range of interesting
behaviors in terms of the variability in orders and inventories of the various company
agents: amplification, correlation, persistence, and generation of variation in the
orders and inventory levels in the system. In general, these phenomena introduce
strong structural distortions into the order stream. Such disturbances obscure the
suppliers’ view of the top-level consumer’s demand.

                                                       
2 The basic MRP algorithm includes developing a forecast of future demand based either on

past demand or on customer forecast (depending on location in the hourglass), estimating
inventory changes through time due to processing, deliveries, and shipments, determining
when inventory is in danger of falling below specified levels, and placing orders to replenish
inventory early enough to allow for estimated deli very times of suppliers.
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Fig. 3. The DASCh Supply Chain.
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Ampli fication and Correlation of Order
Var iation. As the demand generated by the top-
level consumer propagates to lower levels, its
variance increases, so that lower-level suppliers
experience much more variability than higher-
level ones. This ampli fication phenomenon is
widely discussed in the literature. Not as well
recognized is the correlation imposed on an
originally uncorrelated series of random orders by
the PPIC algorithms in the supply network.

To explore this dynamic we set all batch sizes
to one, so the economic order quantity does not
introduce a nonlinearity. The consumer generates
Gaussian random IID (Independent, Identicall y
Distributed) orders with a mean of 100 per week
and variance of 10.  Capacity at Sites 2 and 3 is
set at 10,000 per week, virtuall y infinite in
comparison with the order levels, again avoiding
a threshhold nonlinearity. The forecast algorithm
is the weighted average mechanism appropriate to
the distribution half of the supply network
hourglass. We examine the results using time
delay plots, in which each element in a time
series is plotted on the Y-axis against the
previous element on the X-axis.

Fig. 4 shows the delay plot for the consumer
orders. As expected for IID data, they form a
circular blob, with no apparent structure. Fig. 5
and Fig. 6 show the orders issued by sites 2 and
3, respectively, in response to the IID consumer
orders. These plots show two interesting features.
First, although plotted to the same scale, the
clouds of points are larger, reflecting
ampli fication of order variation in successive tiers
of the supply chain. Second, the clouds are no
longer circular in shape, but are stretched along
the line X = Y. This stretching indicates that these
sites are more li kely to follow a large order with
another large one, and a small order with another
small one. In other words, their orders have
become correlated in time, and increasingly so as
we go deeper in the supply chain.

Persistence of Order Var iation. A single
modest change at the top of the chain generates
disturbances in the order sequences of lower tier
suppliers that persist long after the original change. Fig. 7 shows the effect of two
successive step functions in consumer orders (the solid line) on the orders issued by
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site 3 to the supplier (the
dashed line), using weighted
average forecasting. In both
cases, the consumer
increases its order level by
10 orders per time period.
Though the change in
consumer orders is a one-
time phenomenon, its effect
persists in the orders that site
3 issues to the supplier. The
persistence time is of the
same order as the forecast
window over which the
manufacturer averages past
orders to estimate future
demand.

For the first step increase
in consumer orders, the
forecast window is 39 weeks and the disturbance in site 3 orders persists for between
31 weeks (to the last upward spike over the new demand level) and 47 weeks (to the
downward spike). The ampli tude of the variability in site 3 orders ranges from a high
of 125 to a low of 100, or a total range of 25.

Before the second increase, we reduce the forecast window in both PPIC modules
from 39 to 20. The period of variability lasted fewer time steps (between 22 to the last
order above 120, and 29 to the final downward spike). But shortening the forecast
window has the effect of increasing the amplification. Thus the second set of peaks is
taller than the first (ranging from 110 to 145, or a total range of 35).

Thus the weighted forecasting algorithm has the effect of imposing a memory on
the system. The longer the forecasting period, the longer the memory, but the lower
the amplitude of the variations generated.

Generation of Inventory Variation. Even when top-level demand is constant and
bottom-level supply is completely reliable, intermediate sites can generate complex
oscillations in inventory levels, including phase locking and period doubling, as a
result of capacity limitations.

The consumer has a steady demand with no superimposed noise.  The bottom-level
supplier makes every shipment exactly when promised, exactly in the amount
promised. Batch sizes are still 1, but now we impose a capacity threshold on sites 2
and 3: in each time step they can only process 100 parts, a threshhold nonlinearity. As
long as the consumer’s demand is below the capacity of the producers, the system
quickly stabilizes to constant ordering levels and inventory throughout the chain.
When the consumer demand exceeds the capacity of the producers, inventory levels in
those sites begin to oscillate.

Fig. 8 shows the inventory oscillation that arises when demand exceeds capacity by
10%. Site inventories oscillate out of phase with one another, in the form of a
sawtooth that rises rapidly and then drops off gradually. The inventory variation
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ranges from near-
zero to the level of
demand, much
greater than the
excess of demand
over capacity

Fig. 9 shows the
dynamics after
increasing consumer
demand to 150. The
inventories settle to
a sawtooth with a
shorter period. Now
one cycle’s
production of 100
can support only
two orders, leading
to a period-three
oscillation. The
inventories of sites 2
and 3, out of synch
when
Demand/Capacity =
110/100, are now
synchronized and in
phase.

The transition
period is actually
longer than appears
from Fig. 9. The
increase from 110 to
150 takes place at
time 133, but the
first evidence of it in
site 2’s dynamics
appears at time 145.
The delay is due to
the backlog of over-
capacity orders at the
110 level, which
must be cleared
before the new larger
orders can be
processed.

Fig. 10 shows the
result of increasing
the overload even
further. (Because of
the increased detail in the dynamics, we show only the inventory level for site 2.)
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Now the consumer is ordering 220 units per time period. Again, backlogged orders at
the previous level delay the appearance of the new dynamics; demand changes at time
228, but appears in the dynamics first at time 288, and the dynamics finally stabilize
at time 300.

This degree of overload generates qualitatively new dynamical behavior. Instead of
a single sawtooth, the inventories at sites 2 and 3 exhibit biperiodic oscillation, a
broad sawtooth with a period of eleven, modulated with a period-two oscillation. This
behavior is phenomenologicall y similar to bifurcations observed in nonlinear systems
such as the logistic map, but does not lead to chaos in our model with the parameter
settings used here. The occurrence of multiple frequencies is stimulated not by the
absolute difference of demand over capacity, but by their incommensurability.

Detail s of these behaviors are discussed in [13].

2.3 An Equation-Based Model

Following the pioneering work of Jay Forrester and the System Dynamics movement
[5], virtuall y all simulation work to date on supply chains integrates a set of ordinary
differential equations (ODE’s) over time. It is customary in this community to
represent these models graphically, using a notation that suggests a series of tanks
connected by pipes with valves. Fig. 11 gives a simple example of the flow of
material in the DASCh network as it appears in the VenSim® simulation environment
[15].

The rectangular boxes (“Finished2,” “WIP2,” “ Finished3,” “W IP3” ) are “levels,”
or variables whose assignments change over time. In this particular model, they
represent the four critical inventory levels in DASCh sites 2 and 3, a work-in-process
inventory and a finished goods inventory for each of the sites.

Fig. 11. System Dynamics (ODE) Model
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The arrows with valve symbols (shaped li ke hour-glasses: “ship21,” “ prod2,”
“ship32,” “prod3,” “ship43” ) are flows between the levels that they connect, and the
valves are “ rates,” variables that determine the rate of flow. For example, the rate
“prod2” is the rate at which site 2 converts work-in-process to finished goods.

The cloud shapes at the upper-left and lower-right corners represent external
sources and sinks. In this case, the upper-left corner represents the end consumer
(DASCh site 1), while the lower-right corner represents the supplier (DASCh site 4).

The legends associated with neither a box nor a valve (“order rate,” “ order period,”
“production time,” “ capacity”) are auxiliary variables.

Single-bodied arrows show the dependency of rates on other variables (both levels
and auxiliaries) in the model. The exact mathematical form of the dependency is not
shown in the graphical representation, but is encoded in the rate. For example, the
arrows show that the rate “prod2” depends on the level “WIP2” and the auxiliaries
“production time” and “capacity.” The actual dependency is prod2 = min(capacity,
WIP2/production_time).

This particular
model shows the
interplay between
site capacity and
order rate. When the
order rate exceeds
the site capacity, it
demonstrates
oscillations
comparable to those
in the DASCh
model. For example,
Fig. 12 shows the
biperiodic
oscillations for
Demand/Capacity = 220/100. The system dynamics model shows the same
periodicities as the agent-based model. It does not show many of the effects that we
observe in the ABM and in real supply networks, including the memory effect of
backlogged orders, transition effects, or the amplification of order variation. Such
effects require the explicit representation of levels and flows for orders as well as
parts. In particular they require a model of PPIC in the system dynamics formalism,
which is (as we shall see) not easy to produce.

System dynamics models of this nature are widely used in studying organizational
dynamics, business processes, environmental and ecological systems, policy
implications, and a wide range of similar domains. In principle, ABM can be applied
to all of these domains, often in a way that seems more natural.

3. Agents vs. Equations: A High-Level View

ABM and EBM share some common concerns, but differ in two ways: the
fundamental relationships among entities that they model, and the level at which they
focus their attention.

Fig. 12. Inventory Oscillation in an ODE Model
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Both approaches recognize that the world includes two kinds of entities:
individuals and observables, each with a temporal aspect.

Individuals are bounded active regions of the domain. In some domains, the
boundaries that set individuals apart are physical, as when we are studying ants, or
bees, or people. In other domains, the boundaries may be more abstract, as in the case
of DASCh’s sites, each representing a business firm. In any case, the boundaries are
such that those who are interested in the domain recognize the individuals as distinct
from one another. They are “active regions” because those interested in the domain
conceive of the individuals as having behaviors. Individuals “do things” as time
passes.

Observables are measurable characteristics of interest. They may be associated
either with separate individuals (e.g., the velocity of gas particles in a box) or with the
collection of individuals as a whole (the pressure in the box). In general, the values of
these observables change over time. In both kinds of models, these observables are
represented as variables that take on assignments.

Each of these sets of entities invites us to articulate the relationships that unify it
and show how those relationships predict the behavior of the overall system through
time. The first fundamental difference between ABM and EBM is in the relationships
on which one focuses attention.

EBM begins with a set of equations that express relationships among observables.
The evaluation of these equations produces the evolution of the observables over
time. These equations may be algebraic, or they may capture variabil ity over time
(ODE’s, as used in system dynamics) or over time and space (partial differential
equations, or PDE’s). The modeler may recognize that these relationships result from
the interlocking behaviors of the individuals, but those behaviors have no explicit
representation in EBM.

ABM begins, not with equations that relate observables to one another, but with
behaviors through which individuals interact with one another. These behaviors may
involve multiple individuals directly (foxes eating rabbits) or indirectly through a
shared environment (horses and cows competing for grass). The modeler pays close
attention to the observables as the model runs, and may value a parsimonious account
of the relations among those observables, but such an account is the result of the
modeling and simulation activity, not its starting point. The modeler begins by
representing the behaviors of each individual, then turns them loose to interact. Direct
relationships among the observables are an output of the process, not its input.

Fig. 13 summarizes the critical relationships:

• Individuals are characterized, separately or in aggregate, by observables, and affect
the values of these observables by their actions.

• Observables are
related to one
another by
equations.

• Individuals interact
with one another
through their
behaviors.

EquationsBehaviors

Individuals Observables

Fig. 13. Unifying Multiplicities
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A second fundamental difference between ABM and EBM is the level at which the
model focuses. A system is made up of a set of interacting individuals. Some of the
observables of interest may be defined only at the system level (e.g., the pressure of
an enclosed gas), while others may be expressed either at the individual level or as an
aggregate at the system level (e.g., location of an organism vs. the density of
organisms per unit space of habitat). EBM tends to make extensive use of system-
level observables, since it is often easier to formulate parsimonious closed-form
equations using such quantities. In contrast, the natural tendency in ABM is to define
agent behaviors in terms of observables accessible to the individual agent, which
leads away from reliance on system-level information. In other words, the evolution
of system-level observables does emerge from an agent-based model, but the modeler
is not as likely use these observables explicitly to drive the model’s dynamics as in
equation-based modeling.

These two distinctions are tendencies, not hard and fast rules. The two approaches
can be combined [4]: within an individual agent in an ABM, behavioral decisions
may be driven by the evaluation of equations over particular observables, and one
could implement an agent with global view whose task is to access system-level
observables and make them visible to local agents, thus driving an ABM with system-
level information. Furthermore, while agents can embody arbitrary computational
processes, some equation-based systems (those based on PDE’s, but not the simple
ODE’s used in system dynamics) are also computationally complete [11]. The
decision between the two approaches must be made case by case on the basis of
practical considerations.

4. Agents vs. Equations: Practical Considerations

A practitioner is concerned with the underlying structure of a model, the naturalness
of its representation of a system, and the verisimilitude of a straightforward
representation. This section discusses these considerations with special reference to
modeling supply networks. Some of these issues have been discussed by others in the
domains of social science [2, 3] and ecology [9, 16] (where ABM’s are usually called
“ Individual-Based Models” ).

4.1 Model Structure

The difference in representational focus between ABM and EBM has consequences
for how models are modularized. EBM’s represent the system as a set of equations
that relate observables to one another. The basic unit of the model, the equation,
typicall y relates observables whose values are affected by the actions of multiple
individuals, so the natural modularization often crosses boundaries among
individuals. ABM’s represent the internal behavior of each individual. One agent’s
behavior may depend on observables generated by other individuals, but does not
directly access the representation of those individuals’ behaviors, so the natural
modularization follows boundaries among individuals.

This fundamental difference in model structure gives ABM a significant advantage
in commercial applications such as supply network modeling, in two ways.
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1. In an ABM, each firm has its own agent or agents. An agent’s internal behaviors
are not required to be visible to the rest of the system, so firms can maintain
proprietary information about their internal operations. Groups of firms can
conduct joint modeling exercises while keeping their individual agents on their
own computers, maintaining whatever controls are needed. Construction of an
EBM requires disclosure of the relationships that each firm maintains on
observables so that the equations can be formulated and evaluated. Distributed
execution of EBM’s is not impossible, but does not naturall y respect commerciall y
important boundaries among the individuals.

2. In many cases, simulation of a system is part of a larger project whose desired
outcome is a control scheme that more or less automaticall y regulates the behavior
of the entire system. The agents in an ABM correspond one-to-one with the
individuals (e.g., firms or divisions of firms) in the system being modeled, and
their behaviors are analogs of the real behaviors. These two characteristics make
agents a natural locus for the application of adaptive techniques that can modify
their behaviors as the agents execute, so as to control the emergent behavior of the
overall system. The migration from simulation model to adaptive control model is
much more straightforward in ABM than in EBM. One can easil y imagine a
member of a supply network using its simulation agent as the basis for an
automated control agent that handles routine interactions with trading partners. It is
much less li kely that such a firm would submit aspects of its operation to an
external “equation manager” that maintains specified relationships among
observables from several firms.

More generall y, ABM’s are better suited to domains where the natural unit of
decomposition is the individual rather than the observable or the equation, and where
physical distribution of the computation across multiple processors is desirable.
EBM’s may be better suited to domains where the natural unit of decomposition is the
observable or equation rather than the individual.

4.2 System Representation

The variety of EBM with which we have experimented (ODE’s) most naturally
represents the process being analyzed as a set of flow rates and levels. ABM most
naturally represents the process as a set of behaviors, which may include features
diff icult to represent as rates and levels, such as step-by-step processes and
conditional decisions. ODE’s are well -suited to represent purely physical processes.
However, business processes are dominated by discrete decision-making. This is only
one example of representational advantages of ABM’s over EBM’s. More generally:

1. ABM’s are easier to construct. Certain behaviors are difficult to translate into a
consistent rate-and-level formalism. PPIC algorithms are an important example. In
our attempts to duplicate DASCh results using VenSim®, we were unable to
construct a credible PPIC algorithm using the rate-and-level formalism. [17]
comments on the complexity of such models, and we have been unable to find an
actual example of such a model in the system dynamics literature. Recent
enhancements to ithink® reflect such diff iculties. The most recent release of this
popular system dynamics package includes “black boxes” for specific entities such
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as conveyors or ovens whose behavior is difficult to represent in a pure rate-and-
level system [6]. One suspects that the only reali stic way to incorporate complex
decision algorithms such as PPIC in system dynamics models will be by
implementing such black boxes, thus incorporating elements of ABM in the spirit
of [4].

2. ABM’s make it easier to distinguish physical space from interaction space. In
many applications, physical space helps define which individuals can interact with
one another. Customer-supplier relationships a century ago were dominated by
physical space, leading to the development of regional industries, such as the
automotive industry in southeast Michigan. Advances in telecommunications and
transportation enable companies that are physically separate from one another to
interact relatively easily, so that automotive suppliers in Michigan now find
themselves in competition with suppliers based in Mexico or the Pacific rim. Such
examples show that physical space is an increasingly poor surrogate for interaction
space in applications such as commerce. ODE methods such as system dynamics
have no intrinsic model of space at all. PDE’s provide a parsimonious model of
physical space, but not of interaction space. ABM’s permit the definition of
arbitrary topologies for the interaction of agents.

3. ABM’s offer an additional level of validation. Both ABM’s and EBM’s can be
validated at the system level, by comparing model output with real system
behavior. In addition, ABM’s can be validated at the individual level, since the
behaviors encoded for each agent can be compared with local observations on the
actual behavior of the domain individuals. (A balancing consideration is that the
code needed to represent an agent’s behavior in ABM is often longer and more
complex than a typical equation in an EBM, and thus potentially more susceptible
to representational error.)

4. ABM’s support more direct experimentation. Managers playing “what-if” games
with the model can think directly in terms of familiar business processes, rather
than having to translate them into equations relating observables.

5. ABM’s are easier to translate back into practice. One purpose of “what-if”
experiments with a model is to identify improved business practices that can then
be implemented in the company. If the model is expressed and modified directly in
terms of behaviors, implementation of its recommendations is simply a matter of
transcribing the modified behaviors of the agents into task descriptions for the
underlying physical entities in the real world.

4.3 Verisimilitude

In many domains, ABM’s give more reali stic results than EBM’s, for manageable
levels of representational detail. The qualification about level of detail is important.
Since PDE’s are computationally complete, one can in principle construct a set of
PDE’s that completely mimics the behavior of any ABM, and thus produce the same
results. However, the PDE model may be much too complex for reasonable
manipulation and comprehension. EBM’s (li ke system dynamics) based on simpler
formalisms than PDE’s may yield less reali stic results regardless of the level of detail
in the representation.

One example in the case of extremely simple agents is the Ising model of
ferromagnetic phase transitions in statistical physics. The agent in this model is a
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single atom in an N-dimensional square lattice of similar agents. Its behavior is to
change the orientation of its spin to minimize the energy in its environment. One
common and generall y useful approach to such systems employs mean field theory,
analyzing the behavior of a representative atom under statistical averages over the
states of neighboring atoms [14, pp. 430-434]. In some dimensions, this mean field
EBM approach may miss the order of the phase transition, predict a phase transition
where there is none, or yield an inaccurate temperature for the transition. (In one and
two dimensions, the equations defining the Ising model can be solved exactly and
analytically without the homogeneity assumptions that lead to the errors of the mean
field approach, but such solutions are intractable in higher dimensions.) ABM models
that emulate the behavior of individual atoms can be developed for arbitrary
dimensions, and are more accurate both qualitatively and quantitatively than the mean
field approximation.

In a more complex domain, researchers in the dynamics of traffic networks have
achieved more reali stic results from traff ic models that emulate the behaviors of
individual drivers and vehicles, compared with the previous generation of models that
simulate traff ic as the flow of a fluid through a network [7]. The latter example bears
strong similarities to the flow-and-stock approach to supply chain simulation, and
encourages us to develop an agent-based approach for this application as well.

Wilson [18] offers a detailed study that compares ABM and EBM using the same
system (a predator-prey model). He develops a series of EBM’s, each enhancing the
previous one to rectify inconsistencies between the ABM and the EBM. The study
assumes that the ABM is the more realistic model, and that the EBM is the
appropriate locus for making adjustments to bring the two models into agreement.
The initial ODE EBM describes reactions between the two species, but representing
dispersal through space requires extending it to a set of spatio-temporal integro-
differential equations. These equations, modeling both individual characteristics and
dispersal using population averages, lead to qualitatively different behaviors than do
ABM’s. For example, ignoring local variation in dispersal leads to limit cycles rather
than the extinction scenarios that dominate ABM’s. To correct for these lumped
parameter effects, the EBM is interrupted at each iteration of the integration to add a
random perturbation to the population parameter at each location and to zero local
population levels that fall below specified threshholds.

The disadvantages of EBM in these examples result largely from the use of
averages of critical system variables over time and space. They assume homogeneity
among individuals, but individuals in real systems are often highly heterogeneous.
When the dynamics are nonlinear, local variations from the averages can lead to
significant deviations in overall system behavior. In business applications, driven by
“ if-then” decisions, nonlinearity is the rule. Because ABM’s are inherently local, it is
natural to let each agent monitor the value of system variables locally, without
averaging over time and space and thus without losing the local idiosyncrasies that
can determine overall system behavior. The EBM for our toy four-firm supply
network (Fig. 11) does not use averages over individuals, and so does not suffer from
this disadvantage. However, real-world supply networks are much larger. The total
number of shipping points in the U.S. automotive industry is on the order of 40,000,
and it is difficult to see how a parsimonious EBM of such a system could avoid the
use of lumped parameters.
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5. Conclusion

ABM is a relatively new approach to system modeling and simulation. In many
domains, it faces entrenched competition from EBM methodologies such as system
dynamics. Our experience with both approaches leads to three general
recommendations.

First, ABM is most appropriate for domains characterized by a high degree of
localization and distribution and dominated by discrete decisions. EBM is most
naturally applied to systems that can be modeled centrally, and in which the dynamics
are dominated by physical laws rather than information processing.

Second, researchers in agent-based modeling should be aware of the long history
of EBM, and should consider explicit case comparisons of their ABM’s with existing
or potential EBM’s where relevant. Such comparisons are particularly valuable in
simple systems in which one can trace the causes of divergence between the models.
The sketch of the relative advantages and disadvantages of the two approaches
presented in this paper is preliminary. Our ability to adopt the best modeling approach
for a given problem depends on developing a collection of cases that demonstrate the
respective strengths and weakness of the two approaches.

Third, the widespread popularity of EBM is due in large measure to the availabili ty
of several intuitive drag-and-drop tools for constructing and analyzing system
dynamics models. Widespread realization of the advantages of agent-based modeling
wil l depend on the availability of comparable tools for this approach, and the ABM
community should encourage the development and refinement of such tools.
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