
Purdue University Purdue University

Purdue e-Pubs Purdue e-Pubs

Department of Computer Science Technical
Reports Department of Computer Science

1999

Agent-Based Resource Discovery Agent-Based Resource Discovery

Kyungkoo Jun

Ladislau Bölöni

Krzysztof Palacz

Dan C. Marinescu

Report Number:
99-034

Jun, Kyungkoo; Bölöni, Ladislau; Palacz, Krzysztof; and Marinescu, Dan C., "Agent-Based Resource
Discovery" (1999). Department of Computer Science Technical Reports. Paper 1464.
https://docs.lib.purdue.edu/cstech/1464

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.

https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci

AGENT·BASED RESOURCE DISCOVERY

Kyung.Koo Jun
Ladislau Boloni
Knysztof Palacz

Dan C. Marinescu

Depaltment of Computer Sciences
Purdue University

West Lafayette, IN 47907

CSD TR #99·034
October 1999

Agent-Based Resource Discovery

Kyungkoo Jun, Ladislau Boleni, Krzysztof Palacz, and Dan C. Marlnescu
Computer Sciences Department,

Purdue University
West Lafayette, In, 47907

email: {junkk. boloni. palacz. dcm}<acs .purdue .edu

October 6, 1999

Abstract

In this paper we present a distributed discovery method allowing individual nodes to gather
information about resources in a wide-area distributed system made up of autonomous systems
linked together by a network technology substrate. We introduce an algorithm and a model
for distributed awareness and a framework for dynamic assembly of agents monitoring neliwork
resources. Whenever an agent needs detailed information about individual components of
another system it uses the information gathered by the distributed awareness mechanism to
identify the target system, then creates a description of a monitoring agent capable to provide
the information about remote resources, and sends this description to the remote site. There
an agent factory assembles dynamically the monitoring agent. This solution is scalable and
suitable for heterogeneous environment.9 where the architectme and the hardware resources of
individual nodes differ, the services provided by the system are diverse, the bandwidth and the
latency of the communication links cover a broad range.

Contents

1 Introduction

2 Algorithms and Models for Distributed Awarenesa
2.1 Related work .
2.2 Distributed Awareness; Algorithm and Models .

2.2.1 A Distributed Awareness Algorithm .
2.2.2 Deterministic and Non-deterministic Models .

S Monitoring Agents and Resource Discovery
3.1 Gathering Resource Information in a Wide-Area Distributed System
3.2 Bond; a Distributed Object System .
3.3 Bond Agents
3.4 Remote Creation and Surgery of Monitoring Agents

4 Conclusions

5 Acknowledgments

6 Appendix: a Jpython Strategy to Gather Memory Information

1 Introduction

1

3
3
3
3
4

5
5
6
7
6

10

12

12

In this paper we address the problem of resource dlscovery in a wide-area distributed system made
up of autonomous systems linked together by a network technology substrate. The system is
heterogeneous, the architecture and the hardware resources of individual nodes differ, the services

provided by the system are diverse, the bandwidth and the latency of the communication links
cover a broad range.

Individual nodes in such a distributed system may cooperate to accomplish tasks that require
resources above and beyond those available in any single node, clients and servers may need to
negotiate the quality of service, system administrators may wish to gather synthetic data regarding
resource utilization to identify bottlenecks. A data intensive problem may generate a request to
assemble dynamically a cluster of workstations with a compound CPU rate, memory, and secondary
storage space determined by the problem size. A system administrator may wish to determine the
overall secondary storage utilization in a virtual Intranet.

Resource management in a distributed system can be delegated to a subset of nodes providing
site-coordination, negotiation, resource monitoring, and other services. For example the Open Data
Network, ODN, model [10] is based upon an hourglass architecture with four layers: applications,
middleware services, transport services, and bearer services provided by LANs, wireless networks,
ATMs, satellite networks and so on. The architecture is conceived to support services ranging
from teleconferencing to financial services, from remote login to interactive education. In turn
middleware services cover security, name services, multi-site coordination, file systems and so on,
and use transport services for video, audio, text, fax, and other types of data. The diversity of
the networking substrate, the heterogeneity and autonomy of the nodes, the variety of services
provided by the system make all aspects of resource management in this model rather challenging
and motivate the desire to search for solutions that are more scalable and able to accommodate
rapidly changing heterogeneous environments.

Distributed algorithms for resource management have been known for some time. The Hooding
algorithm is used by routers in the Internet, broadcasting by local queries, known as "gossiping" [11],
[12] have been used to maintain cOIlSistency in replicated databases [13] and to gather information
about system failures [14].

Autonomous and mobile software agents are widely regarded as necessary components of large
scale distributed systems. Agents can facilitate access to existing services to thin clients, sup
port nomadic computing, perform functions related to resource management, support negotiations
among several parties involved in a transaction, reconfigure servers, and so on. For example mobile
agents to map network topology were proposed in [2J.

Autonomy implies that the agents are active objects with their own tread of control, they can
exhibit intelligent behavior. Mobility ensures that the agents can operate in rapidly changing
heterogeneous environments. Yet, ensuring code mobility in a heterogeneous environment when the
architecture of the nodes is different and we have several operating systems installed is a non-trivial
endeavor.

The implicit assumption of agent-based solution for resource discovery in a wide-area system
is the existence of a framework for the interoperabilty of different agent families, like the one
proposed in [9]. Throughout this paper we assume that a system like the one described in Section
3.2 is installed in every node and the system has an agent factory, an object able to respond to
external requests and assemble agents based upon a description of an agent provided by the entity
that initiated the request.

In this paper we introduce an agent-based model for resource discovery. Agents running at indi
vidual nodes learn about the existence of each other using a mechanism called distributed awareness.
Each agent maintains information about the other agents it has communicated with over a period
of time and exchange periodically this information among themselves. Whenever an agent needs
detailed information about individual components of the system we use the information gathered
by the distributed awareness mechanism and then assemble dynamically agents capable of reporting
the state of remote resources and to negotiate the use of these resources. The remote agent creation
and surgery techniques discussed in Section 3.4 are general and allow us to alter drastically the
behavior of an agent. For example we can add additional planes for resource negotiations with
clients and with the local resource manager, planes to reconfigure a local server and 80 on.

The contributions of this paper are an algorithm and a model for the distributed awareness
and a framework for dynamic assembly of agents capable of providing detailed information about
network resources.

The rest of this paper is structured as follows. Section 2 reviews some of the existing algorithms
for resource discovery, presents their basic assumptions and relevant performance measures. Then it
presents our distributed awareness algorithm and two models for its behavior. Section 3 introduces

the agent-based resource discovery architecture and describes an implementation based upon Bond
[6], a component-based agent framework.

2 Algorithms and Models for Distributed Awareness

A first step in all applications that require some knowledge about the other nodes of a network is to
learn about the existence of each other. We call this process "distributed awareness", while other
authors [1] refer to it as resource discovery. We believe that in a heterogeneous environment learning
about the existence of other nodes is only the first step in a complex process and that resource
discovery requires a set of progressively more intricate interactions with the newly discovered. object.

2.1 Related work

We review briefly some of the algorithms presented in the literature, their basic assumptions, and
the proposed performance measures to evaluate an algorithm. Virtually all algorithms model the
distributed system as a directed graph, in which each machine is a node and edges represent the
relation "machjne A knows about machine B" . The network is assumed to be weakly connected and
communication occurs in synchronous parallel rounds.

One performance measure is the running time of the algorithm, namely the number of rounds
required until every machine learns about every other machine. The amount of communication
required by the algorithm is measured by: (a) the pointer communication complexity defined as
the number of pointers exchanged during the course of the algorithm, and (b) the connection
communication complexity defined by the total number of connections between pairs of entities.

The flooding algorithm assumes that each node v only communicates over edges connecting it
with a set of initial neighbors, rev). In every round node v contacts all its initial neighbors and
transmits to them updates, r(v)update. and then updates its own set of neighbors by merging rev)
with the set {r(u)uPdate_}, with u E r(v). The number of rounds required. by the flooding algorithm
is equal with the diameter of the graph.

The 8wamping algorithm allows a machine to open connections with all their current neighbors
not only with the set of initial neighbors. The graph of the network known to one machine converges
to a complete graph on O(log(n» steps but the communication complexity increases. Here n is the
number of nodes in the network.

In the random pointer .iump algorithm each node v connec:ts a random neighbor, U E rev) who
sends r(u) to v who in turn merges rev) with r(u). A version of the algorithm called the random
pointer jump with back edge requires u to send back to v a pointer to all its neighbors. There
are even strongly connected graphs that require with high probability O(n) time to converge to a
complete graph in the random pointer jump algorithm.

The Name-Dropper algorithm is proposed in [1]. During each round each machine v transmits
rev) to one randomly chosen neighbor. A machjne u that receives rev) merges rev) with r(u).
In this algorithm after O(log2n) rounds the graph evolves into a complete graph with probability
grea"" than 1- 1/(nO(l».

2.2 Distributed Awareness; Algorithm and Models

2.2.1 A Distributed Awareness Algorithm

Distributed awareness is a mechanism for the nodes of a wide area distributed system to learn
about the existence of each other. Each node maintains an awarene.sos table and exchanges the
information in this table with other nodes. An entry in the awareness table contains: (1) Node
location, the IF address of the node, (2) lastHeardFrom, the time when we last heard from the
node, and (3) lastSync the time when awareness information was last sent to the node. The
awareness information is piggybacked onto regular messages exchanged between two nodes.

Incoming/outgoing message handling and table merging are discussed now. The algorithm to
add new or update existing items is:

for every incoming message
find sender, S
if the local awareness table has an item. I with the same node location as S

set l.astHeardFrom of I as current time

else
add a new item initialized with S and ~astHeardFrom set B.B current time

if the incoming message has piggybacked awareness information
execute table merging algorithm

The table merging algorithm is:
for each awareness item, [. of the piggybacked awareness table

if the local table has item ['oeal with the same node ~ocation of [
set ~astHeardFromof ['oeal with more recent time stamp
between those of Iloeal and [

else
add [to the local table with l.astSync set zero

The outgoing message handling algorithm appends the local awareness table to the outgoing
measage:

for an outgoing message Moutgoing destined to a node N

look up an item I with node ~ocation N in the local table
if ~aBtSync of I reached a specified age,

add the local table to Moutgoing

set ~aBtSync of I as current time
send out Moutgoing

Notice that lastSync is checked to control the interval between sending awareness information
and that the awareness table is periodically purged based upon lastHeardFrom field.

2.2.2 Deterministic and Non-deterministic Models

Modeling and analysis of the distributed awareness algorithm is rather difficult. The problem is
UDHtructured, in the general case we do not know either the network topology or the communica
tion patterns among nodes thus it is rather diflicult to make simplifying assumptions leading to a
tractable analysis. Yet we need to get a rough idea of the overhead incurred by this method and
the asymptotic properties of the algorithm. For example intuitively we expect that after BOme time
all agents will learn about the existence of all other agents.

To model the distributed awareness we propose to use models similar with the ones for the spread
of a contagious disease. An epidemics develops in a population of fixed size consisting of two groups
the infected individuals and the uninfected ones. The progress of the epidemics is determined by
the interactions between these two categories.

We introduce first a deterministic model. Given a group of n nodes this simple model is based
upon the assumption that the rate of change in agent's awareness list, is proportional with the
size of the group the agent is already aware of, y, and alBO with the size of the group the agent is
unaware of, n - y. IT k is a constant we can express this relation as follows:

yet)' = k x y(t} x (n - y(t)}

The solution of this differential equation with the initial condition yeO) = 0 is:

yet) = 1+ (n ~l)e knt

This function is plotted in Figure 1 and shOWB that after time T a node becomes aware of all
the other nodes in the network. The parameter k as well as the value T can be determined through
simulation.

Call T/ the ratio of the awareness information exchanges to the total number of instances an
agent communicates with other agents. A typical value for this parameter is T/ = 0.001. IT the
amount of awareness information is only a fraction b, say b = 0.1 of the payload carried out
during communication between two agents, it follows that the additional load due to the distributed
awareness is only a small fraction, in our example only 11 x b = 0.01% of the total network traffic.

This deterministic model allows only a qualitative analysis. Rather than the smooth transition
from a to n we should expect a series of transitions each one corresponding to a batch of newly

y

T

t

Figure 1: The number of agents known to a given agent, function of time, using a determinlatic
distributed awareness model. After time T, each agent becomes aware of all the other agents in the
network

discovered agents. Yet this simple model provides some insight into the overhead incurred during
the learning phase of the resource discovery mechanism we propose.

A non-deterministic model is sketched below. New acquaintances occur in batches at time
intervals determined by the overall rate of information exchange among nodes and by 1]. Call p
the probability of contact between two agents BUch that as a result of the contact the awareness
list are modified, and let q = 1 - p. Assume that the contacts between agents are stochastically
independent and observe that the probability that among the i entries in the list supplied to a agent
k,.::s; i entries are not already in its list is

Wx". X qi-'
Call yes) the random variable denoting the number of entries in the list of the "typical" agent

at discrete time s = 1,2, Then
P(Y(s + 1) = jIY(s) = i) = mx pi-i x qi if i ~ j and zero otherwise.
The probability distribution ofY(s+ 1) is independent of the the values aBsumed by the random

variables Y(r), r ~ s. Therefore (Y(s»),;::.o is a Markov chain with states 0,1,n and the
transition matrix is:

o
1
2

o
1
p
p'

1
o
q

2pq

2
o
o..

r
o
o
o

r q"

3 Monitoring Agents and Resource Discovery

3.1 Gathering Resource Information in a Wide-Area Distributed System

Information about the re\Ources and the state of the nodes of a wide area distributed system is
sometimes needed to coordinate the activity of a group of nodes, to provide synthetic information
about resource utilization, or for other needs. A common approach taken by commercial aB well
as research systems is to install on each node a monitor to gather local resource information. The

local monitors may update periodically a centrally stored database or provide the information on
demand. Sometimes the information may be stored on a hierarchy of servers.

Several metaeomputing projects [3], [5] rely on a group of central entities to maintain the
resource information reported to them by local entities. Globus [3] provides a Metacomputing
Directory Seroice where network resource information is stored in a tree-like structure and it is
accessible using the Lightweight Directory Access Protocol [4]. Local monitors residing on each
node report the structure and state of resources. Monitors have to be installed and configured
for each site. Legion [5] uses collections as repositories for information describing the state of the
resources comprising the system. The collection is a database of static information reported by
local monitors on remote nodes. Resource management software provided by several companies
including Tivoli [15] follow the same paradigm.

The information provided by a local monitor is determined at the time the monitoring program
is installed. To provide additional information the program mUBt be modified and reinstalled. The
monitoring program must as non-intrusive as possible thus very rarely a monitor is configured to
supply data seldom needed. Often the information obtained from static databases is obsolete. These
considerations justify the need to investigate alternative means for gathering resource information.

Using software agents for resource discovery and monitoring has several advantages over the more
traditional approach outlined above. Monitoring agents have an autonomous hehavior and evolve
based upon the characteristics of the local system and the requirements of the beneficiary agent.
Agents can engage in a gradual discovery process and respond to a changing set of requirements.
They are able to adapt to the architecture and the operating environment of the local node. An
agent may change its behavior based upon the results of an inference process and the tasks assigned
to an agent can be rather complex. On the other hand, the amount of resources used by the agents
may be larger than resources required by a custom-made monitoring system

Now we describe an agent-based, distributed resource discovery architecture where agents are
created at remote locations and modified as needed, to gather the information needed for resource
management.

3.2 Bond; a Distributed Object System

Bond is a. Java-based distributed object system and agent framework, with an emphasis on flexibility
and performance. It is composed of (a) a core rontaining the object model and message oriented
middleware, (b) a service layer containing distributed services like directory and persistent storage
services, and (c) the agent framework, providing the basic tools for creating autonomous network
agents together with a database of commonly used strategies which allow developers to assemble
agents with no or minimal amount of programming.

Bond Core. At the heart of the Bond system there is a Java Bean-compatible component
architecture. Bond objects extend Java Beans by allowing users to attach new properties to the
object during runtime, and offer a uniform API for accessing regular fields, dynamic properties
and JavaBeans style setField/getField-defined virtual fields. This allows programmers the same
flexibility like languages like Lisp or Scheme, while maintaining the familiar Java programming
syntax.

Bond objects are network objects by default: they can be both senders and receivers of messages.
No post-processing of the object code as in RMI or COREA-like stub generation, is needed. Bond
uses messa.ge passing while RMI or COREA-based component architectures use remote method
invocation.

The system is largely independent from the message transport mechanism and several com
munication engines can be used interchangeably. We currently provide TCP-based, UDP-based,
Infospheres-based, and, separately, a multicast engine. Other rommunication engines will be im
plemented as needed. The API of the communication engine allows Bond objects to use any
communication engines without the need to change or recompile the code. On the other hand,
the properties of the communication engine are reflected in the properties of the implemented ap
plication as a. whole. For example the UDP based engine offers higher performance but does not
guarantee reliable delivery.

All Bond objects communicate using an agent communication language, KQML [8]. Bond defines
the concept of subprotocols, highly specialized, closed set of commands. Subprotocols generally
contain the messages needed to perform a specific task. Examples of generic Bond subprotocois

are property access subprotocol, agent control subprotocol or security subprotocol. An alternative
formulation would be that subprotocols introduce a strueture in the semantic space of the message3.

Subprotocols group the same functionality of messages which in a remote method invocation
system. would be grouped in an interface. But the larger flexibility of the messaging system allows
for several new techniques which are difficult to implement in the remote method call case:

• The subprotocols implemented by objects are properties of the object, so two objects can use
the property access subprotocol implemented by every Bond object, to find the common set
of subprotocols they can use to communicate.

• An object is able to control the path of a message and to delegate the processing of the message
to subcomponents called regular probe3. Regular probes can be attached dynamically to an
object as needed.

• Messages can be intercepted before they are delivered to the object, thus providing a con
venient way to implement security by means of a fire wall, accounting, logging, monitoring,
filtering or preprocessing messages. These operations are performed. by subcomponents called
preemptive probe3 which are activated before the object in the message delivery chain.

• Subprotocols, like interfaces, are grouping some functionality of the object, which mayor
may not be used during its lifetime. A subcomponent called autoprobe allows the object to
instantiate a. new probe, to handle an incoming message which can not be understood by the
existing subcomponents attached to an object.

• Objects can be addressed by their unique identifier, or by their alias. Aliases specify the
services provided by the object or its probes. An object can have multiple aliases and multiple
objects can be registered under the same alias. The latter enables the architecture to support
load balancing services.

These techniques can be implemented. through different means in languages which treat methods
as messages, e.g. SmalltaIk. In Java and C++ they can be implemented at compile time, not at
runtime, e.g. using the delegation design pattern. Techniques from the recent CORBA specifications
e.g. the simultaneous use of DIT, POA, trading service and others, also allow to implement a similar
functionality, but with a larger overhead, and significantly more complex code.

Bond Services. Bond provides a number of services commonly used found in distributed
object systems, like directory, persistent storage, monitoring and security. Event, notification, and
messaging services, which provide message passing services in remote method invocation based
systems are not needed in Bond, due to the message-oriented. architecture of the system.

Some of Bond services perfonn differently than their counterparts in other middleware systems,
like COREA. For example, Bond never requires explicit registration of a new object with a service.
Finding out the properties of a remote object, i.e. the set of subprotocols implemented by the
object, is done by direct negotiation amongst the objects. The directory service in Bond combines
the functionality of the naming and trading services of other systems and it is implemented. in a
distributed fasbion. Objects are located. by a search process which propagates from local directory
to local directory. The directories are linked into a virtual network by a transparent distributed
awarene3S mechanism, which transfers directory information by piggybacking on existing messages
as discussed in the previous Section.

Compared with the naming service implementations in systems like COREA or RMI, which are
based on the existence of a name server, this approach has the advantage that there is no single point
of failure, and the distributed. awareness mechanism reconstitutes the network of directories even
after catastrophic failures. However, a distributed search can be slower than lookup on a server,
especially for large networks of Bond programs. For these cases, Bond objects can be registered to
external directories, either to a CORBA naming service through a gateway object, or to external
directory services using LDAP access.

3.3 Bond Agents

The Bond agent framework is an application of the facilities provided by the Bond core layer to
implement collaborative network agents. Agents are assembled. dynamically from components in a

structure described by a multi-plane state machine, [7]. This structure is described by a specialized
language called blueprint. The active components (litrategies) are loaded locally or remotely, or
can be specified in interpretive programming languages embedded in the blueprint script. The state
information and knowledge base of the agents are collected in a single object called model of the
world which allows for easy checkpointing and migration of agents. The multiplane state machine
describing the behavior of agents can be modified dynamically, thUB allowing for agent surgery.

The behavior of the agent is described by the actions the agent is performing. The actions
are performed by the strategies either as reactions to external. events, or autonomously in order
to pursue the agenda of the agent. The current state of the multiplane state machine (described
by a state vector) is specifying the strategies active at a certain moment. The multiple planes are
a way of expressing parallelism in Bond agents. A good technique is to use them to express the
various facets of the agents behavior: sensing, reasoning, communication/negotiation, acting upon
the environment and so on. The transitions in the agent are modifying the behavior of the agent
by changing the current set of active strategies. The transitions can be triggered by internal events
or from erlernal messages - these external messages form the ~ntrol subprotocol of the agent.

Strategies, having limited interface requirements are a good way to provide code reuse. The Bond
agent framework provides a strategy database, for the most commonly used tasks, like starting and
controlling external. agents or legacy applications. A number of base strategies for common tasks
like dialog boxes or message handlers are also provided, which can be sub-classed by developers
to implement specific functionality. External algorithms, especially if written in Java are usually
easily portable to the strategy interface.

3.4 Remote Creation and Surgery of Monitoring Agents

In this section, we discuss the remote creation of an agent and its surgery. To illustrate the
concepts outlined in Section 3.3 we present the creation and modification of a monitoring agent.
Several entities are involved in this process: the beneficiary agent at the site where the resource
information is needed, the agent factory at the target site, and possibly a blueprint repository. The
target site is identified using the distributed awareness or by means of a name or directory service.
The beneficiary agent obtains first the blueprint for the monitoring agent it wants installed. The
blueprint can be gathered from a blueprint repository or may be created dynamically by an agent
given a set of rules and facts. The blueprint can be embedded into the message or the location of
the blueprint repository and the name of the blueprint may be provided. Figure 2 illustrates this
process. A Bond Resident is a container object including directory, communicator, and all other
objects. In this example the message sent by the beneficiary agent contains the blueprint:

(achieve :content assemble-agent :blueprint-progt'aJlI [agent blueprint])

The beneficiary agent in this example decides to create a single plane monitoring agent with
the blueprint shown in Figure 3. Figure 4 shows the monitoring agent with one plane designed to
gather information about the primary storage, e.g. the amount of physical memory available in the
node, the amount of used and free storage, a. list of the top users of memory, and so on. Recall that
each plane describes a state machine.

The agent factory receives the message, interprets the blueprint, and creates a monitoring agent
with one plane called PrimaryStorage using one strategy included into the blueprint as JPython
program [16J, associated with HemoryCheck state. The complete JPython strategy is shown in
the appendlx A. After creating the agent, the agent factory sends back an acknowledgment to the
beneficiary agent.

Once started, the agent performs a transition to the Hem.oryCheck state. The Jpython strategy
identifies the operating system running on that node and invokes the system calls, e.g. vmstat
in Unix, necessary to gather the information about the primary storage. If successful, the state
machines performs a transition to the MemoryReport state with strategy ReportPS, and sends
back the information to the beneficiary agent named in the BeneficiaxyAddIess and finishes its
execution by means of a transition to the Done state with the End strategy.

The primary storage map changes in time, thus it might be desirable to have an agent able to
report the information periodically. In addition, it may be necessary to gather information about
the secondary storage, e.g. the total amount of disk space available, the amount in use, the free
disk space, the number of file systems, etc.

SI"""rlnt llepo.lIory

Bond llo.leIonl

Figure 2: The communication between Beneficiary Agent, the Agent Factory and the Blueprint
Repository. Messages instructing the agent factory to create the monitoring agent (solid line) and
to perform surgery (dotted line) are shown.

create agent MonitoringAgent
plane PrimaryStroage

add state Init gith strategy InitCheckj
add state HemoryCheck gith strategy language python embedded {:

def getcmdresults(cmd):
"'" 'Run a command and return its output

as a string and exit va1ue

"""

def vmstat 0 :
, •• " 'Return the statistics from vmstat output in form of a hashtable
[list. exitcodeJ '" getcmdresults('vmstat 1 2')

def save(map. prefix'" "):
, J J , J J Save a hashtable into model

save (vmstat 0 J 'discover.')
self.fsm.transition("gotoReport·')j

,}

add state MemoryReport with strategy ReportPS;
add state Done with strategy End;

internal transitions {
from InitCheck to MemoryCheck on gotoCheck;
from HemoryCheck to HemoryReport on gotoReport;
from HemoryReport to Done on gotoDone;

}

model {
BeneficiaryAddress '" "ResourceAgentapeter .cs .purdue. edu:2000' ,

}

end plane;
end create.

Figure 3: The blueprint of a monitoring agent designed to gather information about available
physical memory, the amount of used and free storage, and a list of top memory users

Figure 4: The monitoring agent built using the blueprint in Figure 3. The strategies associated
with every state are shown in parenthesis.

To obtain the periodic memory report and secondary storage information, the agent can be
modified through surgery as shown in Figure 5. In our example we (a) add another plane, called
SecondaryStorage, to report the amount of free secondary storage space, and (b) modify the
memory plane by adding transition from KemoryReport state to MemoryCheck state while deleting
Done state and gotoEnd transition. As a result, the agent reports periodically the state of the
primary storage. The reporting interval is specified in the blueprint as Interval, in this case, 5000
rnaec.

To perform the surgery, we send the agent factory at the target site the following message:

(achieve :content modify-agent :bondID [agent ID]
:blueprint-program [agent surgery script])

The message contains the unique Bond ill of the agent. This allows the agent factory to identify
the target of the surgery request. Figure 6 shows the monitoring agent after the surgery of Figure
5. Agent surgery involves the modification of the data structure used to control the scheduling
of various strategies in the planes of the agent. The surgery can be performed while the agent is
running and the blueprint of the modified agent can be generated.

4 Conclusions

Information about the topology, resources and the state of the nodes of a wide area distributed
system is sometimes needed to coordinate the activity of a group of nodes, to provide synthetic
information about resource utilization, or for other needs. A common approach taken by commercial
as well as research systems is to install on each node a monitor to gather local resource information.
The local monitors may update periodically a centrally stored database or provide the information
on demand.

Using software agents for resource discovery and monitoring has several advantages over the more
traditional approach outlined above. Monitoring agents have an autonomous behavior and evolve
based upon the characteristics of the local system and the requirements of the beneficiary agent.
Agents can engage in a gradual discovery process and respond to a changing set of requirements.
They are able to adapt to the architecture and the operating environment of the local node. An
agent may change its behavior based upon the results of an inference process and the tasks assigned
to an agent can be rather complex. On the other hand, the amount of resources used by the agency
may be larger than resources required by a custom-made monitoring system.

In this paper we introduce an agent-based. model for resource discovery. Agents running at indi
vidual nodes learn about the existence of each other using a mechanism called distributed awarene3s.
Each agent maintains information about the other agents it bas communicated with over a period
of time and exchange periodically this information among themselves. Whenever an agent needs
detailed information about individual components of the system we use the information gathered
by the distributed awareness mecbanism and then assemble dynamically agents capable of reporting

modify agent Probing
plane SecondaryStorage
add state Init with strategy InitSS;
add state StorageCheck with strategy MeasureSS;
add state StorageReport with strategy ReportSS;
internal transitions {
from InitSS to StorageCheck on gotoCheck;
from StorageCheck to StorageReport on gotoReport;
from StorageReport to StorageCheck on gotoCheck;
)
end plane;
plane PrimaryStorage
delete state Done;
internal. transitions {
delete from MemoryReport to Done on gotoEnd;
from MemoryReport to MeamoryCheck on gotoCheck;
)
model {In,"""" = 5000;
)
end plane;

Figure 5: The agent surgery script. S second plane, SecondaryStorage is added and state machine
of the first plane, PrimaryStorage is modifyed.

Monitoring Agenl

Figure 6: The agent after the surgery of Figure 5

the state of remote resources and to negotiate the use of these resources. The remote agent creation
and surgery techniques are general and allow us to alter drastically the behavior of an agent.

We present two models for distributed awareness, a deterministic model that supports a qualita
tive analysis and a more intricate, quantitative model. We introduce the Bond system and dlscuss
the assembly and surgery of a monitoring agent capable to report the use of primary and secondary
storage.

The Bond systems is available under an open source license from http://bond. cs .purdue.edu.

5 Acknowledgments

The work reported in this paper was partially supported by a grant from the National Science Foun
dation, MCB-9S2713l, by the Scalable I/O Initiative, and by a grant from the Intel Corporation.

6 Appendix: a JPython Strategy to Gather Memory Infor
mation

add state MemoryCheck vith strategy language python embedded
{,

from java. lang import Runtime, StringBuffer
from java.io import InputStream. StringWriter

import string

def getcmdresults(cmd):
"""Run a command and return its output as a string

also return the exit value as the tuple's second arg
Runtime.exec() writes some nonsense on standard output
at least in Linux

"""
p = Runtime.getRuntime().exec_(cmd)
p.waitFor0
output = p.getlnputStream()
buf = StringWriter()
c = output.read()
while c != -1:

buf.write(c)
c = output.read()

return (buf.getBuffer().toString(), p.exitValue(»

def accustat(param):
II ""Accumulate information about users and return a hashtable

requires System V ps (Solaris 2.x, newest Linux)
see man page for parameter names. try e.g. pmem

"""
[list. exitcode] = getcmdreaults(Jps -eo user, '+ param)
if exitcode > 0:

return None
broken = string.split(list, '\n')
map = {}
for line in broken[l:]:

apl = atring.aplit(Ii.ne)
if len(apl) != 2:
continue
[user. paramJ = spI
if map.haa_key(uaer):

map [user] '" map [user] + string.atof(param)
else:

map [user] '" string.atof(param}
return map

def VlDstatO:
""" Return the statistics from the vmstat output in form

of a hashtable. See manua1 page for the meanings of the keys (system
dependent a1though some are common).

"""
[list, exitcode] '" getcmdresults(Jvmstat 1 2')
if exitcode > 0:

return None
broken = etring. split (list. '\n')
names'" string.split(broken[l])
va1ues'" string.split(broken[3])
map = {}
i = 0
for name in names:

map [name] = string.atoi(va1ues[i])
i '" i + 1

return map

def save (map , prefix = "):
""" eave a hashtable into the model with optiona1 prefix (should

include the dot)

"""
for name in map.keyeO:

model.set(prefix + name, map [name])
save(vmstatO. 'discover. ,)
self. fsm. tr8I1sition("gotoReport")
:}j

References

[1] M. Harchol-Balter, T. Leighton, and D. Lewin. Resource Discovery in Distributed Networks.
In Proceedings of PODC'99, pg. 229-237, Atlanta, 1999.

[2] N. Minar, K. Kramer and P. Maes. Cooperating Mobile Agents for Mapping Networks. In
Proceedings of the First Hungarian National Conference on Agent Based Computation, 1999.

[3] S. Fitzgerald, I. Foster, C. Kesselman, G. Laszewski, W. Smith, and S. 'I'uecke. A Directory
Service for Configuring High-Performance Distributed Computations. In Proceedings of the 6th
IEEE Symp. on High-Performance DistTihuted Computing, pg. 365-375,1997.

[4] W. Yeong, T. Howes, and S. Kille. Lightweight Directory Access Protocol. RFC 1777, 03/28
95. Draft Standard.

[5] S. Chapin, D. Katramatos, J. Karpovich and A. Grimshaw. Resource Management in Legion.
In Proceedings of the 5th Workshop on Job Scheduling Strategies for Parallel Processing in
conjunction with the International Parallel and Distributed Processing Symposium, San Juan,
Puerto Rico, April, 1999.

[6] L. Bolonl and D.C. Marinescu An Obj~t-OrientedFrnmework for Building Collabomtitle Net
work Agents in lntelligent Systems and Interfaces, (A. Kandel, K. Hoffmann, D. Mlynek, and
N.H. Teodorescu, eds). Kluewer Publising House, (1999), (in press).

[7] L. Boloni and D.C. Marinescu A Multi-Plane State Agent Model, September 1999, (submitted).

[8] T. Finin, et al. Specification of the KQML Agent-Communication Language, DARPA Knowl
edge Sharing Initiative draft, June 1993

[9] MASIF - The COREA Mobile Agent Specification.
http://vvv.omg.org/cgi-bin/doc?orbos/9B-03-09

[10J L. Kleinrock and John Major. Computing and Communications Unchained: The Virtual
World., in Defining A Derode, National Research Council, National Academy Press, pp. 36-46,
1999.

[11] Sandra Hedetniemi, Stephen Hedetnlemi, and A. Liestman. A Burvey of gossiping and broad
casting in communication networks. Networks, 18:319-349,1988.

[12] A. Pelc. Fault-tolerant broadcasting and gossiping in communication. Network3, 28(3):143-156,
October 1996.

[13] D. Agrawal, a. Abbadi, and R. Steinke. Epidemic Algorithms in replicated databases. In
Proceedings of the Sixteenth AGM SIGACT·SIGMOD-SIGART Symposium on Principle3 of
Database Systems, pages 161-172, Tucson, Arizona, 12-15 May 1997.

[14J S. Assmann and D. Kleitroan. The number of rounds needed to exchange information within
a graph. SIAM Discrete Applied Math, 6:117-125, 1983.

[15] http://W.tnI.tivoli.com/products/overvie.ll.

(16] Jim Hugunin. Python and Java: The Best of Both Worlds. In Proceedings of of the 6th
International Python Conference, October 14-17, 1997, San Jose, California

	Agent-Based Resource Discovery
	Report Number:
	

	tmp.1307986960.pdf.7Ud8Y

