
Agent Based Prototype for Interoperation of Production Planning and

Control and Manufacturing Automation

Rui M. Lima

School of Engineering of University of Minho

Department of Production and Systems

Campus de Azurém, Guimarães, Portugal

rml@dps.uminho.pt

Rui M. Sousa

School of Engineering of University of Minho

Department of Production and Systems

Campus de Azurém, Guimarães, Portugal

rms@dps.uminho.pt

Abstract

This work describes a model for distributed dynamic

Production Planning and Control (PPC) agent based

system, which includes interoperation with

manufacturing automation. It is presented a

demonstration prototype involving distributed software

agents and industrial equipment integration, which

implements part of the developed model functionalities.

Clients can send orders, and resources may apply for

those orders fulfilment. Resources with orders

allocated to, start automatically the required

manufacturing operations. The prototype was

implemented integrating several tools, including

LabVIEW and LEGO Mindstorms components. This is

useful to validate the integration, proposed by the

dynamic PPC model, between production planning

processes and manufacturing execution operations.

1. Introduction

Production Planning and Control (PPC) systems

include planning functions like determining the

quantity and timing of materials and capacity

requirements in order to satisfy production system

demand. Furthermore, the system could “tell” which

production resources should be used to provide those

capacity requirements. In this case a function related

with detailed dispatching or scheduling would be

responsible for those decisions. On scheduling

functions, decisions are taken in advance considering

some state of utilization of the production system and

some criteria combination. In the case of dispatching

functions, decisions are taken at the moment that the

action should be executed, also considering a view of

the state of the system and a combination of criteria.

After those decisions, the system should be able to

execute and control the shop orders.

Production shop orders are executed by production

resources, i.e. individual or group of operators and

machines. If the system is composed, even partially, by

computer controlled equipment, some operations from

the shop orders could be executed in a more automatic

way interoperating PPC with Computer Aided

Manufacturing (CAM) control equipment.

The dynamic interoperation between Production

Planning and Control systems and Automation

Equipment is being researched by several authors using

models based in the software agent paradigm. Yanli et

al [1] describe a manufacturing execution system based

on the scheduling processes and execution control of

tasks related with part orders received from the

ERP/MRP system. This multi-agent system is based on

a Director Facilitator agent in order to find adequate

service agents and a Broker Agent to mediate the

resource selection process. Wang et al [2] use a three

layer structure based on Client agents, Facilitator

agents and Resource agents to propose Virtual

Computer Integrated Manufacturing (VCIM)

architecture for small to medium enterprises. They

present a prototype able to build schedule solutions for

some case studies. In [3] it is presented a solution for

product design and process planning, and also for

scheduling and controlling the production execution.

This system is based on six fundamental operational

agents and one centralized control managing agent.

Dynamic configuration is a problem considered by

Bruccoleri et al [4] in their reconfigurable machine

system (RMS) proposal. This model has four

negotiation protocols to handle dynamic resource

allocation and different types of exceptions, namely:

machine breakdowns, machine deterioration and rush

orders.

In this work, the dynamic selection, allocation and

operation of computer controlled production resources,

for faster and effective response of the production

system, are the fundamental objectives. This is

addressed by a prototype development based on the

interoperation between a dynamic PPC system and

manufacturing equipment.

2. Dynamic PPC model

Production Planning and Control (PPC) systems

must be able to transform demand requirements into

shop orders, and ultimately to control their execution.

Usually this is achieved, using Hierarchical Production

1-4244-0826-1/07/$20.00 © 2007 IEEE 1225

Order – Product Pn

Platform

Orders

Bids

Allocation

Resource r1

Resource r2

Resource rk

...

Client
C1

Client
C2

Client
Cm

Decision factors

Selection

Planning and Control, based on Manufacturing

Requirements Planning (MRP) and Capacity Planning

functions. This approach considers a predefined

production organization structure in order to compute

material requirements for defined demand during a

planning horizon for each period of time. Material

requirements are then used to compute capacity

requirements that must me compared with planned

shop orders to decide about the possibility of executing

them. A dynamic PPC model could be more

appropriate to deal with a fast changing environment

based on shortened production flow time requirements

imposed by increased customization of product orders.

The referred changing environment requires a

dynamic PPC model able to reduce production flow

time and deal with customization of orders. An

adequate production system should be production to

order type. Lima et al [5] proposed a distributed

dynamically adaptable PPC system based on the

production planning, control and execution of a

production order of one product for each demand

order. This model is based on the dynamic selection

and allocation of resources to satisfy each order in the

minimum possible time. In this model, illustrated by

Figure 1, Clients and Resources communicate through

a Platform that acts, mainly as a Blackboard,

publishing each order of one product and available

capable resources bid offers. Clients select resources

for their orders and allocation can be done. This is a

protocol of negotiation based on the Contract Net [6].

In this model an autonomous resource can

completely execute a transformation in the production

process in order to deliver an item of the product

structure. Two extreme systems could be considered,

one based on a global view of availability of resources

and another based on local views of the resources. In

the first one, resources have some restrictions on their

autonomy because clients receive capability and free

capacity of every resource, using that information to

take a global decision of selection of resources for each

item of the product structure. In the second case, the

one explored in this work, interested resources present

offers for each item order, and could act as a client

creating orders for each material requirement for that

item. In this way, the production system can be

modelled to the desired extent, modelling the product

structure.

The five basic stages for the resolution of problems

of resource allocation for distributed manufacturing

systems, according to Tharumarajah [7] are: (1)

“decompose order(s) into operations”; (2) “assign

operation(s)”; (3) “select machine”; (4) “allocate

operation”; (5) “coordinate allocation & build

schedule”. In stage 1, orders are decomposed in

operations, which are related with machines in stage 2.

In stage 3 machines are selected for the execution of

each operation. In stage 4 operations are allocated to

machines. The coordination of the allocation of

operations to machines results from stage 5, which

includes the construction of the production schedule. In

reality, problems solved in these stages have to be

solved whenever it is necessary to allocate operations

to resources and to build production schedules.

According to stage 1, in this model, the order is

related with one product and the decomposition in

operations is associated with the transformations of

state between levels of the product structure. Each

transformation could be formalized as:

, 1,...,jt j n= .

In this model, stage 2 corresponds to the definition

of the domain of available production resources (res)

able to execute transformations of the product

structure:

, 1,...,kres k r= .

In stage 3, resources are selected for each

transformation, according to a criteria defined for the

developed system. In this, case minimum throughput

time will be used. So, for each transformation a

processing time Tjk is determined that depends on unit

processing time cjk and the number of times wjk a

resource must execute the transformation (number of

units for each order). This is represented by the

following equation:

{ } { }1,..., , 1,..., : jk jk jkj n k r T c w∀ ∈ ∀ ∈ = ⋅ .

This transformation processing time is used by each

resource to, according his free agenda, calculate the

throughput time.

Figure 1: PPC Model Illustration.

1226

The solution will also be related with stage 5, because

initial and final processing time for each

transformation will be determined, and so a dynamic

schedule solution will be obtained. Stage 4 and

“coordination” aspects from stage 5 are related with

operational strategies. In this work it is made a direct

address of the problem from the point of view of the

interoperation of the PPC processes with automation

processes controlling production equipment.

Testing the validity of these concepts could be

addressed by a functional prototype. Software agent

paradigm was used for system development, as

described in [5], to demonstrate the validity of the

dynamic PPC concepts. Furthermore, the

interoperation of production planning processes with

physical production resources is an objective for the

development of the system, described in this paper.

3. Implementation model

The developed prototype was designated as

Distributed Manufacturing System (DMS), and

implements part of the dynamic PPC model described

on the previous section.

3.1. Basic structure

Three types of agents were implemented, one for each

entity of the model: client, resource and platform

(Figure 1). Software agents involved in this work are

able to: execute some product transformation

(autonomy); monitor the environment through the

communication platform or the state of the resources

that are represented by the agent (monitoring); and

interact with the environment or other agents (action)

based on design objectives (goals). These are

characteristics of agents as defined in [8], [9] or [10].

Although, the existence of the platform agent could

induce a complete centralization of management, that

is not true (Figure 1). In fact, all the decision processes

concerning orders, resource allocation, production, etc.,

are performed by client and resource agents. The

platform manages the underlying services (e.g. client

and resource register/login, order registration requests,

etc.), and maintains a database containing all the

relevant data (including a communications log). This

platform agent, as relating the communications

between agents, acts as a Blackboard. Figure 2 shows

the main panel of the platform agent user interface.

Figure 3: Entity-relationship diagram for
platform agent’s database.

Figure 2: User interface for platform agent (main panel).

name

email

password

online

Client

name

email

password

online

Resource

number

clientName

product

quantity

resourceName

deliveryTime

status

Order

1227

The Ontology of this multi-agent system is embedded

in code and some of the fundamental concepts are

registered on a database, namely: Client, Order and

Resource. The database structure is very simple and it

is represented on Figure 3. For each order there exists

only one Client and one Resource selected for that

order. That order represents operations of the

transformation process of the product structure that can

be completely executed by an autonomous production

resource.

The structure of the messages exchanged within the

system is fixed - a string array with five elements:

origin/destination, operation code and three

parameters. All the messages posted by clients and

resources are sent to the platform agent. Thus, for those

cases, the first string represents the message origin

(clientName or resourceName). All the messages

received by clients and resources are posted by the

platform, and thus, for those cases, the first string

identifies the message destination (clientName or

resourceName).

The use, and semantics, of the parameters depends

on the message operation code. The current prototype

implements thirty one different operations (e.g. login

request, order application registration, production

status update, etc.). To avoid data loss, every sent

message demands a response message, and, thus, the

sender can always check if its message has reached the

destination (the only exception is the platform

shutdown indication message).

Among other techniques/tools, Message Sequence

Charts (MSC) where used for prototype specification.

As an example, Figure 4 represents a typical operation

scenario, described on the next subsection.

The publishing mechanisms implemented on the

platform are in fact information broadcasts. Thus,

without specific request, any registered agent can

access that information whenever he needs. When a

given agent (client or resource) leaves the system

(executing the logout procedure), the platform sends

him an email with the communications log which

includes all the relevant information (e.g. registered

orders with respective products and quantities, order

applications with respective candidate resources and

delivery times, production status, etc.). Further

processing is possible, as this information is

represented in a plain text file which can be easily

imported by any data processing application.

3.2. Operation

Using the client agent interface (Figure 5), a client

builds up an order, selecting the desired product and

quantity, and sends it to the system. The platform agent

registers the incoming order under a sequential order

number, sets the correspondent status to “not allocated”

(Figure 2), and notifies the client about the

successfulness of the procedure. The sequence of

exchanged messages between the client and the

platform during this procedure is represented on Figure

4, and the correspondent message contents are

represented on Figure 6.

Figure 4: Message sequence chart for order dealing.

1228

All the registered orders are published by the platform,

and those having the “not allocated” status become

available not only for resources’ application, but also

for clients’ order registration double check. In fact, the

contents of the registered orders display on the client

agent interface (Figure 5) results from the subscription

of the information published by the platform, filtered

by the client name.

Whenever a “not allocated” order is introduced into

the system, one or more resources may apply to

process that order, providing the correspondent

delivery date. The platform displays and publishes the

list of all candidate resources, for every “not allocated”

order (Figure 2). The client automatically subscribes

that information, filters the candidates for its own

orders, displays them on the candidate resources

display (Figure 5) , and finally decides, using a given

decision criteria, which resource is going to process the

order (if there is more than one candidate resource).

Figure 6: Messages involved on the order
registration procedure: (a) client request;
(b) platform confirmation.

In the current prototype the resource allocation

procedure is manual, but it can be easily automated

using the shortest delivery time as decision criteria.

When the client successfully selects a resource to

process (Figure 5) an order, the platform clears the list

of candidate resources for that order, updates the

registered orders display (introducing resource name

and delivery time and setting the status to “0% done”),

and publishes all that information. Thus all the agents

know that the resource allocation procedure has been

accomplished for that particular order.

According to the developed PPC model, the

application process should be open during a given time

window. In this prototype, that period starts when the

order is registered and ends when the client succeeds to

manually select a candidate resource to process that

order. To implement automatic resource allocation, the

referred time window must be set (eventually by the

client itself, but not necessarily) – when time expires,

candidate resources are analysed and the decision

criteria is applied.

A resource agent should continuously monitor the

list of available orders, and decide which of them he is

going to apply for. The resource agent maintains an

updated available orders display (Figure 7) by

subscribing the contents of the platform’ registered

orders display (Figure 2) and filtering it for orders with

“not allocated” status. Once again, in the current

prototype the selection procedure (this time of orders to

apply for) is manual - automation can be achieved after

definition of decision criteria (e.g. production skills,

scheduling plan, client, etc.).

To apply for a given “not allocated” order, the

resource should provide a delivery time. According to

the developed PPC model, every resource should have

an internal agenda allowing thus the automatic

determination of the delivery time for a given order.

Alternatively the client could receive the agenda of

each candidate resource and, based on that information,

decide which one is the most adequate. In the current

prototype the agenda concept is not implemented, so

the resource should manually provide a delivery time

whenever he wants to apply for a given order.

Figure 5: User interface for client agents (main panel).

1229

After receiving an order application (Figure 4), the

platform updates the candidate resources display

(Figure 2) and publishes those contents. Thus, the

candidate resources display of the client agent (Figure

5) and the order applications display of the resource

agent (Figure 7) are both updated.

3.3. Automation equipment

Typically a resource agent includes some kind of

manufacturing equipment, being thus able to execute

the physical operations necessary to fulfil clients’

orders. In this prototype one of the resource agents

includes an industrial PLC (Programmable Logic

Controller) which controls a toy-model milling

machine (Figure 8).

Figure 8: Resource agent’s architecture

The PLC is a Simatic S7-200 CPU224XP, with

fourteen digital inputs, ten digital outputs and two

RS485 communication ports. One of the ports is

connected to a TD200 HMI (Human Machine

Interface) device which allows the monitoring of the

production status (Figure 9). The toy-model milling

machine was build up with Lego Technics /

Mindstorms components and includes two DC motors

(driving spindle and vertical axis) and two contact

sensors (defining vertical axis upper and lower limits).

The objective of this prototype is the demonstration

of the developed model, which includes the integration

of shop-floor equipment.

Although both PLC and HMI device are industrial

equipments, the described resource agent is not

intended, obviously, to produce a physical product.

When the resource receives an order allocation, the PC

(Figure 8) instructs the PLC to start the production,

providing the necessary information (order number,

product and quantity). The PLC starts the production

cycle driving the toy-model milling machine through a

pre-defined sequence of operations. Simultaneously,

the TD200 HMI device displays the production status

(order number, product, quantity and execution

percentage) including an eventual problem situation. A

“failure switch” was implemented, allowing thus

disturb introduction. The production status is

propagated from resource to client, via the platform

agent, until the order becomes 100% fulfilled.

The software developed for the PLC was

implemented using ladder logic and has two main

components: (1) communications and (2) toy-model

milling machine control and monitoring.

Communication between PC and PLC (Figure 8)

uses a RS232 port (PC side) and the second RS485 port

on the PLC, requiring thus a RS232/485 converter.

This kind of solution is widely used in industry as the

RS485 standard allows communication distances up to

1200m at 100Kbit/s. Special attention has been paid to

the implementation of the communications component,

which is based on interrupts, allowing the CPU of the

PLC to dedicate the most part of his time to production

equipment control.

Figure 7: User interface for resource agents (main panel).

Resource agent

PLC machine

HMI

PCinternet

1230

The specification of the toy-model milling machine

control and monitoring is based on a simple Finite

State Machine (FSM) which basically drives the

machine through three distinct states, constituting a

production cycle of about 30s.

3.4. Testing prototype utilization

At this point a fundamental verification test related

with functional acceptance of the prototype is required.

The two main objectives of this test are: the prototype

can have a full distributed utilization; the

interoperation between dynamic PPC planning

functions and physical execution of automation

equipment is in accordance with design objectives.

One of the experiments has involved twenty two

undergraduate students - client (Figure 5) and resource

(Figure 7) applications were provided. Some students

have decided to register themselves as clients, while

others as resources, and they were asked to introduce

orders (clients), apply for orders production

(resources), introduce machine failure (resource with

the production equipment), leave and re-enter into the

system, etc. This experiment, performed within the

university campus network, was an important

contribution to the operational test of the DMS system

with several agents logged in.

Other experiments were successfully worked out in

order to test the distribution perspective, with the

platform agent running on the university campus and

some agents (clients and resources) installed outside

campus (e.g. 50Km away). The results were very

positive and the DMS system – which implements a

fraction of the developed model - is fully operational.

Both experiments results showed that the prototype

can be further developed in order to be used as an

experimental platform for Dynamic PPC and

interoperation with automation equipment.

4. Conclusion

The presented dynamic PPC model can be used as a

framework for the development of autonomous,

dynamic and reconfigurable PPC systems. For each

client order of a product, a configuration of production

resources is proposed. This is closely related with the

product structure, with the allocation of an autonomous

production resource for each transformation process

delivering an item of the referred structure. So, product

structure is used as the key element for production

system configuration, in this case a system

configuration for each order. Furthermore, a system

configuration can be proposed for each item of the

product structure. An adequate system configuration

must rely on the selection and allocation of the right

production resources. Dynamic selection and allocation

can be, in some cases, an automatic process. This goal

is being pursued in this project, and this paper

demonstrates that the PPC model can contribute to the

interoperation between planning processes and

automation equipment.

The developed prototype has allowed the

demonstration of two different perspectives: (1) the

Figure 9: Industrial PLC, HMI device and toy-model milling machine.

1231

adequacy of the selected programming approach

(LabVIEW), including the correspondent

communications technology (DataSocket), and, (2) the

feasibility of the developed PPC model, which includes

the integration with manufacturing automation

equipment. Several experiments, involving different

scenarios (e.g. geographically distributed agents,

production equipment failure, etc.), were successfully

carried out.

As immediate future work, involving undergraduate

and graduate students, some refinements and

improvements are already defined at both model level

and prototype level. The experiments carried out have

revealed some interesting aspects which can now be

subject of further developments, namely the

implementation of decision criteria for resource

allocation, and of an agenda within each resource.

References

[1] H. Yanli, Y. Haicheng, H. Weiping, Z. Wei, and H.

Xinping, "Flexible Workflow Driven Job Shop

Manufacturing Execution and Automation Based

on Multi Agent System," presented at Intelligent

Agent Technology, 2006. IAT '06, 2006.

[2] D. Wang, S. V. Nagalingam, and G. C. I. Lin,

"Development of an agent-based Virtual CIM

architecture for small to medium manufacturers,"

Robotics and Computer-Integrated Manufacturing,

vol. 23, pp. 1-16, 2007.

[3] M. Mahesh, S. K. Ong, A. Y. C. Nee, J. Y. H. Fuh,

and Y. F. Zhang, "Towards a generic distributed

and collaborative digital manufacturing," Robotics

and Computer-Integrated Manufacturing, vol. 23,

pp. 267-275, 2007.

[4] M. Bruccoleri, P. Renna, and G. Perrone,

"Reconfiguration: a key to handle exceptions and

performance deteriorations in manufacturing

operations," International Journal of Production

Research, vol. 43, pp. 4125 - 4145, 2005.

[5] R. M. Lima, R. M. Sousa, and P. J. Martins,

"Distributed production planning and control agent-

based system," International Journal of Production

Research, vol. 44, pp. 3693-3709, 2006.

[6] R. G. Smith, "The Contract Net Protocol - High-

Level Communication and Control in a Distributed

Problem Solver," Ieee Transactions on Computers,

vol. 29, pp. 1104-1113, 1980.

[7] A. Tharumarajah, "Survey of resource allocation

methods for distributed manufacturing systems,"

Production Planning & Control, vol. 12, pp. 58-68,

2001.

[8] N. R. Jennings and M. Wooldridge, "Applications

of Intelligent Agents," in Agent Technology

Foundations, Applications and Markets, N. R.

Jennings and M. Wooldridge, Eds.: Springer

Verlag, 1998, pp. 3-27.

[9] H. V. D. Parunak, J. Sauter, M. Fleischer, and A.

Ward, "The RAPPID Project: Symbiosis between

Industrial Requirements and MAS Research,"

Autonomous Agents and Multi-Agent Systems, vol.

2, pp. 111-140, 1999.

[10] J. Tweedale, N. Ichalkaranje, C. Sioutis, B. Jarvis,

A. Consoli, and G. Phillips-Wren, "Innovations in

multi-agent systems," Journal of Network and

Computer Applications, vol. 30, pp. 1089-1115,

2007.

1232

