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Abstract

This review deals with several microscopic (‘agent-based’) models of financial markets
which have been studied by economists and physicists over the last decade: Kim—Markowitz,
Levy-Levy—Solomon, Cont-Bouchaud, Solomon—Weisbuch, Lux—Marchesi, Donangelo—
Sneppen and Solomon—Levy—Huang. After an overview of simulation approaches in financial
economics, we first give a summary of the Donangelo—Sneppen model of monetary exchange
and compare it with related models in economics literature. Our selective review then outlines
the main ingredients of some influential early models of multi-agent dynamics in financial
markets (Kim—Markowitz, Levy-Levy—Solomon). As will be seen, these contributions draw
their inspiration from the complex appearance of investors’ interactions in real-life markets.
Their main aim is to reproduce (and, thereby, provide possible explanations) for the spectacular
bubbles and crashes seen in certain historical episodes, but they lack (like almost all the work
before 1998 or so) a perspective in terms of the universal statistical features of financial time
series. In fact, awareness of a set of such regularities (power-law tails of the distribution of
returns, temporal scaling of volatility) only gradually appeared over the nineties. With the
more precise description of the formerly relatively vague characteristics (e.g. moving from
the notion of fat tails to the more concrete one of a power law with index around three), it
became clear that financial market dynamics give rise to some kind of universal scaling law.
Showing similarities with scaling laws for other systems with many interacting sub-units, an
exploration of financial markets as multi-agent systems appeared to be a natural consequence.
This topic has been pursued by quite anumber of contributions appearing in both the physics and
economics literature since the late nineties. From the wealth of different flavours of multi-agent
models that have appeared up to now, we discuss the Cont—-Bouchaud, Solomon-Levy—Huang
and Lux—Marchesi models. Open research questions are discussed in our concluding section.

4 Now at Deutsche Bundesbank. The opinions expressed in this review are those of the authors, not those of the
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1. Introduction

Physicists not only know everything, they also know everything better. This indisputable
dogma does not exclude, however, that some economists published work similar to what
physicists now celebrate as ‘econophysics’, only much earlier, like Nobel laureate Stigler [181]
(which was not exactly agent-based nor are all econophysics models agent-based). Are
econophysicists, like Christopher Columbus, rediscovering something which others had found
earlier and also getting things somewhat wrong, but nevertheless changing human history? As
the team of authors of this survey brings together scientists from both disciplines, we do not
attempt to give a definite answer to this question, but simply review some influential models
by both physicists and economists, to allow a fair comparison. Long ago, according to [95],
economists such as Walras and Pareto were inspired by Newtonian mechanics.

Stylized facts is the economist’s name for the universal properties of markets, independent
of whether we look at New York, Tokyo or Frankfurt or whether we are concerned with share
markets, foreign exchange markets or derivative markets. The following is a collection of those
‘stylized facts’ that are now almost universally accepted among economists and physicists.
(1) There is widespread agreement that we cannot predict whether tomorrow the price will go
up or down, on the basis of past price trends or other current information. (ii) If today the market
has been very volatile, then the probability for observing a large change (positive or negative)
tomorrow is also higher than on average (volatility clustering). (iii) The probability to have a
large change in the market, by at least x %, decays with a power law in 1/x. Fact (iii) was first
discovered by Mandelbrot [138] who proposed the Levy stable model for financial returns.
Over recent years, the majority opinion (see [73, 196] for dissent) among researchers in the
field has, however, converged to the view that the tails of the cumulative distribution of returns
are characterized by a power law with exponent around 3. The underlying data would, hence,
possess finite variance in contradiction to the Levy stable model. (iv) The gth moments of the
distribution of price changes are multi-fractal, i.e. their exponent is not a linear function of this
index ¢ (a rather new observation). Facts (i)—(iii) can be found in surveys on the econometrics
of financial markets, cf de Vries [189] and Pagan [148]. Fact (iv) was first partially documented
by Ding et al [62] and has meanwhile also obtained the status of a universal feature of all markets
in the empirical finance literature [125]. Similar research on multi-scaling (multi-fractality),
albeit with different analytical tools, was conducted in numerous econophysics papers, starting
with Mandelbrot ef al [137] and Vandewalle and Ausloos [186].

Although research in agent-based models started from a diverse range of intentions (see
below), much of the physics-inspired literature considered in this survey aims at behavioural
explanations of the above stylized facts. The more successful ones, in fact, even generate
numerically accurate and robust scaling exponents. It appears worthwhile to point out that
with these empirically relevant predictions, the microscopic models fulfil Friedman’s [79]
methodological request that a theory ‘(...) is to be judged by its predictive power for the
class of phenomena which it is intended to explain’. Despite this conformity with the
classical methodological premise to which most economists pay homage, one might find
these models being criticized sometimes because of their lack of ‘microfoundations’. The
request of microfoundations in this critique aims at a full-fledged intertemporal optimization
as the basis of agents’ economic activities which is mostly absent in agent-based models.
Hardcore proponents of such a microfoundation would dismiss any theoretical approach that
falls short of complete optimization even if it yields successful preditions. Needless to say that
the proponents of agent-based models have a different view and the present authors would in
particular stress the importance of interaction as an alternative facet of microfoundations of
macroscopic phenomena in economics. A dogmatic dismissal of successful theories because
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of their violation of modelling principles imposed a priori would be hard to square with
Friedman’s methodological premise to which the same economists would mostly subscribe.

After the pioneering computer simulations of market models from economists such as
Stigler [181], numerous such models have been published in the physics literature since 1992.
We concentrate here on those econophysics models which have raised enough interest to be
also investigated by others than the original authors themselves. These include the models of
(i) Kim and Markowitz [105], (ii) Levy, Levy and Solomon [117-123] (iii) Solomon, Levy and
Huang [90], (iv) Cont and Bouchaud [57], (v) Solomon and Weisbuch [170] (see also [169]) and
(vi) Lux and Marchesi [128, 129], all conceived as models for modern (financial) markets, as
well as the model for ancient barter and self-organization of monetary exchange by Donangelo
and Sneppen [64] (see also [23,24,63]. (Kim and Markowitz are not econophysicists but used
similar methods earlier; Markowitz got a Nobel prize for portfolio theory but invented his own
computer language decades earlier [144].)

We start with the latter one since it (in its literal interpretation) refers to prehistoric times.
We neglect the now (in physics circles) widespread minority games, as they arose from the
question of when it is best to visit the El Farol bar in Santa Fe to avoid overcrowding. The
weighted majority of the present authors prefer to drink experimentally instead of simulating
drinks, and thus we leave these minority games to another review [61]. While according to
the late Nobel laureate Friedman an ultimate aim of models should be to predict the future, we
concentrate here on the easier task of explaining the past; a model which fails to describe past
reality is unlikely to make reliable predictions.

2. Overview

Research applying microscopic simulations in economics and finance stems from several
sources®. First, a number of authors in the economics ‘mainstream’ have resorted to some
type of microscopic simulation in the course of their work on certain economic problems
and models. The framework of Kim and Markowitz [105], explored in detail in section 4,
may serve as a prominent example. Like many economists of that time, the authors were
interested in explaining the sudden drop in the US stock market on 17th October 1987.
A widespread explanation for this event was the automatic overreaction of computer-based
‘dynamic hedging’ strategies that had become popular strategies of institutional investors
in the years before. However, models including the market interactions of many investors
following such strategies are clearly hard to solve in an analytical manner. Therefore, Kim and
Markowitz decided to investigate the destabilizing potential of dynamic hedging strategies
via Monte Carlo simulations of a relatively complicated model of price formation in an
‘artificial’ financial market (cf [140]). They were, however, not the first to rely on simulations
of economic processes. During the fifties, the well-known economist Phillips—who first
recovered the so-called Phillips curve (i.e. the inverse relationship between unemployment
and inflation rate)—used a hydraulic machine for simulation of macroeconomic processes
([150], see also [146]). Even earlier, we can find simulations via electronic circuits published
in economics journals [142].

However, the first simple Monte Carlo simulation of a financial market was reported
by Stigler [181], who generated trading orders as random variables. Two decades later,
simulations of different trading mechanisms played an important role in the literature on
the ‘microstructure’ of financial markets [55]. The interest here was mainly in questions

3> An inspiring source from a field outside economics were the microscopic models of social segregation and related
social phenomena by Schelling [160, 161]. Physicists might recognize its dynamics as a variant of the Ising model.



Agent-based models of financial markets 413

of efficiency and stability of different forms of market organization and regulation as well
as the impact of introducing computer-assisted trading. Like in the approach of Kim and
Markowitz a few years later, the sheer complexity of the models, because of the aim to
reproduce many features of real-life market, necessitated a simulation approach. Interestingly,
the microstructure literature later moved on to other questions, namely, analysis of asymmetric
information among traders. Luckily, Bayesian learning methods allowed large classes of
asymmetric information models to be tackled in a rigorous mathematical manner. As a
consequence, the leading textbook of the nineties, ‘Market Microstructure Theory’ by O’Hara
[147], only reviews theoretical work and lacks any reference to microscopic simulations.

Of course, it was only a matter of time until models became so complicated that they
could not be solved analytically anymore and had to be supported by numerical analysis. In the
asymmetric information literature, interesting recent contributions coming close to microscopic
simulations deal with learning in financial markets [76, 156, 157]. Using different variants of
adaptive learning mechanisms, these authors study how agents learn to use signals about future
market prices and how to make inferences from these signals. The key interest is in whether or
not the learning dynamics converges to a time-invariant equilibrium that would obtain under
‘rational’ (i.e. correct) expectations.

With its focus on the extraction of information from imperfect signals by fully rational
or learning investors, the dominant branch of models in financial economics neglected some
of the most striking observations in real financial markets. Namely, there was no role at all
in these models for features such as chartist strategies (i.e. strategies looking for patterns
in the plots of past prices) or herd behaviour among traders. In a sense, all traders in
traditional microstructure models behave like fundamentalists in that they try to infer the
correct ‘fundamental’ value of an asset from the limited amount of information they have.
However, the existence of both chartists and fundamentalists in real markets is too obvious
to be neglected and a long tradition of modelling the interaction of these two types of traders
exists in the economics literature. In fact, we can find interesting papers on this subject
back in the fifties [28] showing the destabilizing potential of chartist strategies in a rigorous
analytical analysis. The chartist versus fundamentalist topic was later dropped because of
the seeming lack of ‘rationality’ of agents’ behaviour in these models, which means the
apparent ad hoc nature of the description of individual behaviour together with Friedman’s [79]
argument that irrational traders should be wiped out due to their incurred losses. While this
argument has often been repeated in the economics literature, it is interesting to note that quite
a few authors almost immediately offered counterexamples to Friedman’s assertion [28, 104].
Nevertheless, we can only find a few contributions to this strand of literature in the seventies and
eighties [29,202] and as of the early nineties starting with Day and Huang [59] the chartists—
fundamentalists interaction regained its place as an important research topic. The literature of
the nineties has an abundant diversity of interacting agent models incorporating these features
in one way or another. An early application to foreign exchange markets is Frankel and
Froot [77,78] who combine a standard monetary model of open economy macroeconomics with
a chartist-fundamentalist approach to expectation formation (replacing the usual assumption
of ‘rational’ expectations in earlier models). Their aim is to provide a possible explanation
of the well-known episode of the dollar bubble over the first half of the eighties. They
show that a deviation from the fundamental value can set into motion a self-reinforcing
interplay between forecasts and actual development: the initial deviation between price and
fundamental value will trigger the switch of some agents from fundamentalist to chartist
behaviour. However, the more the market composition changes in favour of the chartist group,
the less pressure will exist for prices to revert to their fundamental anchor values. Even laymen
far from economic theory or computer simulations may have learned from the information
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technology bubble which burst in spring 2000 that not everything is fully rational in real
markets.

An important subsequent variation on Frankel and Froot’s theme is the more elaborate
model by DeGrauwe ef al [60] who show that this type of dynamics can lead to chaotic
behaviour of exchange rates. Their model is one of the first able to explain some stylized facts
other than the mere deviation from the fundamental value. In particular, they show that their
chaotic dynamics is hard to distinguish from a pure random walk process and that it helps
to explain the forward premium puzzle (the finding that forward rates are a poor and biased
predictor for subsequent exchange rate movements).

Chaotic dynamics derived from the interaction of agents with different prediction functions
for future price movements are the topic of a comprehensive research project on ‘adaptive belief
systems’ starting with the work of Brock and Hommes [38] and extended to the works of Brock
and Hommes [37,39,40], Gaunersdorfer [82], Gaunersdorfer and Hommes [81], Gaunersdorfer
et al [80] and Chiarella et al [53] (see also Hommes [89] for a review). While the early papers
of this literature are mainly concerned with various bifurcation routes of chaotic attractors
in such systems, the recent papers by Gaunersdorfer and Hommes [81] and Gaunersdorfer
et al [80] are concerned with a possible mechanism for volatility clustering emerging from this
theoretical set-up. They show that co-existence of different attractors (e.g. a fixed point and a
cycle or chaotic attractor) in a deterministic dynamics will lead to repeated switches between
these attractors when small amounts of noise are introduced. Since different attractors are
characterized by different degrees of volatility of prices, their varying influence on the overall
time series generates a perplexingly realistic picture of switches of the market from tranquil
to volatile phases and vice versa. Gaunersdorfer and Hommes [81] show that estimates of
GARCH models can produce quite similar results as with empirical data.

The adaptive belief dynamics has agents switching between predictors according to their
past performance. A group of alternative learning models have used modern computer-
learning techniques as models of human adaptation. The best-known variant in the context
of financial markets is surely the Santa Fe Artificial Stock Market [19, 114, 149], the authors
of which included a statistical physicist. In this model, traders are equipped with a set of
classifiers basically consisting of simple chartist and fundamentalist rules. Particular forecasts
of future returns are connected with certain combinations of classifiers. Classifiers and
forecasts are subjected to genetic operations (selection, crossover, mutation). Over time,
successful combination of rules (classifiers) should be maintained, whereas poor ones should
be skipped in favour of better ones. The set-up of this and similar models is notably different
from most other applications of machine learning techniques: whereas usually classifier
systems, genetic programming and neural networks are used to recover regularities in data
sets that are independent from their own learning activity, the artificial financial market
application deals with interacting agents, who naturally influence the performance of each
others’ attempt at learning the market’s rules. The main finding of the early work at the Santa
Fe Institute was that the dominance of either chartist or fundamentalist classifiers depends
on the frequency of activation of the genetic operations. With more frequent activation,
chartist behaviour was found to be dominating. LeBaron et al [114] showed that the model
reproduces some empirical features such as leptokurtosis of returns and correlation between
volume and volatility. Other artificial markets include work by Chen and Yeh [51, 52], who
instead of classifiers systems use genetic programs as evolving models of their agents and can
also show consistency of simulated data with some empirical findings. Cincotti er al [54]
constructed a more general framework that is designed to accommodate various learning
devices. Related research using genetic algorithm learning in prominent economic models can
be found in the works of Arifovic [17], Arifovic and Masson [16], Dawid [58], Szpiro [182],
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Lux and Schornstein [130] and Georges [83]. Le Baron [115, 116] has models closely
related to the SFI model, but with learning via neural networks and the interesting addition
of variable memory length of the agents (cf the Levy—Levy—Solomon model reviewed in
section 5).

Another strand of economic literature proposed to cope with the diversity of behavioural
variants using a statistical approach, cf Champernowne and Cowell [47], Kirman [107],
Aoki [11,13], Ramsey [154], Lux [131], Foley [75] and Kaizoji [100, 101, 102]. Only part
of this work is concerned with financial applications. A wealth of applications of statistical
physics tools to other branches of economics can be found in Aoki’s books [10, 11, 13].

As concerns finance, perhaps the first attempt at a microscopic approach with stochastic
features guided by work in statistical physics is that by Landes and Loistl [113]. Later work
includes work by Youssefmir et al [200], who reconsidered the destabilizing potential of trend-
following behaviour, and by Kirman [106] combining the statistical modelling of herding
among speculators with an expectation formation a la Frankel and Froot. Similarly, Farmer
and Joshi [74] reconsidered the impact of several frequently used trading strategies in price
formation, and Carvalho [43] showed that in a particular simplified variant of their model,
emergence of a power law for extreme returns can be rigorously demonstrated. Another
highly relevant contribution is by Aoki [14] who deals with a stochastic framework for market
participation with infinitely many strategies or trading rules. Deriving the partition vector (the
number of types or clusters of agents) from a rather general specification of the entry and exit
dynamics, he shows that often the sum of the fractions of agents in the two largest groups will
be close to 1. This may provide a theoretical rationale for the confinement to two trader groups
in many models of speculative dynamics.

Another example of a statistical approach towards interacting agent dynamics in finance
is the work by Lux and Marchesi, reviewed below (section 9). The latter group of models is, in
fact, not too far from those proposed in the physics literature. Prominent early examples are the
threshold dynamics (in the form of trigger values for agents’ buy or sell decisions) by Takayasu
et al [183] and Bak et al [25]. Their analysis is also concerned with the scaling behaviour of
the resulting price dynamics and reports some interesting features. A somewhat related model
leading to intermittent bursts of activity is given by Ponzi and Aizawa [152]. Later additions
to that literature include the Cont—Bouchaud percolation model (reviewed in section 7) and
related lattice-based set-ups by Iori [98] and Bornholdt [34]. Interestingly, contributions in
this vein have recently also been applied to other financial phenomena such as contagion of
bankruptcies and systemic risk in the inter-bank lending system [2, 88, 96].

3. The dynamics of monetary exchange

Before money was invented, exchange of goods would have required barter between agents
with coincident endowments and wants. However, at a more advanced level of division of
labour, one may trade by getting something one does already possess but which, as judged
from past experience, one will be able to sell later easily to others. Donangelo and Sneppen [64]
in this sense started with traders who initially have a random endowment of products. They
then try to fill the gaps in their inventories by bartering with other traders and keep in mind
how often some specific product was asked from them. In the case that a trader has something
to sell but already has the product which the partner offers for barter, the first trader may opt
to get a product already in his/her inventory. This is done with a probability proportional to
the number of times this product was asked from this trader in recent times, and this product
then plays the role of money: we cannot eat the money we earn, but we hope to buy food with
it later.
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For a suitable range of the number of units per trader and the number of differentiated
products available, traders have enough holes in their inventories to barter, but after some
time trades involving money also (in the above sense) play an important role; and sometimes
no trade at all is possible in an encounter of two randomly selected traders. Which
product evolves as the most desired ‘money’ thus depends on the random dynamics of the
market, without outside interference and without any special property of that product at
the beginning. This result conforms to physics ideas that ‘everything’ can be described by
randomness, whether it is Boltzmann statistics for thermodynamics, the build-up of social
hierarchies [33] or the value of the European currency. Economists may regard this view as
over-simplified.

For one variant of the model, the time dependence could be quantified: a stationary state
is reached if every trader had several chances to trade with every other possible trader. The
distribution of times for which one currency stays on top then appears to follow a stretched
exponential [177]. Other models for the ‘statistical mechanics of money’ are surveyed
in [86].

From the economists’ point of view, the information content of some of these studies
is somewhat questionable as there are practically no measurements of the corresponding
quantities in real economies. Itis nevertheless interesting to note that quite similar models have
been brought up by economists some time ago. Looking up contributions such as the work
by Jones [99] or the seminal paper by Kiyotaki and Wright [108], one finds almost the same
structure as in the Donangelo and Sneppen approach. This is not too surprising insofar as—
although Donangelo and Sneppen do not quote the rich literature that emerged from Kiyotaki’s
and Wright’s search model—their work can, in fact, be traced back to these sources. A careful
reading reveals that they draw their inspiration from an earlier paper in the physics literature
by Yasutomi [198], who studied a model along the lines of Kiyotaki and Wright. It might
have been useful to consult the by now voluminous literature on search-equilibrium models in
economics rather than start from scratch with a similar pursuit. Be that is it may, the style of
analysis in the early papers by economists was clearly different from that of Donangelo and
Sneppen. Following the then prevalent style of reasoning in their subject they were theoretical
investigations into the nature of equilibria in an economy with a large number of goods rather
than a truly dynamic model of the emergence of money. The question pursued was under
what conditions one would find a “‘monetary’ equilibrium in which one of the available goods
emerges as a medium of exchange and under what conditions the economy remains stuck
in a situation of barter trade. Like in many other areas in economics, the demonstration
of the existence of multiple equilibria (barter versus monetary equilibrium as well as
different monetary equilibria) pointed to the necessity of investigating out-of-equilibrium
dynamics.

To give the reader a feeling of the typical approach pursued in economics, we give a short
sketch of the basic ingredients of the seminal Kiyotaki and Wright model that has stimulated
a whole branch of recent economics literature. The set-up by Kiyotaki and Wright is, in fact,
more of an example than that of a general model of a multi-good economy. In particular,
it is assumed that there are three commodities in the economy which are called goods 1, 2
and 3. There is also an infinite number of individuals who specialize in both production and
consumption: type i(i = 1, 2, 3) agents derive pleasure (utility) only from the consumption
of good i and are able to produce only good i” # i. A typical example used in many of the
pertinent contributions has the following structure of consumption and production:

i 1 2 3
i’ 2 3 1°
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This implies that there is no double ‘coincidence of wants’ in the economy. Therefore,
intermediate trading of goods by agents who do not desire them as consumption goods is
required for the satisfaction of the need of these agents. It is furthermore assumed that in
every period there is a random matching process that assigns every agent to a pair with one
other agent within the economy. Pairs of agents then have the chance to trade with each other
(exchange their goods). In the theoretical papers on this subject, the focus is on the detection
and characterization of steady state Nash equilibria: sets of trading strategies of each type of
agents together with the steady state distribution of goods resulting from these strategies, so that
each individual maximizes its expected utility under full information (rational expectations)
about the strategies pursued by other individuals. There are also storage costs per period for
goods that are not consumed by their owners. The distribution of both the instantaneous utilities
derived from consumption and the storage costs are crucial for the types of Nash equilibria
that exist in this model. These goods with lower storage costs are, then, more likely to emerge
as ‘moneys’ due to their more convenient properties (e.g. shells rather than pigs; the Latin
word pecunia for money comes from pecus = cattle). A particular interesting situation is the
co-existence of so-called ‘fundamental’ and ‘speculative’ equilibria. In the former, only goods
with lower storage costs are accepted by the agents (and, hence, they can be said to concentrate
on fundamentals in their trading decisions), while in the latter case some low-storage costs are
also traded against high-storage commodities. The motivation for this at first view unattractive
exchange is higher marketability of the high-cost goods. Accepting high-storage costs in the
hope of higher chances of exchanging these goods against their preferred one, the agents could
be said to act out of a speculative motivation. This second case is the more interesting one
as it corresponds to the ‘emergence of money’: certain goods are not traded because of their
intrinsic values, but purely because they are accepted by other agents. To solve for steady state
equilibria requires us to consider the development of expected lifetime utility for each group
of agents:

oo
EY B OU; — IP()D; — IS (tcij), (1)
=0
where U, is the instantaneous utility from consumption, D; the instantaneous disutility from
production (i.e. production costs) and ¢;; the storage costs of goods j for type i. B < 1 is the
discount factorand 7, I, and I ;; are indicator functions assuming the value 1 atany period  in
which consumption, production or exchange take place and O otherwise. Bellman’s approach
to dynamic programming allows us to express this problem in terms of value functions of
certain states. For example,

Vi(j) = —cij + max BE[V; (j)I]] (@)

could be used to denote the value for an individual of group i to currently own one unit of
goods j. The value, V;(j), of this scenario consists of an instantaneous disutility, —c;;, the
negative storage costs incurred by this agent plus the discounted value of the expected change
in its situation in the next period, E[V;(j')|j]. Here j' could be identical to j (if (s)he does
not accept the exchange possibilities offered in the next period), to i (if (s)he is offered her/his
preferred goods) or some j' # i and j' # j (if (s)he accepts different goods offered to him).
Although this formalism greatly facilitates the analysis, rigorous derivation of the type of Nash
equilibria sketched above is still a combinatorial nightmare. Of course, having demonstrated
the potential of this kind of model to generate speculative equilibria as steady state solutions,
the question emerges whether agents could detect these profitable trading possibilities. A
number of authors have taken up the question of whether reasonable dynamics could lead to a
self-organization of the Kiyotaki and Wright economy converging to either a fundamental or
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speculative equilibrium. Contributions to the dynamics of exchange economies made use of
classifier systems [139] or genetic algorithms in order to describe the evolution of conventions
and self-organization of monetary exchange within an ensemble of uncoordinated agents.

Besides papers with a computational approach of artificial and boundedly rational agents
one can also find contributions with real agents in controlled laboratory environments being
rewarded with real money in dependence on their utility gains [41,66]. To the surprise and
disappointment of some authors, both in experiments with artificial agents [139] and human
subjects one often [41, 67] only finds the emergence of fundamental equilibria. Strangely
enough a kind of fundamental steady state even appeared in some set-ups in which the
‘speculative’ scenario is the unique equilibrium. Somewhat more favourable results concerning
the ‘emergence of money’ are obtained in a recent paper by Basci [27] who allows for imitative
behaviour.

Dufty [67] tried to combine artificial, agent-based simulations with laboratory experiments
keeping in view the above-mentioned problem. He used results of preliminary laboratory
experiments for his computational approach which led to an improvement with respect to the
speed of learning compared with earlier experimental Kiyotaki—Wright environments [108].

Furthermore, Aoki [12] used tools from statistical mechanics in his re-investigations of the
Kiyotaki-Wright approach. In this perspective, the Donangelo and Sneppen approach appears
to fit well into an established line of economics research on the intriguing question: how
could agents develop the idea of ‘money’? The early stage of the study of out-of-equilibrium
dynamics in this context warrants that a great deal of collaborative work could still be done in
this area in the future.

4. The first modern multi-agent model: Kim—Markowitz and the crash of 1987

After this digression into very fundamental questions of economic theorizing, we turn to
the major playground of multi-agent models in economics: artificial economic life in the
sense of computer-based stock or foreign exchange markets. Besides some early Monte Carlo
simulations such as those by Stigler [181] or by Cohen et al [55], the first ‘modern’ multi-
agent model is the one proposed by Kim and Markowitz [105]. The major motivation of
their microsimulation study was the stock market crash in 1987 when the US stock market
decreased by more than twenty per cent. Since this dramatic decrease could not be explained
by the emergence of significant new information, ensuing research concentrated on factors
other than information-based trading in determining stock price volatility (cf [163]). But
although hedging strategies, and portfolio insurance in particular, have been blamed to have
contributed to the crash by increasing volatility [56], the theoretical work on the link between
portfolio insurance and stock market volatility was rather limited at that time (e.g. [36]). In
their simulation analysis, Kim and Markowitz, therefore, tried to explore the relationship
between the share of agents pursuing portfolio insurance strategies and the volatility of the
market.

4.1. The model

The simulated market contains two types of investors, ‘rebalancers’ and ‘portfolio insurers’,
and two assets, stocks and cash (with interest rate equal to 0). The wealth w of each agent at
time ¢ is given as

Wy = G pr + s 3)
where ¢, is the number of stocks the agent holds at time ¢, p; is the price of the stock at time ¢
and ¢, denotes the cash holdings of the agent at time 7. Rebalancers aim at keeping one-half
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of their wealth in stocks and the other half in cash, i.e.
target of rebalancers : ¢;p, = ¢; = 0.5w;. “4)

Thus, the rebalancing strategy has a stabilizing effect on the market: increasing prices
induce the rebalancers to raise their supply or reduce their demand; decreasing prices have the
opposite effect. Portfolio insurers, on the other hand, follow a strategy intended to guarantee
a minimal level of wealth (the so-called ‘floor’ f) at a specified insurance expiration date.
They use the ‘constant proportion portfolio insurance’ (CPPI) method proposed by Black
and Jones [32]. The method can be described as keeping the value of the risky asset in a
constant proportion to the so-called ‘cushion’ s, which is the current portfolio value less the
floor, i.e.

target of portfolio insurers : g, p; = ks; = k(w, — f), Q)

where the CPPI multiple k is chosen greater than 1. The floor f is determined as a fraction of
the initial wealth and is, therefore, constant over the duration of the insurance plan. Setting the
multiple above 1 allows the investor to choose his/her exposure to the risky asset in excess of
the cushion and hence to extend his/her gains if prices increase. In the case of falling prices,
the cushion also decreases and the stock position is reduced accordingly. Given a more or
less continuous revaluation of the portfolio structure, the floor is therefore (quite) safe. In the
presence of falling stock prices, the falling wealth of the investor will eventually approach
his/her floor from above: since the right-hand side of (5) approaches zero in an extended bear
market, the fraction of the risky asset in the investor’s portfolio will also go to zero. With
only riskless cash left in the portfolio, the designated floor then constitutes, in fact, the lower
bound to the value of his/her portfolio (if the trading frequency is high enough). In this way, the
Black—Jones formula imitates the effect of put options often used in dynamic hedging strategies.
Contrary to the rebalancing strategy, the portfolio insurance strategy implies a procyclical and
therefore potentially destabilizing investment behaviour: when prices fall, portfolio insurers
will strive to protect their floor by reducing their stock position, and conversely, if prices
increase, they will try to raise their stock position in order to realize additional gains. Note
that since w, on the right-hand side of (5) is mainly governed by capital gains and losses,
the multiple k shows the strength of procyclical reactions of portfolio insurers on price
changes.

Stock price and trading volume evolve endogenously according to demand and supply.
However, trading does not proceed continuously but at discrete points in time. Each investor
reviews his/her portfolio at random intervals. He/she rates his/her asset positions using an
individual price forecast computed according to the current demand and supply situation in
the following way.

1. If only asks (i.e. buy orders) exist, the investor estimates the price at 101% of the highest
ask price,

2. if only open bids (i.e. sell orders) exist, the investor estimates the price at 99% of the
lowest bid price,

3. if both open asks and bids exist, the investor assumes that the price agreed upon by buyers
and sellers will be placed somewhere between open bid and ask prices. More precisely it
is assumed that his/her estimate of the new price is the average between the highest ask
and the lowest bid price of the previous period and

4. if neither asks nor bids exist, the investor assumes the next period’s price to equal the
previous trading price.
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Summarizing, the above assumptions amount to

1.01 max(pa{sk.t’ T pgsk,z)’
if p{)id’t =0 forall i=1,...,n
and plg , #0 for at least one i,
0.99 min(p,lid’t, e pgid’t) for p,gid > 0,
if p;sk,t =0forall i=1,..,n
ply, =14 and Phia, # O for at least one i, (6)
0.5[max (Pag + ++*» Pige,) + MIn(Pyig 1o+ Phig,,)]
for Phig >0,
if pig., #0 for at least one i

and P{)id,, #0 for at least one i,

pi—1, if pisk,t =0 and p{)id’t =0 forall i=1,...,n,

where i denotes the agent and n is the number of investors. In case the estimated ratio
between stocks and assets (relevant for rebalancers) or between stocks and cushion (relevant for
portfolio insurers) is higher than the target ratio (0.5 or k for rebalancers and portfolio insurers
respectively), the investor will place a sale order with p{,id,t = 0'99pésl,t (i.e. pgsk’l = 0).
Conversely, he/she will place a buy order if the evaluated ratio is smaller than the target ratio
with pl, = 1.01p,, (i.e. pyq, = 0)°. If matching counter-offers exist, incoming buy or
sell orders are executed immediately (at the price of the particular counter-offer). Otherwise,
they are put on a list and may be filled later during the trading day if suitable offers are made
by other agents. Agents whose orders are open until the end of the day have the possibility
to re-evaluate their portfolio structure the next day and to place a new order. A trading day is
over when every agent who has reviewed his/her portfolio has had the chance to place an order
and to trade. At the end of each day agents who have lost their complete wealth (i.e. their cash
plus the value of stocks rated at the closing price) are eliminated and, thus, excluded from any
further trading activities.

4.2. Results

Every agent starts the simulation with the same value of his/her portfolio (i.e. $100 000), half
of it in stocks and half in cash. The price level at the start of the simulation is $100. The CPPI
multiple k and the insurance level g (i.e. the proportion of floor to initial assets f = g - wy
with wy = poqo + co denoting the level of initial wealth at time t+ = 0) are chosen in a
way that portfolio insurance agents start with their portfolio structure in equilibrium. The
parameters for the insurance plans are set at (floor/initial assets) = g = 0.75 (i.e. at expiration
date the losses should not exceed 25% of the initial wealth) and k = 2. The duration of
the insurance plans is 65 trading days for every plan and each portfolio insurer. Exogenous
market influences are modelled by deposits and withdrawals of cash occurring at randomly
determined points in time (exponentially distributed with a mean time of 10 trading days) and
in random amounts (uniformly distributed between $-8000 and $+8000) for each investor. The
time intervals between the portfolio reviews are also determined by random draws for each
investor (exponentially distributed with a mean time of 5 trading days).

6 Strictly speaking, agents allow for deviations from the target value within a certain range which they tolerate.
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Figure 2. The daily development of trading volume (total number of agents: 150).

In the following, we provide the details of simulations in which we have replicated
and extended the results of Kim and Markowitz. Figures 1 and 2 show the daily
development of (closing) prices and trading volume for 0, 50 and 75 CPPI agents,
respectively, out of a total of 150 agents for the first 800 trading days. Compared
with no CPPI agents, both trading volume and price fluctuations are generally higher

in the cases of 50 and 75 CPPI investors.

However, the time series for much more
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Figure 3. The standard deviation of daily returns per trading period (total number of agents: 150).

than 50 and 75 CPPI agents exhibit a cyclical behaviour inconsistent with empirical
data [70].

We have also studied the standard deviation of daily returns per trading period each
consisting of 65 trading days. As can be seen in figure 3, for the first period the volatility for
75 CPPI agents is much higher than for O or for just 25 CPPI agents. But after about 15 trading
periods the volatility for 75 CPPI agents declines remarkably. We have observed a similar
decline of volatility in the case of 50 CPPI agents (not displayed in the figure). The reason,
however, for this strong decrease in volatility in the case of a high proportion of CPPI agents is
simply that a significant number of agents become bankrupt in the course of the simulations.

Figure 4 shows a positive relationship between the proportion of bankrupt agents and the
initial share of CPPI agents. Moreover, there is also a positive relation between the share of
bankrupt CPPI agents in the total number of bankrupt agents and the initial rate of CPPI agents.
Thus, in the case of 25 CPPI agents we had 13 bankrupt CPPI and 50 bankrupt rebalancing
agents after 100 trading periods (i.e. 6500 days), whereas in the case of 75 CPPI agents the
ratio was 67 CPPI agents to 11 rebalancers (figure 4, upper panel).

The number of bankrupt investors is generally lower if we raise the total number of
agents to 1500 (figure 4, lower panel). Thus, it appears to be a kind of finite-size effect.
Nevertheless, in this setting we still observe a reduction in volatility in the case of CPPI
agents’ proportion equal to one-half (i.e. 750 CPPI agents, cf figure 5). Compared with the
previous setting, the level of volatility is now significantly higher with CPPI agents (both 250
and 750 CPPI agents) than without CPPI agents. From these experiments we conjecture that the
impact of the portfolio insurance strategy on market volatility generally increases with growing
market size.

Nevertheless, given that the model is intended to study the influence of portfolio
insurance on the market, the strong reduction in the number of active market participants
and, particularly, the positive dependence of bankruptcies on the initial share of CPPI agents
constitutes a serious deficit of the model design. Presumably, however, the quality of
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Figure 4. The proportion of bankrupt investors to the total number of agents (150 and 1500,
respectively).

the results could be improved by allowing bankrupt agents to be replaced by new solvent
agents’.

For a further set of simulations we replaced the individual bid and ask prices by one
uniform market price which is set by a market maker reacting on the difference between

7" Another way to prevent a large number of bankrupt agents is to choose an asymmetric distribution for the amounts
withdrawn and deposited on the accounts of the agents. Actually, by just extending the limit of deposits from $8000 to
$9000 (and keeping the limit for withdrawals at $—8000) we discovered a strong reduction in the number of bankrupt
agents.
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supply and demand®. Thus, in case of excess demand (supply) prices rise (fall) proportional
to the ratio of excess demand (supply) to the total number of shares with proportionality

factor S:
pr=pi (14 52). )
ST,

where ED is the excess demand and ST the total number of stocks in the market. As shown in
figure 6, after about 15 trading periods, the volatility in the case of 75 CPPI agents for a price
adjustment speed B = 4 hardly differs from the case with no CPPI agents. By increasing the
price adjustment speed to 8 = 8 the volatility generally tends to increase (for both 0 and 75
CPPI agents). As inthe previous setting, in this modified setting the strong decline of volatility
in the case of 75 CPPI agents is again due to the large number of bankrupt agents.

Also similar to the original setting, we find almost cyclical price movements for a high
proportion of CPPI agents among our market participants (figure 7).

4.3. Conclusions

Deviating from our parameter setting, the original simulations by Kim and Markowitz start
with the rebalancers’ portfolio structure in disequilibrium, i.e. rebalancers initially have either
too many or too few stocks. Additionally, in their setting, deposits are higher on average
than withdrawals. The basic result of this approach is the demonstration of the destabilizing
potential of portfolio insurance strategies. Kim and Markowitz, therefore, provide a theoretical
foundation for the academic discussions on the sources of the 1987 crash. Their model, of
course, was not designed to address other puzzles in empirical finance, such as the ‘stylized
facts’ summarized in the introduction. A comprehensive simulation study and statistical
analysis of model-generated data, in fact, showed that the time series characteristics exhibit

8 A similar modification of the model is described by Egenter et al [70].
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hardly any similarities with empirical scaling laws [159]. Taking into account the pioneering
character of this model and the intention of the authors to provide a partial explanation of the
crash of October 1987, our demands on this paper should, however, not be set too high.

5. An early ‘econophysics’ approach: Levy-Levy—Solomon

Kim and Markowitz obviously tried to simulate a market populated by traders who pursue
strategies found in real-life markets and, therefore, gave a quite detailed description of activity
at the microscopic level. In contrast to this highly specific set-up, more recent models deal
with much more stylized and simple descriptions of traders’ behaviour. Historically, one of
the first of these approaches is a collaboration of a group at Hebrew University including both
economists and physicists. The first publication of their approach appeared in an economics
journalin 1994 [117] which was followed later by more detailed reports in physics and computer
science journals as well as a book [118—-122].

5.1. The model set-up

The model contains an ensemble of interacting speculators whose behaviour is derived from a
rather traditional utility maximization scheme. At the beginning of every period each investor
i needs to divide up his entire wealth W (i) into shares and bonds. Cash, credit or short sales
of stocks are not allowed. With X (i) denoting the share of stocks in the portfolio of investor
i, his/her wealth can be decomposed as follows:

Wit = X@OW: (@) + (1 — X (@)W, (@) (3)
S—— ——
sum of shares sum of bonds

with superimposed boundaries 0.01 < X (i) < 0.99.
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Figure 7. The daily development of prices for 8 = 4 and B = 8 (total number of agents: 150).

Additionally, the model assumes that the number of investors n as well as the supply
of shares N, are fixed. In addition to an identical utility function U (W,,,), investors at the
beginning also possess the same wealth and the same amount of stocks. Whereas the bond,
assumed to be riskless, earns a fixed interest rate r, the stock return H; is composed of two
components (bonds are riskless in economics just like planets are point masses in the first
physics lectures). On the one hand, either capital gains or losses can be the results of price
variations p;. On the other hand, the shareholder receives a daily or monthly® dividend payment
D, which grows by a constant rate over time:

Pt — £t71 + D, ' )
t—1

Ht=

In the base-line model, the preferences of investors are given by a logarithmic utility function
U(Wi41) = In Wy, This function fulfils the usual characteristics of a positively diminishing
marginal utility. The consequence is an absolutely diminishing risk aversion, so that the
amount of money invested in stocks increases with the wealth of an investor. The so-
called ‘relative risk aversion’ is constant and the optimal proportion invested in stocks,
therefore, is independent of the wealth (see [18]). The share of stocks, therefore, remains
constant.

Investors are assumed to form their expectations of future returns on the basis of their recent
observations. Their memory span contains the past k total stock returns H;. All investors
with the same memory length k& form an investor group G. They expect that the returns
in question will reappear in the next period with a probability of 1/k. The corresponding
expected utility function EU(X4 (7)) has to be maximized with respect to the share of

9 The notion of the underlying time steps differs in the available publications.
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Table 1. Inner and outer solutions.
fO  f1 Xe@)

<0 — 0.01
>0 <0 0.01 < X(i) <0.99
>0 >0 0.99

stocks Xg:
t—k+1
EU =+ Z In[(1 = Xg@)W, @)1 +r)+ Xc@OW,()A+Hp] |, (10)
j=t
. OEU(Xg() & 1
fXo@) = —3=r== ) ———3, =0 (11)
=t Xg(@)+
Hj —r

Like in most models, neither short-selling of assets nor buying financed by credit is allowed
for the agents, so that the space of admissible solutions is restricted to a share of stocks in the
interval [0, 1]. Levy, Levy, Solomon, furthermore, impose minimum and maximum fractions
of shares equal to 0.01 and 0.99 in the cases where the optimal solution of the optimization
problem would imply a lower (higher) number. We, hence, obtain either inner or outer solutions
for X (i) which are depicted in table 1. (Because of the maximum condition the first derivative
of f is zero.)

When the optimum share of stocks is calculated for an investor group X (i), a normally
distributed random number &; is added to the result in order to derive each individual investor’s
demand or supply. This stochastic component may be interpreted as capturing the influence of
idiosyncratic factors or of individual deviations from utility maximization from the economists’
point of view. However, in the original papers it is motivated from a physics perspective
as the influence of the ‘temperature’ of the market. From aggregation of the stochastic
demand functions of traders, the new stock price (and therefore, the total return H;) can
be calculated as an equilibrium price. One now eliminates the ‘oldest’ total return from the
investors’ memory span and adds the ‘new’ entry when the simulation process is finished for
period 7.

5.2. Previous results

Models with only one investor group show periodic stock price developments (figure 8) whose
cycle length depends on the memory span k. This price development can be explained as
follows: let us assume that, at the beginning of the simulation, a random draw of the k previous
total stock returns H, occurs that encourages investors to increase the proportion of shares held
in their portfolio. The larger total demand, then, causes an increase in price and therefore a new
positive total return results. According to the updating of data the oldest total return will be
dropped. This positive return causes the investor group to raise their stock shares successively
up to a maximum of 99%. At this high price level the price remains almost constant for a little
longer than k periods until the extremely positive return of the boom period drops from the
investors’ memory span.

As explained above, the total return is composed of the capital gains or losses and of the
dividend. Since the dividend yield, D/ p, is relatively small because of the considerably high
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Figure 8. With only one type of traders and a logarithmic utility function, the typical outcome of
the Levy—Levy—Solomon model is a cyclic development of stock prices with periodic booms and
crashes. Our own simulations produced all the visible patterns emphasized in [117,118,121].

stock price, a relatively small (negative) total stock return (caused by the noise term ¢;) suffices
to make the riskless bond appear more attractive. The desired share of stocks and with it the
stock price, then, break down. If such a crash happens with an ensuing extremely negative
total return, the desired share of stocks drops to a minimum of 1%. Again, it takes another
k periods for the investors to forget about this extremely negative entry. Because of the then
available high real dividend rate, investing in shares becomes more attractive compared with
bonds. The total demand and the stock price start rising again and a new price cycle begins.
If two groups with different memory spans are considered, strict periodicity still remains a
possible outcome. However, depending on the choice of the memory spans, other dynamic
patterns can appear. Looking at the distribution of total wealth, a dominating influence on
the share price development by one group then does not necessarily mean that it also gains a
dominant share of the total wealth.

The model outcome becomes more irregular with three (and more) investor groups.
For example, for the combination & = 10, 141, 256 and n = 100, Levy and Solomon
claimed to have found chaotic motion in stock prices. However, Hellthaler [87] has shown
that if the number of investors is increased from n = 100 to, for example, n = 1000,
these chaotic stock price developments are replaced by periodic motion again. This effect
persists if more than one type of stocks is traded [109]. Furthermore, Zschischang and
Lux [204] found that the results concerning the wealth distribution for k¥ = 10, 141 and
256 are not stable. While Levy, Levy and Solomon argued that the group with k = 256
usually turned out to be the dominant one, it is also possible that the investor group
k = 141 will achieve dominance (figure 9). This shows an interesting, extreme type of
dependence of the model outcome on initial conditions brought about by seemingly minor
differences within the first few iterations: depending solely on the random numbers drawn
as the ‘history’ of the agents at + = 0, we get totally different long-run results for the
dynamics.
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Figure 9. Development of the distribution of wealth with three groups characterized by k = 10,
141 and 256, respectively. Depending on the initial conditions, either the group with k = 256 or
the group with k = 141, as in the present case, may happen to dominate the market.

Of course, one would like to have microscopic models to provide an explanation of
the power-law behaviour of both large returns and the time-dependence in various powers
of absolute returns. However, when investigating the statistical properties of Levy-Levy—
Solomon’s model, the outcome is as disappointing as with the Kim and Markowitz framework:
none of the empirical scaling laws can be recovered in any of our simulations (see Zschischang
[205] who investigates about 300 scenarios with different utility functions, memory spans and
a varying number of groups). Scaling laws have, however, been reported in related models of
the same group of authors, e.g. [123]. While the underlying philosophy of both approaches is
somewhat similar, their microscopic structure is quite different.

As exemplified in figure 10, models which are claimed to have a chaotic price development
often have stock returns that appear to follow a normal distribution (figure 10) and do not
account for ‘clustered volatilities’ (figure 11). These results are supported by standard tests of
the normal distribution and for the absence of correlations of stock returns. Zschischang and
Lux argue that in these cases the Levy-Levy—Solomon model, instead of giving rise to low-
dimensional chaotic dynamics and strange attractors, can effectively be viewed as a random
number generator [204].

The original papers are not entirely clear about the lengths of the time increments of
the model: they are sometimes denoted by ‘days’ and sometimes by ‘months’. Since at
low frequencies returns in real markets seem to approach a Gaussian distribution, in such
an interpretation, the normality of returns generated from the model might even appear to be
a realistic feature. However, the mechanism for the emergence of a Gaussian shape is still
different from its origin in monthly returns in reality. The latter seems to be the consequence of
the aggregation of high-frequency returns whose distribution is within the domain of attraction
of the normal distribution (because of its power-law exponent above 2). In the LLS model, on
the other hand, the Gaussian shape seems to originate from the aggregation of random demand
functions within the same period.
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Figure 10. Distribution of returns from a simulation with six groups characterized by memory spans
k =10, 36, 141, 193, 256 and 420. This is an example with a stock price development described
as ‘chaotic’ in [121]. However, it seems that the result is rather similar to pure randomness. The
histogram is drawn for 20 000 observations after an initial transient of 100 000 time steps. The
close similarity to the normal distribution is confirmed by statistical measures: Kurtosis is 0.043 and
skewness is —0.003. This yields a Jarque—Bera statistic of 1.55 which does not allow the normal
distribution to be rejected (significance is 0.46%). (The horizontal axis shows the dimensionless
relative price changes.)

6. Financial markets and the distribution of wealth: Solomon-Levy—-Huang

Again, the unrealistic time series characteristics of both the Kim and Markowitz and the
Levy-Levy—Solomon approach should not be taken too seriously: both models are among
the first attempts at microscopic simulations of financial markets and their aims were more
to provide mechanisms for bubbles and crashes than to look at statistical features of the
so generated time series. At least in the case of Levy, Levy and Solomon, the authors
initially were not aware at all of the scaling laws characterizing financial markets (personal
communication by Sorin Solomon). However, later on their model served as the inspiration
and starting point for the analysis of statistical properties of simulated data. As an interesting
example, the inherent wealth dynamics in Levy, Levy and Solomon inspired a more thorough
analysis of the development of traders’ wealth in some kind of generalized Lotka—Volterra
systems.

This extension is based on a 1996 model [123, 167] which was re-investigated more
recently. The pertinent results have been presented in a series of recent papers by Huang,
Solomon and others. We thus call it the SLH model. Its mechanics can be described as a
random multiplicative process for the wealth of each trader, with different traders coupled
through their average wealth somewhat similarly to predator—prey models.

Assume that all traders start with the same wealth but later each of them speculates
differently on the market and gains or loses amounts proportional to his/her current wealth:

wi(t + 1) = w; (1) (i=1,2...N), (12)
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Figure 11. Autocorrelations of raw, absolute and squared returns from the simulation of a ‘chaotic’
case of the Levy-Levy—Solomon model. As can be seen, dependence in absolute and squared
returns (as typical proxies for market volatility) is as weak as with raw returns themselves. The
underlying scenario is the same as in figure 10.

where A is a number fluctuating in a small interval D centred about unity. This random
multiplicative process has been discussed before. The new ingredient in SLH is the ‘welfare
state’: nobody is allowed to fall below some poverty level w; = gW, where W = W (r) =
> w;i(t)/N is the average wealth per trader at that time. Thus this model is very simple,
but nevertheless possesses many realistic properties. Physicists can identify it with a random
walk on a logarithmic wealth scale with one repelling boundary'?. Instead of this cut-off, the
authors also investigate the rule

w;(t+1) = Aw; () +aW (1), (13)

which represents a rich society engaging in an even re-distribution of a certain fraction a of
overall wealth.
In the infinite N limit the same relative wealth distribution

; i\ —2-2a/D —aWw
P (£> (' (i) exp a (14)
w w Dw;
is obtained [155] for a more general and realistic model:
wit+1) =Aw@) +aW((t) — c(W, Hw; (1), (15)

where the arbitrary function c(W, t) parametrizes the general state of the economy: time periods
during which —c(W, ¢) is large and positive correspond to boom periods while periods during
which it is negative correspond to recessions. Complementarily, if one thinks of w; as the
real wealth (as opposed to the nominal number of dollars which could increase solely because

10 This passage, having been contributed by DS, obviously reflects the tendency of physicists to know everything
better. In fact, the remaining authors (although they are only economists) see no reason why they should be unable to
recognize a random walk with a reflecting boundary.
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of inflation) of each individual, an increase in the total amount of dollars in the system W (¢)
means that an agent with individual wealth w; will suffer from a real loss due to inflation by an
amount proportional to the increase in average wealth and proportional to one’s own wealth:
—c(W, Hw; ().

The following results are obtained: for infinite markets, a power law o<1 /w* was obtained
for the probability of traders with wealth larger than some arbitrary wealth w. The exponent
for this power law is given by the cut-off: « = 1/(1 — g). g was defined above as the
ratio of the lowest allowed wealth to the average wealth. Thus if ¢ = % we have o = 1.5
in agreement with well-known empirical findings. It would be interesting to see if in real
economies this exponent and the analogous one for the price fluctuations depend on the lower
cut-off for wealth: the more egalitarian or socialist a country, the higher will be ¢, and the
higher will be the exponent o, making extreme wealth inequalities and market fluctuations less
probable.

The amount trader i invests in the stock market is proportional to the wealth w; : George
Soros produces more price changes than the present authors together (we expect this to change
in the near future). Thus, the fluctuations of the market price were at first thought to have the
same tail exponent « as the wealth distribution. However, this is not true because the different
traders are not statistically independent: the cut-off w; > gW introduces a coupling via the
average wealth W.

Moreover, real markets are finite, and according to a 1999 review of microscopic
market models [179], the majority of these models get unrealistic properties such as periodic
oscillations, if the market size goes to infinity. In short, a few hundred professional speculators
and not the millions of non-speculative families dominate most of the market movements. The
thermodynamic limit, so traditional in statistical physics, where a glass of beer contains 10%
molecules and where 5 x 10'3 sites were already simulated [184], may, therefore, be very
unrealistic for markets or social science [185].

Indeed, simulations of the SLH model for 10%...10% traders gave effective exponents
o =~ 3, i.e. close to the desired one for the price fluctuations (not the wealth distribution).
These exponents are valid only in some intermediate range: for small wealth the cut-off is
important, and nobody can own more wealth than is available in the whole market. We refer
to the SLH papers for more details on this approach [31,90,91,92, 126, 155,168, 171].

A somewhat related recent strand of the literature has analysed simple monetary exchange
models. The main question pursued in this area is the emergence of inequality within a pool
of agents due to the randomness of their fortunes in economic interactions. This line of
research is represented, among others, by [30, 35,45, 65]. The structure of all these models
is very simple: agents are randomly matched in pairs and they try to capture some of the
other agent’s wealth in this encounter. A random toss decides which of both the opponents
is the winner of this match. The successful agent, then, leaves the battle field with his/her
wealth having increased by a fraction of the other agent’s previous belongings. The above
papers show that this simple random exchange model (with only minor differences in the
stochastic formalization in the above papers) leads to an endogeneous emergence of inequality
within an initially homogenous population. It is, however, worthwhile to point out that
exactly the same process had already been proposed in [6] by sociologist John Angle and
has been extended in various ways in the pertinent literature over the years [7-9]. Needless
to say that physicists would have gained by first consulting the literature on the subject before
starting to duplicate well-established lines of research. It might also be noted that in the recent
economics literature, a number of more realistic models of wealth formation and agent-based
models exist (e.g. [165]). A more extensive discussion of this class of model can be found
in [135].



Agent-based models of financial markets 433

7. Percolation theory applied to finance: Cont-Bouchaud

Together with the random walk model of Bachelier [22] a hundred years ago, and the random
multiplicative traders of SLH, the Cont-Bouchaud model is one of the simplest models, having
only a few free parameters (compared, e.g. with the ‘terribly complicated” Lux—Marchesi
model reviewed below). Economists like biologists may bemoan this tendency of physicists,
but the senile third author from the physics community likes it. Also, it is based on decades of
percolation research in physics, chemistry and mathematics, just as lori’s random-field Ising
model uses many years of physics experience in that area [97]. Obviously, with this type of
models, ‘econophysicists’ have introduced new tools of analysis to financial modelling. As
recent research in economics has focused on communication and information among traders
(e.g. [26, 107]), the random-field and percolation models might be a welcome means for the
investigation of information transmission or formation of opinions among groups of agents.

In percolation theory, invented by the later chemistry Nobel laureate Paul Flory in 1941
to explain polymer gelation (cooking of your breakfast egg), and later applied by Broadbent
and Hammersley to coal-dust filters and by Stuart Kauffman to the origin of life, each site of
a large lattice is either occupied (with probability p) or empty (with probability 1 — p).

Clusters are groups of occupied neighbours. A cluster is infinite if its mass s (the number
of occupied sites belonging to that cluster) increases with a positive power of the lattice size
(and not only logarithmically). When the density p increases from zero to one, at some sharp
percolation threshold p., for the first time (at least), one infinite cluster appears; forall p > p.
we have exactly one infinite cluster for large and not too anisotropic lattices, filling a positive
fraction p., of the whole lattice. For all p < p. we have no infinite cluster. At p = p. we
find incipient infinite clusters which are fractal. If p approaches p. from above, the fraction
Poo Vanishes as (p — p.)? with some critical exponent 8 varying between zero and unity for
dimensionality going from one to infinity. The Hoshen—Kopelman and the Leath algorithm to
produce and count percolation clusters are well documented with complete programs available
from DS.

The average number n, of clusters containing s sites each follows a scaling law for large
s close to the threshold p.:

ng=s"fI(p— p)s’l, (16)

where the exponent t varies from 2 to 2.5 if d goes from one to infinity and the exponent
o stays close to 1/2 for 2 < d < oo. The previous exponent 8 equals (t — 2)/o. The
details of the lattice structure do not matter for the exponents, only for the numerical value
of pe (= 0.5927464 for nearest neighbours on the square lattice). On a Bethe lattice (Cayley
tree), T = % o = % B = 1 and the above scaling function f for the cluster numbers is a
Gaussian; these exponents are also found for 6 < d < oo and for the case that each site is a
neighbour to all other sites (i.e. a ‘random graph’) [143].

The above model is called site percolation; one can also keep all the sites occupied and
instead break the links between neighbouring sites with a probability (1 — p). This case is
known as bond percolation and has the same exponents as site percolation. Computer programs
to count percolation clusters were published by many, including the senile co-author [175,176].
All this knowledge was available already before percolation was applied to market fluctuations.

In the Cont-Bouchaud market model, originally restricted to the mathematically solvable
random graph limit and later simulated, as reviewed in [180], on lattices with 2 < d < 7,
each occupied site is a trader. A cluster is a group of traders making joint decisions;
thus the model simulates the herding tendency of traders. At each time step, each cluster
either trades (with probability 2a) or sleeps (with probability 1 — 2a), and when it trades
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Figure 12. Distributions of price changes from the Cont—Bouchaud percolation model. The figure
also compares P(x) with const/(3 + 0.06 % x>)2. The underlying data are averages from many
301 x 301 square lattices.

it either buys or sells an amount proportional to the size s of the cluster i; thus a usually
is the probability for the member of a cluster to be a buyer. The market price is driven
by the difference between the total supply and demand; the logarithm of the price changes
proportionally to this difference (or later [178, 203] to the square-root of the difference).
The concentration p is either fixed or varies over the whole interval between zero and
unity or between zero and p.. The results deteriorate [46, 48] if the price change is no
longer proportional to the difference between demand D and supply S but to the relative
difference (D — S)/(D + S) or to a hyperbolic tangent tanh[const-(D — §)]. However,
the latter has been found to be a more realistic description of the price impact of demand
variations [151].

Some results are as follows. If the activity a increases from small values to near its
maximum value 1/2, the histogram of the price fluctuations changes from an asymptotic
power law to something close to a Gaussian, similar to the crossover in real markets when
the observation time goes to infinity. For small activities, the cumulative probability to have a
change by at least x% varies in its tail as 1/x*, with [178,180] u = 2(tr + o — 1) if we use
Zhang’s square-root law and average over all p between 0 and p.. This exponent p varies from
2.9 and 3.3 to 4 if d increases from two and three to infinity. Thus in the realistic dimensions
of a city or bank building, d = 2 or 3, we get the desired ;1 = 3. Figure 12 shows simulations
giving this power law, except for flattening at small x and a cut-off due to finite market sizes
at large x. The curve through the data is the Student-t distribution following from Tsallis
statistics [173].

Volatility clustering, positive correlations between trading volume and price fluctuations,
as well as the observed asymmetry between sharp peaks and flat valleys are seen if the activity
increases (decreases) in a time of increasing (decreasing) market prices. Nearly log-periodic
oscillations are seen if a non-linear restoring force (buy if the price is low) is combined with
some hysteria (buy if the price is rising). For more details we refer to the original papers
following [57] reviewed in [180].
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Figure 13. Examples of price versus time in a modified Cont-Bouchaud model, showing sharp
peaks and flat valleys [48].

After this review, more effects were understood and variations were tried. The crossover
towards a Gaussian return distribution for increasing activity was explained [111]. Instead of
lattices of various dimensions, the Barabasi network was assumed as the home of the Cont—
Bouchaud traders, with good results [112]. Thermodynamic Ising-like modifications [164],
in the direction of the Iori model [97], were proposed and gave reasonable histograms of
price fluctuations. The lack of time-reversal invariance was recovered by putting some
risk aversion psychology into the buying and selling probabilities [49]. Multi-fractality was
found [44] in the higher moments of the return distributions for different time intervals. Also a
combination of these various modifications worked reasonably though notideally [48]; see, e.g.
figure 13.

Applications included triple correlations between the Tokyo, Frankfurt and New York
markets [162] and the effects of a small Tobin tax on all transactions [72,197]. Two physicists,
Ehrenstein and Stauffer, and an economist, Westerhoff, first independently simulated how such
atax would influence the market. Depending on the parameters, either the total tax revenue has
a maximum in the region of up to one per cent taxation or it increases monotonically. Taking
into account the tendency of governments to overexploit available sources of tax income, they
recommend the Tobin tax only for the first case, not the second. It would then reduce the amount
of speculation but not by an order of magnitude [71]. Summarizing, it therefore appears that
the Cont—Bouchaud models and the subsequent variations on their theme contributed by other
authors have gone some way in explaining the important stylized facts of financial markets.
Nevertheless, economists often feel somewhat uneasy about this approach. The reason is
that its starting point is known knowledge about the characteristics of certain graph-based
dynamics (i.e. percolation models in statistical physics). The ‘explanation’ of stylized facts
in economics is, then, achieved to some extent via a mere relabelling of known physical
quantities into new ones with an economic interpretation. Economists, of course, would like
to start with basic facets of economics interaction of real-life markets rather than with a lattice-
based architecture. Furthermore, the many attempts at ‘improvements’ of the model outlined
above show that realistic results are only obtained under extremely specific settings. Hence, it
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appears questionable whether this framework really allows an explanation of empirical findings
that is ‘independent of microscopic details’ as postulated in an econophysics manifesto [174].

8. Social percolation and marketing: Solomon—Weisbuch

Nevertheless, scientists have a natural tendency to apply what they have learned to as
many different problems as possible (thereby maximizing the number of their publications).
Percolation theory seems to be one of the discoveries one can use in quite a number of fields.
Besides financial markets, another application concerns ‘social percolation’ and its use in
marketing [170], which we review in the following (departing shortly from our central subject
of financial markets).

As in the previous section, every site of a large lattice is either randomly occupied or
empty, and a cluster is a set of occupied neighbours. Now we identify occupied sites with
potential customers of one specific product, say a Hollywood movie. Each site i has a certain
product quality requirement p;, and the product has a certain quality g. The values of p; are
homogeneously distributed between zero and unity. Only those people see this movie (or more
generally, buy this product) who regard its quality as sufficient, i.e. who have p; < g. We thus
define as occupied a site with p; < ¢, and then a site is occupied with probability g. All sites
i in a cluster have p; < q.

If all potential customers are immediately informed about the new product and its quality
g, then a fraction ¢ of all sites will buy, a trivial problem. But since we get so much advertising,
we may mistrust it and consider buying a movie ticket only if we hear from a neighbour about
its quality g. Thus a site i buys if and only if one of its nearest neighbours on the lattice has
bought before, if i has not bought before and if p; < ¢ (customers are assumed to have the same
perception of the quality of the product, i.e. the quality assessment g they tell their neighbours
is the same for all customers). Initially, all occupied sites on the top line of the lattice (top
plane in three dimensions) are regarded as customers who have bought and who thus know
the quality g. In this way, geometry plays a crucial role, and only those sites belonging to
clusters which touch the upper line get informed about the movie and see it. If and only if
one cluster extends from the top to the bottom of the lattice, we say that the cluster percolates
or spans. And standard percolation theory then predicts a spanning cluster if the occupation
probability (or quality) g is larger than some threshold p., which is about 0.593 on the square
lattice [42, 158, 175]. (Instead of starting from the top and moving towards the bottom, one
may also start with one site in the centre and move outwards. The cluster then percolates if it
touches the lattice boundary.)

In this way the decades-old percolation theory divides new products into two classes:
hits and flops [194], depending on whether or not the quality was high enough to produce a
spanning cluster. For aflop, ¢ < pc, only sites near the initially occupied top line get informed
that the new cluster exists, while for a hit, g > p., also customers ‘infinitely’ far away from
the starting line buy the movie ticket. In the case of a hit, except if g is only very slightly
larger than p., nearly all customers with p; < g get the information and go to the movie; only
a few small clusters are then isolated from the spanning network and have no chance to react.
Figure 14 shows three examples, where one time step corresponds to one search through all
neighbours of previously occupied sites (Leath algorithm [176]).

In traditional marketing theories, as discussed in [84], one neglects the spatial structure,
and a growing market has an exponential time dependence until saturation sets in. For averages
over lattices with spanning clusters, instead we have power laws in time [84]. In reality, both
cases have been observed, in addition to complicated behaviour somewhat similar to the curve
q = p. of figure 13.
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Figure 14. Examples of social percolation starting with one central site occupied; ¢ = p. — 0.05
(plus signs), ¢ = p. (middle line), ¢ = p +0.05 (upper line). We plot logarithmically the number
of new buyers in each time interval [84]. For the first four time steps the three buying curves agree,
since the same random numbers have been used.

The first modification of this static percolation model is to assume that the quality g
changes in time: when a movie is successful (i.e. when the cluster percolated), the producer
lowers the quality of the next movie slightly; when it is a flop (no percolating cluster), g is
slightly increased. With this dynamics, like ¢ — g £ 0.001, the ¢ automatically moves to the
threshold p., an example of self-organized criticality. In addition, we may assume [170] that
also the p; change: p; increases by a small amount if i just has seen a movie, and it decreases
by the same amount if the agent did not see a movie previously (in the second case one has to
distinguish whether the customer refused to buy because of p; > g or merely was not informed
about the movie). In this case also the p; can move towards p., though slower than ¢, or they
may be blocked at some intermediate value; also instabilities can occur where g and all p;
move towards infinity. These difficulties were clarified by Huang [94], who also applied this
model to stock markets [93].

Information through advertising influences the percolative phase transition [153]. We
refer to the literature cited above as well as to [1,85,166, 192,193, 195] for further details and
modifications.

There is (of course) also a large body of economic research dealing with similar problems.
In fact, the analysis of irreversible lock-in and path dependence in the adaption of new goods
or new technologies is often based on mass-statistical models. A prominent example is given
by Arthur [20] who used non-linear Polya urn models as an abstract model of such processes.
The application of similar ideas as an explanation for geographical concentration of economic
activity led to a remarkable revival of the formerly dormant field of regional economics over
the nineties (cf [21, 110]). Multi-agent approaches to ‘hits’ and ‘flops’ in the movie industry
(using Bose-Einstein dynamics) with empirical applications can be found in De Vany and
Walls [188] and De Vany and Lee [187].

With the next (and the last) model we come back to financial markets.
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Figure 15. Flowchart of dynamics of the Lux—Marchesi model: agents are allowed to switch
between different behavioural alternatives. The number of individuals in these groups determines
excess demand (the difference between demand and supply). Imbalances between demand and
supply cause price adjustments which in turn affect agents’ choices of strategies.

9. Speculative interaction and the emergence of scaling laws: Lux—-Marchesi

The model of Lux and Marchesi [128] has its roots in earlier attempts of economists at
introducing heterogeneity into stochastic models of speculative markets. Inspired by the
analysis of herd behaviour in ant colonies [107] and earlier applications of statistical mechanics
to various problems in sociology and political sciences [190,191], a stochastic model of trading
in financial markets has been developed in [131]. The basic ingredient of this contribution was
a kind of mean-field dynamics for the opinion formation process among speculators together
with a phenomenological law for the ensuing price adjustment in the presence of disequilibria.
Using the Master equation formalism, it could be shown that the model is capable of generating
‘bubbles’ with over- or undervaluation of the asset as well as periodic oscillations with repeated
market crashes. A detailed analysis of the dynamics of second moments (variances and co-
variances) was added in [134] where the potential explanatory power of multi-agent models
for the typical time variations of volatility in financial markets was pointed out.

The group interactions in this model have been enriched in [133] by allowing agents to
switch between a chartist and a fundamentalist strategy. This more complicated dynamics
was shown to give rise to chaotic patterns in the mean values of the relevant state variables
(the number of agents in each group plus the market price). Numerical analysis of simulated
chaotic attractors showed that they came along with leptokurtosis (fat tails) of returns, hence
providing a possible explanation for one of the ubiquitous stylized facts of financial data.

Both microscopic simulations as well as more detailed quantitative analyses of the resulting
time series appeared in Lux and Marchesi [128, 129] and Chen et al [50]. The fact that these
key issues were approached quite recently in the development of this market model to some
extent reflects a broader trend in the related literature: as already pointed out above, almost
all the early simulation models developed in economics had the initial goal of investigating
the formation of expectations of economic agents in out-of-equilibrium situations (where it is
hard to form ‘rational’, i.e. correct expectations about the future) and analysing the selection of
equilibria in the presence of multiple consistent solutions of a static framework. Interestingly,
a development similar to that of the Lux—Marchesi model can also be observed in the case
of the Santa Fe Artificial Stock Market. Although the latter was constructed by a group of
researchers from economics, physics, biology and computer science in the eighties, an analysis
of the statistical properties of the resulting time series only appeared recently [114].

The dynamics of the ‘terribly complicated’ (DS) Lux—Marchesi model is illustrated in
figure 15.
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It is a kind of feedback between group dynamics and price adjustment in the presence of
imbalances between demand and supply. Starting with basic definitions we denote by N the
total number of agents operating in our artificial market, n. the number of noise traders, n¢
the number of fundamentalists (n. + ny = N), n, the number of optimistic noise traders and
n_ the number of pessimistic noise traders (n, + n_ = n.); p is the market price and py the
fundamental value.

The dynamics of the model are composed of the following elements.

1. Noise traders’ changes of opinion from a pessimistic to an optimistic mood and vice
versa: the probabilities for these changes during a small time increment Af are given by 7, At
and 7_, At and are concretized as follows:

nc
T = UlﬁeXP(Ul)a
Ty = UI%CXP(_UI),
dp 1
U =ax+ 2522 (17)
vy dt p

(We denote by m,;, the rates from state a to state b, like a for optimism.) Here, the basic
influences acting on the chartists’ formation of opinion are the majority opinion of their fellow
traders, x = (n, — n_)/n., and the actual price trend, (dp/d¢)(1/p). Parameters vy, o; and op
are measures of the frequency of revaluation of opinion and the importance of ‘flows’ (i.e. the
observed behaviour of others) and charts, respectively. Furthermore, the change in asset prices
has to be divided by the parameter v; for the frequency of agents’ revision of expectations since
for a consistent formalization one has to consider the mean price change over the average
interval between successive revisions of opinion. The transition probabilities are multiplied by
the actual fraction of chartists (that means, it is restricted to such a fraction) because chartists
are also allowed to interact with fundamental traders in the second component of the group
dynamics that follows below.

2. Switches between the noise trader and fundamentalist group are formalized in a
similar manner. Formally, one has to define four transition probabilities, where the notational
convention is again that the first index gives the subgroup to which a trader moves who had
changed his/her mind and the second index gives the subgroup to which he/she formerly
belonged (hence, as an example, 7, gives the probability for a fundamentalist to switch to the
optimistic chartists’ group):

ny ng
o = V2 exp(Us,1), Tee = V2o exp(—Us1), (18)

T = vz% exp(Uz,2), T = Uz% exp(—=U2). (19)

The forcing terms U, and U, for these transitions depend on the difference between
the (momentary) profits earned by using a chartist or fundamentalist strategy:

1 dp
r —_—
Ui = a3 M_R_S.‘u‘ , (20)
)4 )4
1d
ST
Us» = a3 R—Lt—s.‘pf p‘ Q1)
p p
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The first term of the U functions represents the profit of chartists from the n, group and
n_ group. The second term is the profit of the fundamentalists. The parameters v, and o3
are reaction coefficients for the frequency with which agents reconsider the appropriateness
of their trading strategy and for their sensitivity to profit differentials, respectively. Excess
profits (compared with alternative investments) enjoyed by chartists from the optimistic group
are composed of nominal dividends () and capital gains due to the price change (dp/dt).
Dividing by the actual market price gives the revenue per unit of the asset. Excess returns
compared with other investment opportunities are computed by subtracting the average real
return (R) received by the holders of other assets in our economy. Fundamentalists, on the
other hand, consider the deviation between price and fundamental value py (irrespective of
its sign) as the source of arbitrage opportunities from which they may profit after a return of
the price to the underlying fundamental value, so that a large difference between p and p,
induces traders to follow the fundamentalist strategy. As the gains of chartists are immediately
realized whereas those claimed by fundamentalists occur only in the future (and depend on
the uncertain time for reversal to the fundamental value), the latter are discounted by a factor
s < 1. Furthermore, neglecting the dividend term in fundamentalists’ profits is justified by
assuming that they correctly perceive the (long-term) real returns to be equal to the average
return of the economy (i.e. r/ps = R) so that the only source of excess profits in their view
is arbitrage when prices are ‘wrong’ (p # pr). As concerns the second U -function, U, », one
considers profits from the viewpoint of pessimistic chartists who in order to avoid losses will
rush out of the market and sell the asset under question. Their fall-back position by acquiring
other assets is given by the average profit rate R which they compare with nominal dividends
plus price change (which, when negative, amounts to a capital [oss) of the asset they sell. This
explains why the first two items in the forcing term are interchanged when proceeding from
U toUsp.

3. Price changes are modelled as endogeneous responses of the market to imbalances
between demand and supply. Assuming that optimistic (pessimistic) chartists enter on the
demand (supply) side of the market, excess demand (the difference between demand and
supply) of this group is

ED. = (ny —n_)t, (22)

with 7. being the average trading volume per transaction. Fundamentalists’ sensitivity to
deviations between market price and fundamental value leads to a law of the type

ED; = ng -y 22, (23)
P

with y being a parameter for the strength of reaction. In order to conform with the general
structure of this framework, the price adjustment process is also formalized in terms of (Poisson)
transition probabilities. In particular, the transition probabilities for the price to increase or
decrease by a small percentage Ap = £0.001p during a time increment At are given by'!

1+, = max[0, B(ED + w1, 7, = —min[B(ED + ), 0], 24)

where B is a parameter for the price adjustment speed and ED = ED, + EDy is the overall
excess demand (the sum of excess demand by both noise traders and fundamentalists).

This probabilistic rule for price adjustments is, in fact, equivalent to the traditional
Walrasian adjustment scheme. It can be shown that the mean value dynamics of the price

! The increment Ap has been chosen as small as possible in order to avoid artificial lumpiness of price changes with
concentration of the distribution of returns at a few values only.
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can be depicted by the textbook differential equation for the dependence of price changes on
overall excess demand:

dp/dt

= B -ED = B - (ED, + EDy). (25)

Note that these price changes feed back on agents’ decisions to follow one or the other
trading strategy: a price increase will reinforce optimistic beliefs and will make formerly
pessimistic chartists join a bullish majority. Similarly, price changes might bring p closer to
an assumed fundamental value, p¢, which strengthens fundamentalist beliefs, or they might lead
to larger deviations from pg, which reinforces the position of chartists. All in all, the resulting
confirmation or disappointment of agents’ opinions together with changing profitability of
strategies will lead to switches between groups altering the composition of the population
and effecting excess demand of the following period. The model also allows for exogeneous
changes of the fundamental value.

4. Changes of fundamental value: in order to assure that none of the stylized facts of
financial prices can be traced back to exogeneous factors, it is assumed that the log-changes
of pr are Gaussian random variables: In(ps;) — In(ps,—;) = & and & ~ N(0,0,). The
Poisson type dynamics of asynchronous updating of strategies and opinions by the agents can
only be approximated in simulations. In particular, one has to choose appropriately small time
increments in order to avoid artificial synchronicity of decisions. In [36, 108, 109] a simulation
program with some flexibility in the choice of the time increment is used. Namely, time
increments Ar = 0.01 are used for ‘normal times’, while during volatility bursts the precision
of the simulations was automatically increased by a factor 5 (switching to At = 0.002) when
the frequency of price changes became higher than the average. This procedure requires
that all the above Poisson rates be divided by 100 or 500, (depending on the precision of the
simulation) in order to arrive at the probability for any single individual to change his behaviour
during [z, t + Ar]. Similarly, it is assumed that the auctioneer adjusts the prevailing price by
one elementary unit (one cent or one pence) with probabilities w4, or w, during one time
increment. For the time derivative, d p/dt, the average of the prices changes during the interval
[t — 10At, t] has been used. Furthermore, occurence of the ‘absorbing states’ n, = 0 (ny = N)
and n, = N (ny = 0) was excluded by setting a lower bound to the number of individuals in
both the group of chartists and fundamentalists.

The overall results of this dynamics are easily understood by investigation of the properties
of stationary states (cf [129]), i.e. situations in which there are no predominant flows to
one of the groups and the price remains constant. Such a scenario requires that there is a
balanced disposition among (chartist) traders, i.e. we neither have a dominance of optimists
over pessimists (nor vice versa) and that the price is equal to the fundamental value (which
makes fundamentalists inactive). A little reflection reveals that in such a situation, there is no
advantage to either the chartist or fundamentalist strategy: no mispricing of the asset nor any
discernible trends exist. Hence, the composition of the population becomes indeterminate,
which implies that, in the vicinity of these stationary states, the group dynamics is governed
only by stochastic factors'?. Hence, to a first approximation one can abstract from the economic
forces which apparently become relevant only in out-of-equilibrium situations. As detailed
in [128,129], the stationary states described above may be either locally stable or unstable with
the number of chartists acting as a bifurcation parameter. Simulations show that temporary

12 A similar indeterminacy in the number of agents in different groups has been found in a model of resource
extraction [201]. They also emphasize that this indeterminacy can lead to a burst of activity (temporary large
fluctuations). Another recent example of similar intermittent dynamics appears in an artificial foreign exchange
market in which agents use genetic algorithms to adapt their portfolio strategy to changing circumstances, cf [15,130].
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Figure 16. Time series of returns (relative price changes, upper panel) and the fraction of chartists
(lower panel) from a typical simulation of the Lux—Marchesi model.

deviations into the unstable region can be interpreted as intermittent behaviour which generates
clusters of volatility and numerically accurate power laws for the tail behaviour of raw returns
as well as long-term dependence on absolute and squared returns. Figure 16 illustrates the
interplay between the dynamics of relative price changes and the development of the number
of chartists among traders.

As can be directly inferred from the graph, an increase in the number of chartists leads to
intermittent fluctuations. Note also that the model incorporates self-stabilizing forces leading
to a reduction of the number of chartists after a period of severe fluctuations. The reason is
that large deviations of the price from its fundamental value lead to high potential profits for
the fundamentalist strategy which induces a certain number of agents to switch away from
chartism. Chen et al [50] also show that the motion of the market price appears totally
random (judged by standard tests for determinism and non-linearity) in tranquil times but
shows traces of non-linear structure during more volatile episodes [50]. This feature appears
to be in harmony with the findings for the US stock market [124]. Recent work in this area has
come up with some rigorous results on the statistical properties of simpler variants of this type
of models and has used these characterizations in order to estimate the parameters governing
agents’ interactions, cf [3-5].

10. Discussion
While early attempts at microscopic simulations of financial markets appeared unable to

account for the ubiquitous scaling laws of returns (and were, in fact, not devised to explain
them), some of the recent models seem to be able to explain some of the statistical properties
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of financial data (usually denoted as ‘anomalies’ in economics). Nevertheless, there are still
a number of important topics left to future research: first, the recent surge of newly available
data on the intra-daily level has opened a Pandora’s box of new regularities on very small time
scales (cf [68]). While the ubiquitous scaling laws found in all markets might be explained
well by simple mechanisms beloved of physicists, the more delicate intra-daily patterns may
require more detailed models (denoted as ‘monsters’ in a workshop presentation of a paper by
Maslov [141]). If physicists do not want to stop halfway in their contribution to economics,
they may probably have to develop, as is typically done in economics, models with more
institutional background [136]'3. Second, although we have a bunch of models for power
laws, their generality is still restricted in one very important respect: the ‘interesting’ dynamics
only applies for a certain range of the population size N of speculators and in most cases does
not survive for a realistically large N. This has been shown for the Kim and Markowitz and
the Lux and Marchesi models in Egenter ef al [70] and probably applies to most alternative
approaches. A recent investigation of Chen and Yeh'’s artificial stock market also shows that
their interesting results tend to vanish when the number of traders increases (cf [199]). In the
Lux and Marchesi model, the finite-size effect immediately becomes apparent by realizing that
the overall number of agents affects excess demand and therefore, the right-hand side of the
price adjustment equation. However, although one might expect that this leads to more severe
fluctuations with increasing N, the contrary is the case: fluctuations become dampened with
higher N and finally die out altogether with a crossover of returns to a normal distribution.
Of course, the linear dependence of excess demand on N is not realistic. The task for future
research is, therefore, to look for self-organizing forces in the market (maybe via the addition of
wealth dynamics), which may lead to an effective confinement of the level of excess demand.

Have the econophysics papers reviewed here brought anything new to economics?
Certainly they did not invent microscopic and agent-based computer modelling
(http://www.complexity-research.org/mad) of markets or empirical analysis of market
fluctuations. But the large number of econophysicists pushed these areas since physicists
are more familiar with computer simulation and empirical analysis than many mainstream
economists more interested in exact mathematical solutions. Of course, percolation and
random field Ising models are clear physics contributions, and the introduction of multi-fractal
processes such as stochastic models of financial prices (a topic which is outside the scope of
the present review) is conceived as an important innovation by many economists. Here again,
we find that economists have been aware of the multi-scaling of returns for some time [62, 132]
but suffered from a lack of appropriate models in their tool-box (cf [127] for more details on
this issue).

Have econophysicists made any predictions which were later confirmed? If we define as
‘prediction’ something which has appeared in a journal or paper before the predicted event was
over, we exclude all private communications or e-prints and know only three cases: the warning
published in September 1997 that a ‘krach’ should occur before the end of November [?] (it
occurred in October); the assertion that the Nikkei index in Tokyo should go up in 1999, which
it did by roughly the predicted amount, and the prediction that the US stock market should
reach a lower turning point in early 2004, which did not happen [172]. Even if ‘successful’,
relatively vague predictions such as the above are, of course, at best interpreted as anecdotal
evidence, but are surely not significant from a statistical perspective.

Have we become rich in this way? The senile co-author gained 50% in half a year
by believing the above predictions, and similar anecdotal evidence exists from others.
Interestingly, in this way, the one contributor with a physics background seems to show a

13 Similar probably to the development of statistical models of traffic flows, cf Nagel ef al [145].
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better performance in private portfolio management than the three economists who rather
concentrated on their academic and professional careers. Of course, success is often reported
proudly while failures are kept a secret. In this way, certain strategies might appear successful
simply because of a bias in the awareness of positive outcomes versus negative ones. More than
half a century ago, the prominent economist Nicholas Kaldor [103] explained the prevalence
of chartist strategies by such a misperception of their track record. But more reliable are
flourishing companies such as the Prediction Company (New Mexico) or the Science-Finance
(France) founded by physicists Farmer and Bouchaud, respectively, together with economists,
giving employment to 10? people. This seems quite a success for theoretical physicists.

Acknowledgments

The authors are extremely grateful to Florian Heitger for his help with the preparation of a
Latex file of this review.

References

[11 Ahmed E and Abdusalam H A 2000 On social percolation and small world network Eur. Phys. J. B 16 569-71
[2] Aleksiejuk A and HotystJ A 2001 A simple model of bankruptcies Physica A 299 198-204
[3] Alfarano S, Lux T and Wagner F 2005 Estimation of agent-based models: the case of an asymmetric herding
model Comput. Econom. 26 19-49
[4] Alfarano S, Lux T and Wagner F Time variation of higher moments in financial markets with heterogeneous
agents: an analytical approach J. Econ. Dyn. Control at press
[5] Alfarano S and Lux T A noise trader model as a generator of apparent power laws and long memory Macroecon.
Dyn. at press
[6] Angle J 1986 The surplus theory of social stratification and the size distribution of personal wealth Social
Forces 65 293-326
[7]1 Angle J 1992 The inequality process and the distribution of income to blacks and whites J. Math. Sociol. 17
77-98
[8] Angle J 1996 How the gamma law of income distribution appears invariant under aggregation J. Math. Sociol.
31 325-58
[9] Angle J 2006 The inequality process as a wealth maximizing process Physica A 367 388—14
[10] Aoki M and Yoshikawa H 2006 Reconstructing Macroeconomics (Cambridge, UK: Cambridge University
Press)
[11] Aoki M 1995 New Approaches to Macroeconomic Modeling: Evolutionary Stochastic Dynamics, Multiple
Equilibria, and Externalities as Field Effects (Cambridge, UK: Cambridge University Press)
[12] Aoki M 2001 On dynamic re-specifications of Kiyotaki-Wright model Economics with Heterogeneous
Interacting Agents (Lecture Notes in Economics and Mathematical Systems) ed A Kirman and
J B Zimmermann (Berlin: Springer) pp 109-20
[13] Aoki M 2002 Modeling Aggregate Behavior and Fluctuations in Economics (Cambridge, UK: Cambridge
University Press)
[14] Aoki M 2002 Open models of share markets with two dominant types of participants J Econ. Behav. Organ.
49 199-216
[15] Arifovic J and Gencay R 2000 Statistical properties of genetic algorithm learning in macroeconomic models
J. Econ. Dyn. Control 24 981-1005
[16] Arifovic J and Masson P 2000 Heterogeneity and evolution of expectations in a model of currency crisis
Nonlinear Dyn. Psychol. Life Sci. 8 231-57
[17] Arifovic J 1996 The behaviour of the exchange rate in the genetic algorithm and experimental economies
J. Political Economy 104 51041
[18] Arrow K J 1971 Essays in the Theory of Risk Bearing (Amsterdam: North-Holland)
[19] Arthur W B, Holland J H, LeBaron B, Palmer R and Tayler P 1997 Asset pricing under endogenous expectations
in an artificial stock market Econ. Notes 26 297-330
[20] Arthur W B 1989 Competing technologies, increasing returns and lock-in by historical events Econ. J.
99 116-31


http://dx.doi.org/10.1007/s100510070218
http://dx.doi.org/10.1016/S0378-4371(01)00296-5
http://dx.doi.org/10.1007/s10614-005-6415-1
http://dx.doi.org/10.2307/2578675
http://dx.doi.org/10.1016/j.physa.2005.11.017
http://dx.doi.org/10.1016/S0167-2681(02)00067-7
http://dx.doi.org/10.1016/S0165-1889(99)00033-0
http://dx.doi.org/10.1086/262032
http://dx.doi.org/10.2307/2234208

Agent-based models of financial markets 445

[21]
[22]
[23]
[24]
[25]
[26]
[27]
[28]
[29]
[30]
(31]

[32]
[33]

[34]
[35]
[36]
[37]

[38]
[39]

[40]
[41]
[42]
[43]
[44]
[45]
[46]
(471
[48]
[49]
[50]
[51]
[52]
[53]
[54]

[55]

Arthur W B 1991 Silicon Valley locational clusters: When do increasing returns imply monopoly? Math.
Social Sci. 19 235-51

Bachelier L 1900 Théorie de la spéculation Ann. Sci. Ecole Norm. Sup. 17 21-86

The Random Character of Stock Market Prices ed P H Cootner (Cambridge, MA: MIT Press) pp 17-78 (English
transl.)

Bak P, Norrelykke S and Shubik M 1999 Dynamics of money Phys. Rev. E 60 2528-32

Bak P, Norrelykke S and Shubik M 2001 Money and Goldstone modes Quant. Finance 1 186-90

Bak P, Paczuski M and Shubik M 1997 Price variations in a stock market with many agents Physica A
246 430-53

Banerjee A V 1992 A simple model of herd behavior Q. J. Econ. 107 797-817

Basci E 1999 Learning by imitation J. Econ. Dyn. Control 23 1569-85

Baumol W J 1957 Speculation, profitability and stability Rev. Econ. Stat. 39 263-71

Beja A and Goldman M B 1980 On the dynamic behavior of prices in disequilibrium J. Finance 35 23548

Bennati E 1988 Riv. Int. Sci. Econ. Commer. 35 735

Biham O, Huang Z F, Malcai O and Solomon S 2001 Long-time fluctuations in a dynamical model of stock
market indices Phys. Rev. E 64 026101

Black F and Jones R C 1987 Simplifying portfolio insurance J. Portfolio Manag. 14 48-51

Bonabeau E, Theraulaz G and Deneubourg J L 1995 Phase diagram of a model of self-organizing hierarchies
Physica A 217 373-92

Bornholdt S 2001 Expectation bubbles in a spin model of markets: intermittency from frustation across scales
Int. J. Mod. Phys. C 12 667-74

Bouchaud J P and Mézard M 2000 Wealth condensation in a simple model of economy Physica A 282 536-45

Brennan M J and Schwartz E S 1989 Portfolio insurance and financial market equilibrium J. Bus. 62 455-72

Brock W A and Hommes C H 1997 Models of complexity in economics and finance System Dynamics in
Economic and Financial Models ed C Hey et al (New York: Wiley) pp 3-44

Brock W A and Hommes C H 1997 A rational route to randomness Econometrica 65 1059-95

Brock W A and Hommes C H 1998 Heterogeneous beliefs and bifurcation routes to chaos in a simple asset
pricing model J. Econ. Dyn. Control 22 1235-74

Brock W A and Hommes C H 1999 Rational animal spirits The Theory of Markets P J J Herings et al
(Amsterdam: North-Holland) pp 109-37

Brown P M 1996 Experimental evidence on money as a medium of exchange J. Econ. Dyn. Control 20 583-600

Bunde A and Havlin S 1996 Fractals and Disordered Systems (Berlin: Springer)

Carvalho R 2001 The dynamics of the linear random Farmer model Instituto Superior Técnico Lisbon,
University College London

Castiglione F and Stauffer D 2001 Multi-scaling in the Cont-Bouchaud microscopic stock market model
Physica A 3000 531-8

Chakraborti A and Chakrabarti B 2000 Statistical mechanics of money: how saving propensities affects its
distribution Eur. Phys. J. B 17 167-70

Chakraborti A 2002 Market application of the percolation model: relative price distribution Int. J. Mod. Phys.
C1325-9

Champernowne D G and Cowell F A 1999 Economic Inequality and Income Distribution (Cambridge, UK:
Cambridge University Press)

Chang I, Stauffer D and Pandey R B 2002 Asymmetries, correlations and fat tails in percolation market model
Int. J. Theor. Appl. Finance 5 585-97

Chang I and Stauffer D 2001 Time-reversal asymmetry in Cont—Bouchaud stock market model Physica A
299 547-50

Chen S H, Lux T and Marchesi M 2001 Testing for nonlinear structure in an ‘artificial’ financial market J. Econ.
Behav. Organ. 46 327-42

Chen S H and Yeh C H 2001 Evolving traders and the business school with genetic programming: a new
architecture of the agent-based stock market J. Econ. Dyn. Control 25 363-93

Chen S H and Yeh C H 2002 On the emergent properties of artificial stock markets: the Efficient Market
Hypothesis and the Rational Expectations Hypothesis J. Econ. Behav. Organ. 49 217-39

Chiarella C, Dieci R and Gardini L 2002 Speculative behaviour and complex asset price dynamics J. Econ.
Behav. Organ. 49 173-97

Cincotti S, Focardi S, Marchesi M and Raberto M 2001 Agent-based simulation of a financial market Physica
A 299 319-27

Cohen K J, Maier S F, Schwartz R A and Whitcomb D K 1986 The Microstructure of Securities Markets
(Englewood Cliffs, NJ: Prentice-Hall)


http://dx.doi.org/10.1103/PhysRevE.60.2528
http://dx.doi.org/10.1088/1469-7688/1/1/314
http://dx.doi.org/10.1016/S0378-4371(97)00401-9
http://dx.doi.org/10.2307/2118364
http://dx.doi.org/10.1016/S0165-1889(98)00084-0
http://dx.doi.org/10.2307/1926042
http://dx.doi.org/10.2307/2327380
http://dx.doi.org/10.1103/PhysRevE.64.026101
http://dx.doi.org/10.1016/0378-4371(95)00064-E
http://dx.doi.org/10.1142/S0129183101001845
http://dx.doi.org/10.1016/S0378-4371(00)00205-3
http://dx.doi.org/10.1086/296472
http://dx.doi.org/10.2307/2171879
http://dx.doi.org/10.1016/S0165-1889(98)00011-6
http://dx.doi.org/10.1016/0165-1889(95)00865-9
http://dx.doi.org/10.1007/s100510070173
http://dx.doi.org/10.1142/S0129183102002900
http://dx.doi.org/10.1142/S0219024902001584
http://dx.doi.org/10.1016/S0378-4371(01)00270-9
http://dx.doi.org/10.1016/S0167-2681(01)00181-0
http://dx.doi.org/10.1016/S0165-1889(00)00030-0
http://dx.doi.org/10.1016/S0167-2681(02)00068-9
http://dx.doi.org/10.1016/S0167-2681(02)00066-5
http://dx.doi.org/10.1016/S0378-4371(01)00312-0

446

E Samanidou et al

[56]
(571
[58]

(591
[60]

[61]
[62]

[63]
[64]
[65]
[66]

[67]
[68]
[69]
[70]

[71]
[72]
[73]
[74]1
[75]
[76]
[77]
[78]

[79]
[80]

[81]
[82]
[83]

[84]
[85]

[86]
[87]

[88]
[89]
[90]
[91]

[92]
(93]

The Brady Commission 1988 Report of the Presidential Task Force on Market Mechanisms (Washington, DC:
US Government Printing Office)

Cont R and Bouchaud J P 2000 Herd behaviour and aggregate fluctuations in financial markets Macroecon.
Dyn. 4 170-96

Dawid H 1999 On the convergence of genetic learning in a double auction market J. Econ. Dyn. Control
23 1545-67

Day R H and Huang W 1990 Bulls, bears, and market sheep J. Econ. Behav. Organ. 14 299-329

DeGrauwe P, Dewachter H and Embrechts M J 1993 Exchange Rate Theory: Chaotic Models of Foreign
Exchange Market (Oxford: Blackwell)

De Martino A and Marsili M 2006 Statistical mechanics of socio-economic systems with heterogeneous agents
J. Phys. A: Math. Gen. 39 R465-540

Ding Z, Engle R and Granger C 1993 A long memory property of stock market returns and a new model
J. Empirical Finance 1 83-106

Donangelo R, Hansen A, Sneppen K and Souza S R 2000 Modelling an imperfect market Physica A 283 469-78

Donangelo R and Sneppen K 2000 Self-organization of value and demand Physica A 276 572-80

Dragulescu A and Yakovenko V 2000 Statistical mechanics of money Eur. Phys. J. B 17 723-9

Duffy J and Ochs J 1999 Emergence of money as a medium of exchange: an experimental study Am. Econ.
Rev. 89 847-77

Duffy J2001 Learning to speculate: experiments with artificial and real agents J. Econ. Dyn. Control 25 295-319

Dunis C and Zhou B (ed) 1998 Nonlinear Modelling of High Frequency Time Series (New York: Wiley)

Dupuis H 1997 Reporting on the Liege Research Trends Tendences 22 (18 September) 267

Egenter E, Lux T and Stauffer D 1999 Finite-size effects in Monte Carlo simulations of two stock market
models Physica A 268 250-6

Ehrenstein G, Westerhoff F and Stauffer D 2005 Tobin tax and market depth Quant. Finance 5 213-18

Ehrenstein G 2002 Cont-Bouchaud percolation model including tobin tax Int. J. Mod. Phys. C 13 1323-32

Eisler Z and Kertész J 2006 Size matters: some stylized facts of the market revisited Eur. Phys. J. B 51 145-54

Farmer J D and Joshi S 2002 The price dynamics of common trading strategies J. Econ. Behav. Organ. 49 149-71

Foley D K 1994 A statistical equilibrium theory of markets J. Econ. Theory 62 321-45

de Fontnouvelle P 2000 Information dynamics in financial markets Macroecon. Dyn. 4 139-69

Frankel J and Froot K A 1986 The dollar as an irrational speculative bubble: a table of fundamentalists and
chartists Marcus Wallenberg Papers Int. Finance 1 27-55

Frankel J and Froot K A 1986 Understanding the US dollar in the eighties: the expectations of chartists and
fundamentalists Econ. Rec. 24-38

Friedman M 1953 Essays in Positive Economics (Chicago: Chicago University Press)

Gaunersdorfer A, Hommes C H and Wagener F O O 2000 Bifurcation routes to volatility clustering
http://finance2.bwl.univie.ac.at/research/papers/ghw.zip

Gaunersdorfer A and Hommes C H 2007 A nonlinear structural model for volatility clustering Long Memory
in Economics ed G Teyssire and A Kirman (Berlin: Springer) pp 265-88

Gaunersdorfer A 2000 Endogenous fluctuations in a simple asset pricing model with heterogeneous agents
J. Econ. Dyn. Control 24 799-831

Georges C 2006 Learning with misspecification in an artificial currency market J. Econ. Behav. Organ. 60
70-84

Goldenberg J, Libai J, Solomon S, Jan N and Stauffer D 2000 Marketing percolation Physica A 284 335-47

Gupta A K and Stauffer D 2000 Social percolation on inhomogeneous spanning network Int. J. Mod. Phys. C
11 695-706

Hayes B 2002 Follow the money Am. Sci. 90 400-5

Hellthaler T 1995 The influence of investor number on a microscopic market model Int. J. Mod. Phys. C
6 845-52

Heymann D, Perazzo J R P and Schuschny A 2001 Learning and contagion effects in transitions between
regimes: some schematic multi-agent models http://www.econ.uba.ar./www/servicios/publicaciones/
journal2/CONTENTS/heymann/heymann.htm

Hommes C H 2001 Stochastic consistent expectations equilibria CeNDEF Workshop Paper, Amsterdam

Huang Z F and Solomon S 2000 Power, Levy, exponetial and Gaussian-like regimes in autocatalitic financial
systems Eur. Phys. J. B 20 601-7

Huang Z F and Solomon S 2001 Finite market size as a source of extreme wealth inequality and market
instability Physica A 294 503-13

Huang Z F and Solomon S 2002 Stochastic multiplicative processes for financial markets Physica A 306 412-22

Huang Z F 2000 Self-organized model for information spread in financial markets Eur. Phys. J. B 16 379-85


http://dx.doi.org/10.1017/S1365100500015029
http://dx.doi.org/10.1016/S0165-1889(98)00083-9
http://dx.doi.org/10.1016/0167-2681(90)90061-H
http://dx.doi.org/10.1088/0305-4470/39/43/R01
http://dx.doi.org/10.1016/0927-5398(93)90006-D
http://dx.doi.org/10.1016/S0378-4371(00)00177-1
http://dx.doi.org/10.1016/S0378-4371(99)00473-2
http://dx.doi.org/10.1007/s100510070114
http://dx.doi.org/10.1016/S0165-1889(00)00028-2
http://dx.doi.org/10.1016/S0378-4371(99)00059-X
http://dx.doi.org/10.1080/14697680500041064
http://dx.doi.org/10.1140/epjb/e2006-00189-6
http://dx.doi.org/10.1016/S0167-2681(02)00065-3
http://dx.doi.org/10.1006/jeth.1994.1018
http://dx.doi.org/10.1017/S1365100500015017
http://http://finance2.bwl.univie.ac.at/research/papers/ghw.zip
http://dx.doi.org/10.1016/S0165-1889(99)00026-3
http://dx.doi.org/10.1016/S0378-4371(00)00260-0
http://dx.doi.org/10.1511/2002.5.400
http://dx.doi.org/10.1142/S0129183195000691
http://http://www.econ.uba.ar./www/servicios/publicaciones/ journal2/CONTENTS/heymann/heymann.htm
http://http://www.econ.uba.ar./www/servicios/publicaciones/ journal2/CONTENTS/heymann/heymann.htm
http://dx.doi.org/10.1016/S0378-4371(01)00113-3
http://dx.doi.org/10.1016/S0378-4371(02)00519-8
http://dx.doi.org/10.1007/s100510070240

Agent-based models of financial markets 447

[94]
[95]
[96]
(971
(98]

[99]
[100]

[101]
[102]
[103]
[104]
[105]
[106]
[107]
[108]
[109]

[110]
[111]

[112]

[113]
[114]

[115]

[116]
[117]

[118]
[119]

[120]
[121]

[122]
[123]
[124]
[125]
[126]

[127]

Huang Z F 2000 Stability in the social percolation models for two to four dimensions Int. J. Mod. Phys. C 11
287-300

Ingrao B and Israel G 2000 The Invisible Hand: Economic Equilibrium in the History of Science (Cambridge,
MA: MIT Press)

Iori G and Jafarey S 2001 Interbank lending, reserve requirements and systematic risk http://137.73.14.173/
giulia/bank23.pdf

Tori G 1999 Avalanche dynamics and trading friction effects on stock market returns Int. J. Mod. Phys. C
10 1149-62

Tori G 2002 A microsimulation of traders activity in the stock market: the role of heterogeneity, agents’
interactions and trade frictions J. Econ. Behav. Organ. 49 269-85

Jones R 1976 The origin and development of media of exchange J. Political Economy 84 757-75

Kaizoji T 1999 Complex dynamics of speculative price Complexitiy Int. 6 http://www.csu.edu.au/
ci/vol06/kaizoji/kaizoji.html

Kaizoji T 1999 A synergetic approach to speculative price volatility IEICE Trans. Fund. Electron. Commun.
Comput. Sci. E82-A 1874-82

Kaizoji T 2000 Speculative bubbles and crashes in stock markets: an interacting-agent model of speculative
activity Physica A 287 493-506

Kaldor N 1939 Speculation and economic stability Rev. Econ. Studies 7 1-27

Kemp M 1963 Speculation, profitability and price stability Rev. Econ. Stat. 45 175-89

Kim G W and Markowitz H M 1989 Investment rules, margin and market volatility J. Portfolio Manag. 16
45-52

Kirman A 1991 Epidemics of opinion and speculative bubbles in financial markets Money and Financial
Markets ed M P Taylor (Cambridge: Blackwell) pp 354-68

Kirman A 1993 Ants, rationality, and recruitment Q. J. Econ. 108 137-56

Kiyotaki N and Wright R 1985 On money as a medium of exchange J. Political Economy 97 924-54

Kohl R 1997 The influence of the number of different stocks on the Levy-Levy-Solomon model Int. J. Mod.
Phys. C 8 1309-16

Krugman P 1993 Geography and Trade (Cambridge: MIT Press)

Kullmann L and Kertész J 2001 Crossover to Gaussian behavior in herding market models Int. J. Mod. Phys.
C121211-15

Kullmann L and Kertész J 2001 Preferential growth: Solution and application to modelling stock market Physica
A 299 121-6

Landes T and Loistl O 1992 Complexity models in financial markets Appl. Stoch. Models Data Anal. 8 209-28

LeBaron B, Arthur W B and Palmer R 1999 The time series properties of an artificial stock market J. Econ.
Dyn. Control 23 1487-516

LeBaron B 2000 Empirical regularities from interacting long and short memory investors in an agent based
stock market /IEEE Trans. Evol. Comput. 5 442-55

LeBaron B 2001 Evolution and time horizons in an agent-based stock market Macroecon. Dyn. 5 225-54

Levy M, Levy H and Solomon S 1994 A microscopic model of the stock market: cycles, booms, and crashes
Econ. Lett. 45 103-11

Levy M, Levy H and Solomon S 1995 Microscopic simulation of the stock market: the effect of microscopic
diversity J. Physique 15 1087-107

Levy M, Levy H and Solomon S 1997 New evidence for the power law distribution of wealth Physica A
242 90-4

Levy M, Levy H and Solomon S 2000 Microscopic Simulation of Financial Markets (New York: Academic)

Levy M, Persky N and Solomon S 1996 The complex dynamics of a simple stock market model Int. J. High
Speed Comput. 8 93113

Levy M and Solomon S 1996 Dynamical explanation for the emergence of power law in a stock market Int. J.
Mod. Phys. C7 65-72

Levy M and Solomon S 1996 Power laws are logarithmic Boltzmann laws Int. J. Mod. Phys. C 7 595-601

de Lima P J F 1998 Nonlinearities and nonstationarities in stock returns J. Bus. Econ. Stat. 16 227-36

Lobato I N and Savin N E 1998 Real and spurious long-memory properties of stock market data J. Bus. Econ.
Stat. 16 261-83

Louzoun Y and Solomon S 2001 Volatility driven market in a generalized Lotka—Volterra formalism Physica
A 302 220-33

Lux T and Ausloos M 2002 Market fluctuations I. Scaling, multiscaling and their possible origins The
Science of Disasters: Climate Disruptions, Heart Attacks, and Market Crashes ed A Bunde et al
(Berlin: Springer)


http://http://137.73.14.173/~giulia/bank23.pdf
http://http://137.73.14.173/~giulia/bank23.pdf
http://dx.doi.org/10.1142/S0129183199000930
http://dx.doi.org/10.1016/S0167-2681(01)00164-0
http://dx.doi.org/10.1086/260475
http://www.csu.edu.au/ci/vol06/kaizoji/kaizoji.html
http://www.csu.edu.au/ci/vol06/kaizoji/kaizoji.html
http://dx.doi.org/10.1016/S0378-4371(00)00388-5
http://dx.doi.org/10.2307/2967593
http://dx.doi.org/10.2307/2118498
http://dx.doi.org/10.1142/S0129183197001168
http://dx.doi.org/10.1142/S0129183101002449
http://dx.doi.org/10.1016/S0378-4371(01)00286-2
http://dx.doi.org/10.1016/S0165-1889(98)00081-5
http://dx.doi.org/10.1017/S1365100501019058
http://dx.doi.org/10.1016/0165-1765(94)90065-5
http://dx.doi.org/10.1051/jp1:1995183
http://dx.doi.org/10.1016/S0378-4371(97)00217-3
http://dx.doi.org/10.1142/S0129053396000082
http://dx.doi.org/10.1142/S0129183196000077
http://dx.doi.org/10.1142/S0129183196000491
http://dx.doi.org/10.2307/1392578
http://dx.doi.org/10.2307/1392497
http://dx.doi.org/10.1016/S0378-4371(01)00466-6

448

E Samanidou et al

[128]
[129]
[130]

[131]
[132]

[133]
[134]
[135]

[136]
[137]

[138]
[139]

[140]

[141]
[142]

[143]

[144]
[145]

[146]
[147]
[148]
[149]

[150]
[151]

[152]
[153]
[154]
[155]

[156]
[157]
[158]
[159]

[160]
[161]
[162]
[163]
[164]

Lux T and Marchesi M 1999 Scaling and criticality in a stochastic multi-agent model of a financial market
Nature 397 498-500

Lux T and Marchesi M 2000 Volatility clustering in financial markets: a micro-simulation of interacting agents
Int. J. Theor. Appl. Finance 3 67-702

Lux T and Schornstein S 2005 Genetic learning as an explanation of stylized facts of foreign exchange markets
J. Math. Econ. 41 169-96

Lux T 1995 Herd behaviour, bubbles and crashes Econ. J. 105 881-96

Lux T 1996 The stable Paretian hypothesis and the frequency of large returns: an examination of major German
stocks Appl. Financial Econ. 6 463-75

Lux T 1997 Time variation of second moments from a noise trader/infection model J. Econ. Dyn. Control
22 1-38

Lux T 1998 The socio-economic dynamics of speculative markets: interacting agents, chaos, and the fat tails
of return distributions J. Econ. Behav. Organ. 33 143-65

Lux T 2005 Emergent statistical wealth distributions in simple monetary exchange models: a critical review
Econophysics of Wealth Distributions ed A Chatterjee et al (Berlin: Springer)

Madhavan R 2000 Market microstructures: A survey J. Financial Mark. 3 205-58

Mandelbrot B, Fisher A and Calvet L 1997 A Multifractal Model of Asset Returns (New Haven, CT: Cowles
Foundation for Research and Economics, Yale University)

Mandelbrot B 1963 The variation of certain speculative prices J. Bus. 35 394-419

Marimon R, McGrattan E and Sargent T J 1990 Money as a medium of exchange in an economy with artificially
intelligent agents J. Econ. Dyn. Control 14 329-73

Markowitz HM 1988 Stock market simulator sms1: program description Baruch College Working Paper Series
88-24

Maslov S 2000 Simple model of a limit order-driven market Physica A 278 571-8

Morehouse N F, Strotz R H and Horowitz S J 1950 An electro-analog method for investigating problems in
economic dynamics: inventory oscillations Econometrica 18 313-28

Mori F and Odagaki T 2001 Percolation analysis of clusters in random graphs J. Phys. Soc. Japan
70 2485-9

Markowitz H M 1963 Simscript: A Simulation Programming Language (Englewood Cliffs NJ: Prentice-Hall)

Nagel K, Esser J and Rickert M 2000 Large-scale traffic simulations for transportation planning Annual Review
of Computational Physics VII ed D Stauffer (Singapore: World Scientific) pp 151-202

Newlyn W T 1950 The Phillips/Newlyn hydraulic model Yorkshire Bull. Econ. Soc. Res. 2 111-27

O’Hara M 1995 Market Microstructure Theory (Cambridge: Blackwell)

Pagan A 1996 The econometrics of financial markets J. Empirical Finance 3 15-102

Palmer R G, Arthur W B, Holland J H, LeBaron B and Tayler P 1994 Artificial economic life: a simple model
of stock market Physica D 75 264-74

Phillips A W 1950 Mechanical models in economic dynamics Economica 17 283-305

Plerou V, Gopikrishnan P, Gabaix X and Stanley H E 2002 Quantifying stock price response to demand
fluctuations Phys. Rev. E 66 027104

Ponzi A and Aizawa Y 2000 Criticality and punctuated equilibrium in a spin system model of a financial market
Chaos Solitons Fractals 11-11 1739-46

Proykova A and Stauffer D 2002 Social percolation and the influence of mass media Physica A
312 3004

Ramsey J B 1996 On the existence of macro variables and of macro relationships J. Econ. Behav. Organ.
3027599

Richmond P and Solomon S 2001 Power laws are disguised Boltzmann laws Int. J. Mod. Phys. C
1233343

Routledge B R 1999 Adaptive learning in financial markets Rev. Financial Stud. 12 1165-202

Routledge B R 2001 Genetic algorithm learning to choose and use information Macroecon. Dyn. 5 303-25

Sahimi M 1994 Applications of Percolation Theory (London: Taylor and Francis)

Samanidou E 2000 Portfolio-insurance-strategien und finanzmarktvolatilitat: das mikrosimulationsmodell von
Kim und Markowitz Diploma Thesis Department of Economics, University of Bonn

Schelling T C 1971 Dynamic models of segregation J. Math. Sociol. 1 143-86

Schelling T C 1978 Micromotives and Macrobehavior (New York: W W Norton)

Schulze C 2002 The domino effect for markets Int. J. Mod. Phys. C 13 207-8

Schwert G W 1990 Stock volatility and the crash of ‘87 Rev. Financial Stud. 3 77-102

da Silva L R and Stauffer D 2001 Ising-correlated clusters in the Cont-Bouchaud stock market model Physica
A 294 235-8


http://dx.doi.org/10.1038/17290
http://dx.doi.org/10.1016/j.jmateco.2004.02.003
http://dx.doi.org/10.2307/2235156
http://dx.doi.org/10.1080/096031096333917
http://dx.doi.org/10.1016/S0165-1889(97)00061-4
http://dx.doi.org/10.1016/S0167-2681(97)00088-7
http://dx.doi.org/10.1016/S1386-4181(00)00007-0
http://dx.doi.org/10.1016/0165-1889(90)90025-C
http://dx.doi.org/10.1016/S0378-4371(00)00067-4
http://dx.doi.org/10.2307/1907832
http://dx.doi.org/10.1143/JPSJ.70.2485
http://dx.doi.org/10.1016/0927-5398(95)00020-8
http://dx.doi.org/10.1016/0167-2789(94)90287-9
http://dx.doi.org/10.2307/2549721
http://dx.doi.org/10.1103/PhysRevE.66.027104
http://dx.doi.org/10.1016/S0960-0779(99)00048-X
http://dx.doi.org/10.1016/S0378-4371(02)00964-0
http://dx.doi.org/10.1016/S0167-2681(96)00871-2
http://dx.doi.org/10.1142/S0129183101001754
http://dx.doi.org/10.1093/rfs/12.5.1165
http://dx.doi.org/10.1017/S1365100501019083
http://dx.doi.org/10.1142/S0129183102003061
http://dx.doi.org/10.1093/rfs/3.1.77
http://dx.doi.org/10.1016/S0378-4371(01)00118-2

Agent-based models of financial markets 449

[165]

[166]
[167]

[168]
[169]

[170]
[171]

[172]
[173]
[174]

[175]
[176]

[177]
[178]
[179]
[180]
[181]
[182]
[183]
[184]
[185]
[186]
[187]
[188]

[189]

[190]
[191]

[192]
[193]
[194]
[195]

[196]

[197]
[198]

Silver J, Slud E and Takamoto K 2002 Statistical equilibrium wealth distributions in an exchange economy
with stochastic preferences J. Econ. Theory 106 417-35

Sinha S and Raghavendra S 2004 Hollywood blockbusters and long-tailed distributions Eur: Phys. J. B 42 293-6

Solomon S and Levy M 1996 Spontaneous scaling emergence in generic stochastic systems Int. J. Mod. Phys.
C 299 188-97

Solomon S and Richmond R 2001 Power laws of wealth, market order volumes and market returns Physica A
299 188-97

Solomon S, Weisbuch G, Arcangelis L de, Jan N and Stauffer D 2000 Social percolation models Physica A
277 239-47

Solomon S and Weisbuch G 1999 Social Percolation http://xxx.lanl.gov/abs/adap-org/9909001

Solomon S 2000 Generalized Lotka Volterra (GLV) models of stock markets Applications of Simululation to
Social Sciences ed G Ballot and G Weisbuch (Paris: Hermes Science) pp 301-22

Sornette D and Zhou W-X 2002 The US 2000-2002 market descent: how much longer and deeper? Quant.
Finance 2 468-81

de Souza A M C and Tsallis C 1997 Student’s t- and r-distributions: unified derivation from an entropic
variational principle Physica A 236 52-7

Stanley M H R, Amaral L H N, Buldyrev S V, Havlin S, Leschorn H, Maass P, Salinger M A and Stanley H E
1996 Can statistical physics contribute to the science of economics? Fractals 4 415-25

Stauffer D and Aharony A 1994 Introduction to Percolation Theory ( London: Taylor and Francis)

Stauffer D and Jan N 2000 Percolation simulation: Large lattices, varying dimensions Annual Reviews of
Computational Physics VIII 2nd edn, ed D Stauffer (Singapore: World Scientific) pp 287-300

Stauffer D and Radomski J P 2001 Scaling in the Donangelo-Sneppen model for evolution of money Physica
A 291 583-6

Stauffer D and Sornette D 1999 Self-organized percolation model for stock market fluctuation Physica A
271 496-506

Stauffer D 1999 Finite-size effects in Lux-Marchesi and other microscopic market models http://ciclamino.
dibe.unige.it/wehia/papers/stauffer.zip WEHIA e-print

Stauffer D 2001 Percolation models of financial market dynamics Adv. Complex Syst. 4 19-27

Stigler G J 1964 Public regulation of the securities market J. Bus. 37 117-42

Szpiro G G 1997 The emergence of risk aversion Complexity 2 31-9

Takayasu H, Miura H, Hirabayashi T and Hamada K 1992 Statistical properties of deterministic threshold
elements—the case of market price Physica A 184 127-34

Tiggemann D 2001 Simulation of percolation on massively-parallel computers Int. J. Mod. Phys. C 12 871-8

Tiggemann D 2006 PhD Thesis Cologne University, Germany

Toral R and Tessone C J 2007 Finite size effects in the dynamics of opinion formation Commun. Comput. Phys.
2 177-95

Vandewalle N and Ausloos M 1997 Coherent and random sequences in financial fluctuations Physica A
246 454-9

de Vany A and Lee C 2001 Quality signals in information cascades and the dynamics of the distribution of
Motion Picture box office revenues J. Econ. Dyn. Control 25 593-614

de Vany A and Wall D 1996 Box-Einstein dynamics and adaptive contracting in the motion picture industry
Econ. J. 106 1493-514

de Vries C G 1994 Stylized facts of nominal exchange rate returns The Handbook of International
Macroeconomics ed F van der Ploeg (Oxford: Blackwell) pp 348—-89

Weidlich W 1991 Physics and social science—the approach of synergetics Phys. Rep. 204 1-163

Weidlich W 2002 Socio-Dynamics: A Systematic Approach to Mathematical Modelling in the Social Science
(London: Taylor and Francis)

Weisbuch G and Solomon S 2000 Self-organized percolation and critical sales fluctuations Int. J. Mod. Phys.
C111263-72

Weisbuch G, Stauffer D and Solomon S 2001 Social percolators and self-organized criticality Economics with
Heterogeneous Interacting Agents (Lecture Notes in Economics and Mathematical Systems) ed A Kirman
and J B Zimmermann (Berlin, Heidelberg: Springer) pp 43-55

Weisbuch G and Stauffer D 2000 Hits and flops dynamics Physica A 287 563-76

Weisbuch G and Stauffer D 2003 Adjustment and social choice Physica A 323 651-62

Weron R 2001 Levy-stable distributions revisited: tail index above 2 does not exclude levy stable regime Int.
J. Mod. Phys. C 12 209-23

Westerhoff F 2003 Heterogeneous traders and the Tobin tax J. Evol. Econ. 13 53-70

Yasutomi A 1995 The emergence and collapse of money Physica A 82 180-94


http://dx.doi.org/10.1006/jeth.2001.2897
http://dx.doi.org/10.1140/epjb/e2004-00382-7
http://dx.doi.org/10.1016/S0378-4371(01)00295-3
http://dx.doi.org/10.1016/S0378-4371(99)00543-9
http://http://xxx.lanl.gov/abs/adap-org/9909001
http://dx.doi.org/10.1088/1469-7688/2/6/306
http://dx.doi.org/10.1016/S0378-4371(96)00395-0
http://dx.doi.org/10.1142/S0218348X96000546
http://dx.doi.org/10.1016/S0378-4371(00)00632-4
http://dx.doi.org/10.1016/S0378-4371(99)00290-3
http://http://ciclamino.dibe.unige.it/wehia/papers/stauffer.zip
http://http://ciclamino.dibe.unige.it/wehia/papers/stauffer.zip
http://dx.doi.org/10.1142/S0219525901000061
http://dx.doi.org/10.1086/294677
http://dx.doi.org/10.1002/(SICI)1099-0526(199703/04)2:4&lt;31::AID-CPLX8&gt;3.0.CO;2-3
http://dx.doi.org/10.1016/0378-4371(92)90161-I
http://dx.doi.org/10.1016/S0378-4371(97)00366-X
http://dx.doi.org/10.1016/S0165-1889(00)00037-3
http://dx.doi.org/10.2307/2235197
http://dx.doi.org/10.1016/0370-1573(91)90024-G
http://dx.doi.org/10.1142/S0129183100001097
http://dx.doi.org/10.1016/S0378-4371(00)00393-9
http://dx.doi.org/10.1016/S0378-4371(03)00010-4
http://dx.doi.org/10.1142/S0129183101001614
http://dx.doi.org/10.1007/s00191-003-0140-5

450

E Samanidou et al

[199]

[200]
[201]

[202]
[203]
[204]

[205]

Yeh C H 2001 The Influence of Market Size in an Artificial Stock Market: The Approach Based on Genetic
Programming (Kaohsiung, Taiwan: I-Shou University)

Youssefmir M, Hubermann B A and Hogg T 1998 Bubbles and market crashes Comput. Econ. 12 97-114

Youssefmir M and Huberman A 1997 Clustered volatility in multiagent dynamics J. Econ. Behav. Organ.
32101-18

Zeeman E C 1974 On the unstable behaviour of stock exhanges J. Math. Econ. 1 39-49

Zhang Y C 1999 Toward a theory of marginally efficient markets Physica A 269 30-44

Zschischang E and Lux T 2001 Some new results on the Levy, Levy and Solomon microscopic stock market
model Physica A 291 563-73

Zschischang E 2000 Mikrosimulationsmodelle fiir finanzmarkte: das modell von levy und solomon Diploma
Thesis Department of Economics, University of Bonn


http://dx.doi.org/10.1023/A:1008693507721
http://dx.doi.org/10.1016/S0167-2681(96)00021-2
http://dx.doi.org/10.1016/0304-4068(74)90034-2
http://dx.doi.org/10.1016/S0378-4371(99)00077-1
http://dx.doi.org/10.1016/S0378-4371(00)00609-9

	1. Introduction
	2. Overview
	3. The dynamics of monetary exchange
	4. The first modern multi-agent model: Kim--Markowitz and the crash of 1987
	4.1. The model
	4.2. Results
	4.3. Conclusions

	5. An early `econophysics' approach: Levy--Levy--Solomon
	5.1. The model set-up
	5.2. Previous results

	6. Financial markets and the distribution of wealth: Solomon--Levy--Huang
	7. Percolation theory applied to finance: Cont--Bouchaud
	8. Social percolation and marketing: Solomon--Weisbuch
	9. Speculative interaction and the emergence of scaling laws: Lux--Marchesi
	10. Discussion
	 Acknowledgments
	 References

