
Centrum voor Wiskunde en Informatica

REPORTRAPPORT

Agent-based simulation of animal behaviour

C.M. Jonker, J. Treur

Software Engineering (SEN)

SEN-R9835 December 31, 1998

Report SEN-R9835
ISSN 1386-369X

CWI
P.O. Box 94079
1090 GB Amsterdam
The Netherlands

CWI is the National Research Institute for Mathematics
and Computer Science. CWI is part of the Stichting
Mathematisch Centrum (SMC), the Dutch foundation
for promotion of mathematics and computer science
and their applications.
SMC is sponsored by the Netherlands Organization for
Scientific Research (NWO). CWI is a member of
ERCIM, the European Research Consortium for
Informatics and Mathematics.

Copyright © Stichting Mathematisch Centrum
P.O. Box 94079, 1090 GB Amsterdam (NL)

Kruislaan 413, 1098 SJ Amsterdam (NL)
Telephone +31 20 592 9333

Telefax +31 20 592 4199

Agent-based Simulation of Animal Behaviour

Catholijn M. Jonker, Jan Treur1

1
CWI

P.O. Box 94079, 1090 GB Amsterdam, The Netherlands

and

Vrije Universiteit Amsterdam, Department of Artificial Intelligence
De Boelelaan 1081a, 1081 HV Amsterdam, The Netherlands

URL: http://www.cs.vu.nl/~{jonker,treur} Email: {jonker,treur}@cs.vu.nl

ABSTRACT

In this paper it is shown how animal behaviour can be simulated in an agent-based manner. Different models are

shown for different types of behaviour, varying from purely reactive behaviour to pro-active, social and adaptive

behaviour. The compositional development method for multi-agent systems DESIRE and its software environment

supports the conceptual and detailed design, and execution of these models. Experiments reported in the literature on

animal behaviour have been simulated for a number of agent models.

1991 Computing Reviews Classification System: I.2.11

Keywords and Phrases: computer simulation, agent, animal behaviour, delayed response, reactive, pro-active, social,

adaptive

Note: work carried out in theme SEN4.

1. INTRODUCTION

One of the most important aspects of agents (cf. [25]) is their behaviour. In the past, behaviour has been studied
in different disciplines. In Cognitive Psychology the analysis of human behaviour is a major topic. In Biology,
animal behaviour has been and is being studied extensively. Around 1900 a discussion took place about the
manner in which observed animal behaviour can be interpreted in order to obtain an objective and testable
description; for an overview, see [2], [23]. A risk of taking the intentional stance (e.g., [10]) as a perspective to
explain behaviour, is that explanations are generated that make use of (a large number of) mental concepts that
cannot be tested empirically. Therefore the principle of parsimony was introduced, stating that ‘in no case may
we interpret an action as the outcome of the exercise of a higher psychical faculty, if it can be interpreted as the
outcome of the exercise of one which stands lower in the psychological scale’; see [18].

Building further on this perspective behaviourism was developed, e.g., [12], [21], [24]. In this approach
animal behaviour is explained only in terms of a black box that for each pattern of stimuli (input of the black
box) from the environment generates a response (output of the black box), that functionally depends on the input
pattern of stimuli; i.e., if two patterns of stimuli are offered, then the same behaviour occurs if the two patterns
of stimuli are equal. This view was also extended to human behaviour. Because of the underlying black box
view, behaviourism discouraged reference to internal (mental) activities of organisms: any speculation about the
internal functioning of the black box (i.e., the processes that might mediate between sensory inputs and
behavioural outputs) was forbidden; cf. [23], p. 4.

In this paper, the compositional development method for multi-agent systems DESIRE (see [4]) is used to
design, implement and experiment with agent-based simulation models for animal behaviour. In Section 4 a
generic model of a purely reactive agent is introduced which is an adequate agent model to describe the
(immediate) functional character of stimulus-response behaviour. The black box is represented by the agent. The
stimuli form the input (observation results), and the response is formed by the actions generated as output.

Viewed from a Software Engineering perspective, modelling behaviour by a functional relation between input
and output provides a system that can be described as a (mathematical) function

F : Input_states ‘ Output_states

of the set of possible input states to the set of possible output states. Such a system is transparent and
predictable. For the same input always the same behaviour is repeated: its behaviour does not depend on earlier

processes; no information on previous experiences is used to affect behaviour. Well-known traditional
programming methods are based on this paradigm; for example, program specification and refinement based on
preconditions and postconditions as developed in, e.g., [11].

As opposed to behaviour defined by a purely functional dependency between input and output, an agent’s
behaviour often takes previous processes in which it was involved into account. These previous processes may
have led to internal storage of information in a memory so that the same input pattern of stimuli can lead to
different behaviour a next time it is encountered; the agent may be able to deliberate about it. Again viewed from
a Software Engineering perspective, this makes that agents do not fit strictly in the paradigm based on a
functional relation: to keep the functional relation, not only the actual input, but also the complete history of
input should be taken into account, or the internal information in memory should be considered to be additional
input.

In Section 5 a generic agent model is presented that can be used to model more complex behaviour. It
includes not only components that represent the agent’s memory (the agent’s beliefs on the world and on other
agents), but also components that represent the agent’s capabilities to control its own behaviour (goal-directness,
adaptation), the agent’s interaction with the world, and the agent’s communication with other agents. This
generic agent model has been used to obtain different agent models for different types of animal behaviour that go
beyond purely reactive behaviour: delayed response behaviour, deliberate pro-active behaviour, social behaviour
(in Section 6) and adaptive behaviour (in Section 7). In Section 2 a problem description (a description of a
pseudo-experiment) is presented; in Section 8 the behaviours of the different agent models introduced in Section
4, 5, 6 and 7 are compared for each of the situations defined in Section 2 and example traces are discussed.

2. PROBLEM DESCRIPTION

The deliberations put forward in the introduction can be illustrated by a very concrete example, taken from the
discipline that studies animal behaviour; e.g., [23]. Animals, for example dogs, sometimes show a delayed
response: they look for food in places where they have seen food before. This suggests that these animals might
have some internal representation or memory of stimuli received earlier. More systematic experiments on this
delayed response issue, for example those reported in [13] and [22], support this suggestion.

2.1. The Domain

The type of experiment reported in [22] is set up as follows (see Figure 1). Separated by a transparent screen (a
window, at position p0), at each of two positions p1 and p2 a cup (upside down) and/or a piece of food can be
placed. At some moment (with variable delay) the screen is raised, and the animal is free to go to any position.
Consider the following three possible situations:

Situation 1 At both positions p1 and p2 an empty cup is placed.
Situation 2 At position p1 an empty cup is placed, and at position p2 a piece of food, which is (and

remains) visible for the animal.
Situation 3 At position p1 an empty cup is placed and at position p2 a piece of food is placed, after which

a cup is placed at the same position, covering the food. After the food disappears under the cup
it cannot be sensed anymore by the animal.

Situation 4 At position p1 an empty cup is placed and at position p2 a cup and a piece of food is placed, in
such a manner that the animal did not see the food.

In situation 1 the animal will not show a preference for either position p1 or p2; it may even go elsewhere or
stay where it is. In situation 2 the animal will go to position p2, which can be explained as pure stimulus-
response behaviour. In situation 3 the immediate stimuli are the same as in situation 1. Animals that react in a
strictly functional stimulus-response manner will respond to this situation as in situation 1. Animals that show
delayed response behaviour will go to p2, where food can be found. In situation 4 animals will behave as in
situation 1; however, here they can find food and eat it, and therefore be reinforced in successful behaviour.

In the literature, many reports can be found of observed delayed response behaviour in experiments of the type
described above: [23], p. 4-5. The animal species used in these experiments vary from rats and dogs to macaques,
chimpanzees and human infants. Therefore, it is assumed that animals of the type studied maintain internal
(mental) representations on the basis of their sensor input, and that they make use of these representations (in
addition to the actual sensory input that is used) to determine their behaviour. In a way it can be said that they
may act as deliberate agents.

p0

p1

p2

Figure 1: Situation 3 of the experiment

2.2. The Requirements

In this paper four agent models A, B, C and D for the experiment are described. The following requirements on
their behaviour express possible hypotheses that can be made about the behaviour of animals in the experiments:

A . An agent with purely reactive behaviour should behave the same for the two situations 1 and 3
described above: doing nothing, as if no food is present. Only in situation 2 should it go to the position of the
food.

B . An agent with delayed response behaviour should behave the same in the situations 2 and 3: it
should go to the position of the food. In situation 1 it should do nothing.

C . A deliberate pro-active agent’s behaviour in the situations 1, 2 and 3 depends on whether the agent
has a motivation or goal to do so. E.g., the agent may start acting in a pro-active manner (without any specific
stimulus) in situation 1.

D . A social agent is able to take into account communication with other agents. If another animal is
present that communicates that it wants to have the food (e.g., by growling), and the agent believes that this
other agent is higher in the hierarchy, then the agent will not try to get the food.

E . An adaptive agent is able to adapt its behaviour on the basis of experiences. If the cups have different
colours, and a certain colour is used more often for cups under which food is hidden, then after some learning
time the agent has a preference to look for food at positions with a cup of that colour with priority.

3. COMPOSITIONAL DEVELOPMENT OF MULTI-AGENT SYSTEMS

The agent-based models for animal behaviour described in this paper have been developed using the
compositional development method DESIRE for multi-agent systems (DEsign and Specification of Interacting
REasoning components); cf. [4]. The development of a multi-agent system is supported by graphical design
tools within the DESIRE software environment. Translation to an operational system is straightforward; the
software environment includes implementation generators with which formal specifications can be translated into
executable code of a prototype system. In DESIRE, a design consists of knowledge of the following three types:
process composition, knowledge composition, the relation between process composition and knowledge
composition. These three types of knowledge are discussed in more detail below.

3.1. Process Composition

Process composition identifies the relevant processes at different levels of (process) abstraction, and describes
how a process can be defined in terms of (is composed of) lower level processes.

3.1.1. Identification of Processes at Different Levels of Abstraction

Processes can be described at different levels of abstraction; for example, the process of the multi-agent system as
a whole, processes defined by individual agents and the external world, and processes defined by task-related
components of individual agents. The identified processes are modelled as components. For each process the
input and output information types are modelled. The identified levels of process abstraction are modelled as
abstraction/specialisation relations between components: components may be composed of other components or
they may be primitive. Primitive components may be either reasoning components (i.e., based on a knowledge
base), or, components capable of performing tasks such as calculation, information retrieval, optimisation. These
levels of process abstraction provide process hiding at each level.

3.1.2. Composition of Processes

The way in which processes at one level of abstraction are composed of processes at the adjacent lower
abstraction level is called composition. This composition of processes is described by a specification of the
possibilities for information exchange between processes (static view on the composition), and a specification of
task control knowledge used to control processes and information exchange (dynamic view on the composition).

3.2. Knowledge Composition

Knowledge composition identifies the knowledge structures at different levels of (knowledge) abstraction, and
describes how a knowledge structure can be defined in terms of lower level knowledge structures. The knowledge
abstraction levels may correspond to the process abstraction levels, but this is often not the case.

3.2.1. Identification of Knowledge Structures at Different Abstraction Levels

The two main structures used as building blocks to model knowledge are: information types and knowledge
bases. Knowledge structures can be identified and described at different levels of abstraction. At higher levels
details can be hidden. An information type defines an ontology (lexicon, vocabulary) to describe objects or terms,
their sorts, and the relations or functions that can be defined on these objects. Information types can logically be
represented in order-sorted predicate logic. A knowledge base defines a part of the knowledge that is used in one or
more of the processes. Knowledge is represented by formulae in order-sorted predicate logic, which can be
normalised by a standard transformation into rules.

3.2.2. Composition of Knowledge Structures

Information types can be composed of more specific information types, following the principle of
compositionality discussed above. Similarly, knowledge bases can be composed of more specific knowledge
bases. The compositional structure is based on the different levels of knowledge abstraction distinguished, and
results in information and knowledge hiding.

3.3. Relation between Process and Knowledge Composition

Each process in a process composition uses knowledge structures. Which knowledge structures are used for which
processes is defined by the relation between process composition and knowledge composition.

3.4. Generic Models and Reuse

Instead of designing each and every new agent application from scratch, an existing generic model can be used.
Generic models can be distinguished for specific types of agents, of specific agent tasks and of specific types of
multi-agent organisation. The use of a generic model in an application structures the design process: the
acquisition of a conceptual model for the application is based on the generic structures in the model. A model can
be generic in two senses:

• generic with respect to the processes or tasks
• generic with respect to the knowledge structures

 Genericity with respect to processes or tasks refers to the level of process abstraction: a generic model abstracts
from processes at lower levels. A more specific model with respect to processes is a model within which a
number of more specific processes, at a lower level of process abstraction are distinguished. This type of
refinement is called specialisation. Genericity with respect to knowledge refers to levels of knowledge
abstraction: a generic model abstracts from more specific knowledge structures. Refinement of a model with

respect to the knowledge in specific domains of application, is refinement in which knowledge at a lower level of
knowledge abstraction is explicitly included. This type of refinement is called instantiation.

Reuse as such, reduces the time, expertise and effort needed to design and maintain system designs. Which
components, links and knowledge structures from the generic model are applicable in a given situation depends
on the application. Whether a component can be used immediately, or whether instantiation, modification and/or
specialisation is required, depends on the desired functionality. Other existing (generic) models can be used for
specialisation of a model; existing knowledge structures (e.g., ontologies, thesauri) can be used for instantiation.
Which models and structures are used depends on the problem description: existing models and structures are
examined, rejected, modified, specialised and/or instantiated in the context of the problem at hand.

3.5. Process hiding and external observation of behaviour

The notion of process hiding in terms of process abstraction levels gives a sharp distinction in what is visible
from outside an agent, and what happens internally. At the process abstraction level of the whole agent no
reference can be made to the internal concepts. Only the actions and observation results are specified at this
process abstraction level. This corresponds to what a human observer can observe from the behaviour (from the
black box perspective): the ‘stimuli’, and the ‘response behaviour’. For example, the term ‘the animal shows a
delayed response’ refers to this process abstraction level, and leaves open by which internal processes the animal
achieves its behaviour. Descriptions that refer to processes that are assumed to take place within the agent are at
one process abstraction level lower. A (theoretically debatable) phrase such as ‘the animal shows to have
memory’ refers to this lower process abstraction level, and entails an assumption on how things are arranged
internally.

4. AN AGENT MODEL FOR PURELY REACTIVE BEHAVIOUR

An agent is purely reactive if it immediately responds to stimuli from its environment. Such agents are also
called behaviour-based or situated agents; e.g., see [19]. These agents make their decisions based on a very
limited amount of information, and simple situation-action rules. The stimuli can either consist of perceived
changes in the external world or received communications from other agents. Changes in the external world are
perceived by the agent by observation. The response behaviour of the agent affects its environment. Several
archictures have been developed for reactive agents, see [1], [8], [16], [17]. In [19] an extensive overview of these
architectures and the motivations behind them can be found.

agent
external

world

top level

observation results

actions and observations

Figure 2: A generic agent model for purely reactive behaviour

4.1. Process Composition

For the design and implementation of the different models the compositional development method for multi-
agent systems DESIRE has been used; see [4] for more details. A generic agent model for purely reactive
behaviour developed earlier within the DESIRE environment (and applied in chemical process control) was
reused. The (rather simple) agent system in this model consists of two components, one for the agent (of type A)
and one for the external world with which it interacts (see Figure 2).

In the current domain, the observation information that plays a role describes that certain objects (cup1,
cup2, food, screen, self) are at certain positions (i.e., p0, p1, p2). This is modelled by two sorts OBJECT and
POSITION and a relation at position between these two sorts. Moreover, two types of actions can be
distinguished: eat and goto some position. The latter type of actions is parameterized by positions; this can be
modelled by a function goto from POSITION to ACTION. E.g., goto(p1) is the action to go to position p1. The
action eat that is specified assumes that if the animal is at the position of the food, it can have the food: if a cup
is covering the food, as part of the action eat the animal can throw the cup aside to get the food. Variables over a
sort, e.g., POSITION, are denoted by a string, e.g., P, followed by : POSITION, i.e., P : POSITION is a
variable over the sort POSITION. The unary relation to_be_performed is used to express the information that the
agent has decided to perform an action; for example, to_be_perfomed(goto(p1)) expresses that the agent has
decided to go to position p1. The relation observation_result is used to express the information that certain
information has been acquired by observation; e.g., observation_result(at_position(food, p1), pos) expresses
that the agent has observed that there is food at position p1, whereas the statement
observation_result(at_position(food, p1), neg) expresses that the agent has observed that there is no food at
position p1.

4.2. Knowledge composition

In this section, first the information types to specify the knowledge are defined, and next, using these
information types the domain knowledge is specified to obtain the required functionality.

sort

relation

object

function

meta-description

information type

Figure 3: Information types: Legenda

4.2.1. Information types

 Information types provide the ontology with which knowledge used in the processes can be expressed.
Information types provide the ontology (or lexicon, or vocabulary) for the languages used in one (or more)
components, knowledge bases and information links. In information type specifications the following concepts
are used: sorts, objects, relations, functions, and meta-descriptions. Furthermore, information types can be
composed from other information types.

Each concept is represented graphically, see Figure 3. The icon for information types is used as depicted in
Figure 4 containing only the name of an information type, but also as depicted in Figure 5 containing the sorts,
object, functions, relations, and meta-descriptions used in the design of that information type.

actions to be performed

domain actions

action info

Figure 4: action info as a composition of a generic and domain specific information type

 All information types are (either directly or indirectly) composed of (1) generic information types and (2)
domain specific information types. Generic information types are fully specified within the generic model.
Domain specific information types are defined by references; they are instantiated for a specific domain of
application. For example, the information type action info is composed of the generic information type actions
to be performed and the domain specific information type domain actions (see Figure 4). The generic
information type actions to be performed enables the agent to reason about actions; see Figure 5.

actions to be performed

ACTION

to be performed

Figure 5: Generic information type: actions to be performed

 The specific actions for a given domain of application are not specified within the generic model, but as part of
the domain knowledge structures (see Figure 6).

domain actions

ea
t

ACTION

POSITION

goto

Figure 6: The information type domain actions

 In a similar manner the information type observation result info is composed of the generic information types
observation results and truth indication, and the domain specific information type domain meta-info.

observation result

observation results

21

SIGNINFO ELEMENT

Figure 7: Generic information type observation results

 The generic information type observation results (see Figure 7) enables the agent to express statements on
observation results. In the applications the observations are assumed passive: without taking any initiative, the
agent automatically receives the observation results from the external world. The generic information type truth
indication as presented in Figure 8 is also used in the information type observation results. By these information
types it is possible to make statements about the process of observation of the state of the world in contrast to
statements about the world. It is possible for the statement ‘my observation result is that food is present at p2’
to be true, while in the world state ‘food is present at p2’ is false. For example, a sensor could give the wrong
information. Similarly, it could also be the other way around: the statement ‘food is present at p2’ can be true in
the world state, while the statement ‘my observation result is that food is present at p2’ is false, simply because
it was not observable, or at least I did not observe it. Note also that ‘I did not observe that food is present at p2’
means something different from ‘I observed that no food is present at p2’. A statement of the form ‘my
observation result is that food is present at p2’ cannot be expressed using the information type that describes the
world. For example, the statement ‘food is present at p2’ is not adequate. Therefore, another structure is necessary
to express statements about statements. Statements about statements are called meta-level statements. The
statements that form the subjects of such meta-level statements are called object level statements.

truth indication

po
s

ne
g

SIGN

Figure 8: Generic information type truth indication

4.2.2. Domain knowledge

Assuming that food is offered at at most one position (for example, position p2), the stimulus-response
behaviour of agent model A expresses that if the agent observes that there is food at any position and that no
screen at position p0 separates the agent from this position, then it goes to this position. This knowledge has
been modelled in the following form:

if observation_result(at_position(food, P:POSITION), pos)

 and observation_result(at_position(screen, p0), neg)

 and observation_result(at_position(self, P:POSITION), neg)

then to_be_performed(goto(P:POSITION))

if observation_result(at_position(self, P:POSITION), pos)

 and observation_result(at_position(food, P:POSITION), pos)

then to_be_performed(eat)

4.3. The Behaviour of the Purely Reactive Agent

The requirement imposed on agent A was that it shows the same behaviour for Situations 1 and 3 in the problem
description: do nothing. Moreover, in Situation 2 the agent is required to go to the position of the food. The
agent of type A indeed shows behaviour as expressed by the requirements. For a more detailed account of the
behaviour, see Appendix A.

 communicated
 info

 observation
 results
 to wim

 observed
 agent

info

 communicated
 agent
 info

Agent task control

Own
Process
Control

Maintenance
of Agent

Information

Agent
Specific

Task

Maintenance
of World

Information

Agent
Interaction

Management

World
Interaction

Management

 own process info to wim

 own process info to aim

 own
 process
 info to
 mai

 own
 process
 info to
 mwi info to be communicated

 communicated
 info to ast

 communicated world info

 observations and actions

 observed
 info to ast

 observed
 world info

 action and observation info from ast

 communication info from ast

 agent info to opc
 world info to opc

 agent info to wim

 agent info to aim

 world info to aim

 world info to wim

Figure 9: A generic agent model

5. AGENT MODELS FOR DELAYED RESPONSE AND PRO-ACTIVE BEHAVIOUR

To design an agent model that will show delayed response behaviour, the internal structure of the agent is made
more complex. Within the agent a component maintenance of world information to maintain the observation
results as beliefs (a memory) is distinguished from a component world interaction management that manages the
interaction with the world. Moreover, if the agent has to generate its own goals in order to show pro-active
behaviour, a component own process control is added, and if the agent has to show social behaviour, components
are added to manage communication (agent interaction management) and to maintain beliefs on other agents
(maintenance of agent information). The generic agent model depicted in Figure 9 (see also [7]) is composed of
all of these components.

5.1. An Agent Model with Delayed Response Behaviour

For an agent with delayed response behaviour (type B), the component maintenance of world information is used,
in addition to the component world interaction management. The only task performed by the component
maintenance of world information is storage of observation information. No further knowledge is used within this
component.

WORLD INFO ELEMENT SIGN

new world info

21

new info on world

belief

beliefs

21

SIGNINFO ELEMENT

Figure 10: The information types new world info and belief info

The part of the knowledge of the component world interaction management that determines the actions is a
variant of the knowledge used in agent model A. An additional part determines that the world information that
was acquired by observation has to be maintained, expressed by the relation new_world_info.

if observation_result(I:INFO_ELEMENT, S:SIGN)

then new_world_info(I:INFO_ELEMENT, S:SIGN)

if belief(at_position(food, P:POSITION), pos)

 and belief(at_position(screen, p0), neg)

 and belief(at_position(self, P:POSITION), neg)

then to_be_performed(goto(P:POSITION))

if belief(at_position(food, P:POSITION), pos)

 and belief(at_position(self, P:POSITION), pos)

then to_be_performed(eat)

An essential difference with the knowledge in agent model A is that in the knowledge above the relation
observation result is replaced by the relation belief. Not only can information from direct observation be used,
but also information retrieved from memory: all input information gets the status of belief, in contrast to
observation. The behaviour of this agent model in comparison to the behaviours of the other models is discussed
in Section 8.

5.2. An Agent Model with Pro-active Behaviour

The third agent model to be discussed is a model for a pro-active agent (type C). A pro-active agent does not
simply respond to stimuli, neither immediately, nor delayed. In addition to the observation information, its so-
called motivational attitudes (such as goals and plans) play an important role (e.g., see [25]) in determining its
actions. These motivational attitudes can be based on the agent’s own character (for example, an agent’s character
may be that it always wants to eat, or that it is totally apathic), but also on specific aspects of the agent’s own
state, such as being hungry, or being depressed. To determine the motivational attitudes of the agent, the
component own process control is used; additional knowledge structures are introduced for this new component.

agent characteristics info

domain agent
characteristics

agent characteristics

agent state info

domain agent
states

agent states

own state

STATE ASPECT

agent statesagent characteristics

own characteristic

CHARACTERISTIC

Figure 11: Composition and generic information types for agent properties

In addition to the existing information types of agent model B, information types are required for knowledge
on own process control; these information types express information on (see Figure 11 and 12):

• the agent’s beliefs
• aspects of the agent’s own state, such as being hungry, or being depressed, and specific characteristics

of the agent, such as always eager to eat, or totally apathic

• the agent’s goals, such as be fed, just hang around, find food, or get food inside.

CHARACTERISTIC

al
w

ay
s

ea
ge

r
to

 e
at

to
ta

lly
 a

pa
th

ic

domain agent characteristics

hu
ng

ry

de
pr

es
se

d

STATE ASPECT

domain agent states

Figure 12: Domain-specific information types for agent properties

Information on the agent’s own state can be expressed using the unary relation own_state; for example, the
statement own_state(hungry) expresses that the agent is hungry. The agent’s own characteristics can be expressed
using the unary relation own_characteristic; e.g., the statement own_characteristic(totally_apathic) expresses
the information that the agent is totally apathic. The goal that has been selected by the agent is expressed using
the unary relation selected_goal. The knowledge to be used in the component own process control models (see
Figure 13):

• an agent that is always eager to eat, always selects the goal be fed
• any not apathic agent that is hungry or depressed selects the goal be fed
• a totally apathic agent never selects a goal
• an agent which has be fed as a goal, selects the goal get food inside if it has a belief that food is present

at a specific position; in the other case it selects the goal find food

goal info

domain goals

selected goals

WORLD INFO ELEMENT

fin
d

fo
od

ge
t f

oo
d

in
si

de

be
 fe

d

domain goals

selected goals

selected goal

WORLD INFO ELEMENT

Figure 13: Generic and domain-specific information types for the agent’s goals

The knowledge used in own process control knowledge can formulated in a concise form as follows:

i f own_characteristic(always_eager_to_eat)

then selected_goal(be_fed)

i f own_state(hungry)

 and not own_characteristic(totally_apathic)

then selected_goal(be_fed)

i f own_state(depressed)

 and not own_characteristic(totally_apathic)

then selected_goal(be_fed)

i f selected_goal(be_fed)

 and belief(at_position(food, P:POSITION), pos)

then selected_goal(get_food_inside)

i f selected_goal(be_fed)

 and not belief(at_position(food, p1), pos)

 and not belief(at_position(food, p2), pos)

then selected_goal(find_food)

Depending on the type of agent modelled, some facts can be added to this knowledge base, for example in the
agent of type C:

own_characteristic(always_eager_to_eat)

(alternatively, for example, own_state(hungry), not own_characteristic(totally_apathic) could be specified, or
own_characteristic(totally_apathic)).

Depending on the agent characteristics specified, the agent determines one or more goals. To actually show
certain pro-active behaviour, also suitable knowledge has to be specified on which actions are to be performed for
a given goal. Moreover, not only actions can be performed in a pro-active manner, but also observations. In
particular, if the animal visits a position for which it is not known yet whether these is food, it can decide to
explore the position, e.g., by putting the cup a bit aside and/or activating its smell sensor (sniffing). To model
active observations, the information type observation info is used, defining the relation to_be_observed on sort
WORLD_INFO_ELEMENT. For example, the atom

to_be_observed(at_position(food, p1))

means that the agent has decided to observe whether food is present at position p1. Knowledge to initiate actions
and observations is modelled in the component world interaction management. To determine actions related to the
goal get food inside, two possible cases are considered:

• the agent believes that food is present at its own position; in this case it simply can start eating
• the agent believes that no food is present at its own position, but it believes that food is present at

another position; in this case the agent can go to such a position (and if it arrives there it can start eating,
according to the previous item)

This knowledge is expressed in a concise form as follows:

if selected_goal(get_food_inside)

 and belief(at_position(food, P:POSITION), pos)

 and belief(at_position(self, P:POSITION), pos)

then to_be_performed(eat)

if selected_goal(get_food_inside)

 and belief(at_position(self, P1:POSITION), pos)

 and belief(at_position(food, P1:POSITION), neg)

 and belief(at_position(food, P2:POSITION), pos)

 and belief(at_position(screen, p0), neg)

then to_be_performed(goto(P2:POSITION))

The goal get food inside assumes that the agent already knows at least one position where food is present. If this
is not the case, the goal find food may be selected by the agent. To determine the actions or observations for the
goal find food, the following cases are considered:

• the agent does not know whether food is present at its own position; then the observation to explore the
own position is initiated (which determines whether food is present at the agent’s own position)

• the agent believes that no food is present at its own position, and it does not know whether food is
present at positions p1 and p2; in this case the action go to p1 is selected (and if it arrives there it can start
exploring it, according to the previous item)

• the agent believes that no food is present at its own position and at position p1; it does not know whether
food is present at p2; in this case the agent goto p2 is selected (and if it arrives there it can start exploring
the position, according to the first item)

This knowledge is expressed in a concise form as follows:

if selected_goal(find_food)

 and belief(at_position(self, P:POSITION), pos)

 and not belief(at_position(food, P:POSITION), pos)

 and not belief(at_position(food, P:POSITION), neg)

then to_be_observed(at_position(food, P:POSITION))

if selected_goal(find_food)

 and belief(at_position(self, P:POSITION), pos)

 and belief(at_position(food, P:POSITION), neg)

 and not belief(at_position(food, p1), neg)

 and not belief(at_position(food, p1), pos)

 and not belief(at_position(food, p2), neg)

 and not belief(at_position(food, p2), pos)

then to_be_performed(goto(p1))

if selected_goal(find_food)

 and belief(at_position(self, P:POSITION), pos)

 and belief(at_position(food, P:POSITION), neg)

 and belief(at_position(food, p1), neg)

 and not belief(at_position(food, p2), neg)

 and not belief(at_position(food, p2), pos)

then to_be_performed(goto(p2))

For more details of the behaviour of the agent types B and C, see Appendices B and C.

6. AN AGENT MODEL WITH SOCIAL BEHAVIOUR

To obtain social behaviour (an agent model of type D), also the components agent interaction management and
maintenance of agent information are used in the model.
 A social agent is able to receive incoming communication and to generate outgoing communication. The
generic information types for communication are depicted in Figure 14. By these information types it is possible
to make statements about the process of communication (in contrast to, for example, statements about the
world). It is possible for the statement ‘I was told that the pressure is high’ to be true, while in the world state
‘the pressure is high’ is false: the other agent may simply not tell the truth. It could also be the other way

around: the statement ‘the pressure is high’ could be true in the world state, while the statement ‘sombody told
me that the pressure is high’ is false, simply because nobody told me. Note also that ‘he did not tell me that the
pressure is high’ does not mean the same as ‘he told me that the pressure is not high’. Similar to statements
about observation, statements about comunication are meta-level statements.

incoming communication

INFO ELEMENT SIGN

communicated by

2
1

AGENT

3

outgoing communication

INFO ELEMENT SIGN

to be communicated to

2
1

AGENT

3

Figure 14: Generic information types on communication

 The information communicated to the agent may be used to extend or update an agent’s beliefs both on the
world or on other agents. The information received is analysed, selected and prepared to be stored as information
either on the world or on other agents; the related information types are depicted in Figure 15.

AGENT INFO ELEMENT SIGN

new agent info

21

new info on agents

Figure 15: Generic information type maintenance on agents

In the component agent interaction management knowledge is specified that identifies new communicated
knowledge about other agents:

if communicated_by(I_want_food, pos, A:AGENT)

then new_agent_info(wants_food(A:AGENT))

Here, the statement communicated_by(I_want_food, pos, A:AGENT) expresses that the information I_want_food
has been communicated (positively) by the agent A:AGENT. This new agent information (expressed using the
relation new_agent_info) is stored in the component maintenance of agent information: the knowledge used in
maintenance of agent information specifies the hierarchy between different animals, and whether another animal
that is present wants the food. For example, if an1 is an animal which is present and is higher in the hierarchy,
then this can be specified within the knowledge base used in maintenance of agent information of the agent self
as higher_than(an1, self). It is also possible to model this information in a dynamic form, as an outcome of
earlier experiences (fights). If the other animal wants the food, within the component maintenance of world
information of the agent self it is derived that the food is protected, using the knowledge

if wants_food(A:AGENT)

 and higher_than(A:AGENT, self)

then food_protected

Within the knowledge elements used in the component world interaction management an additional condition

not belief(food_protected, pos) is specified. For more details of the behaviour of agent type D, see Appendix D.

7. AN AGENT MODEL WITH ADAPTIVE BEHAVIOUR

The agent models presented in the previous sections showed different types of behaviour, but they are not able to
adapt their behaviour. In this section an agent model for adaptive animal behaviour is presented. To be able to
learn from experiences it is important that for a given situation more than one option for an action is generated.
By making decisions about the action that is selected from the options the animal can experiment with its
behaviour, and, after eveluation, adapt its decision making process.

7.1. Process composition of the adaptive agent model

To be able to address and evaluate the action selection process explicitly, in this agent model the following more
specialised processes are distinguished:

agent

agent interaction
management

maintenance of
agent information

own process
control

maintenance of
world information

world interaction
management

observation
management

action
management

own
adaptation

goal
generation

action
generation

action
selection

Figure 16: Processes and their abstraction levels for the adaptive agent model

- action generation
This process generates a number of alternative behaviours for a given (observed or believed) situation.

- action selection
This process selects one option from the set of alternative behaviours, using selection knowledge based on
earlier experiences.

- own adaptation
This process evaluates the selected action upon its successfulness, and adapts the knowledge used to make a
selection. In particular, if the action was successful, in the future it will be chosen more often (under
comparable circumstances), and the other options less often. If the action was not successful, it will be
chosen less often.

The first two of these processes are modelled as a specialisation of world interaction management, whereas the
latter process is modelled as a subprocess of own process control. The processes and their four abstraction levels
are shown in Figure 16.

The process composition relations are straighforward. The relevance ordering relations are transferred from the
component own adaptation via the input interface of own process control to world interaction management and
within this component to action selection. Moreover, the actions generated by action generation are transferred
to action selection as well.

7.2. Knowledge composition of the adaptive agent model

In this section the information types and knowledge bases for the adaptive agent model are discussed.

7.2.1. Information types

For the adaptive agent, information types are required to specify which options for actions are generated in a
given situation, how the decision is made to choose between the options, and how this choice is inflenced by
experiences. The options for actions to achieve a given goal are expressed by the generic information type action
alternatives; see Figure 17.

ACTION WORLD INFO ELEMENT

possible action for goal

21

action alternatives

Figure 17: The information type action alternatives

The selection process first determines which actions are to be ignored; the remaining actions are considered
appropriate: the generic information type action selection info; see Figure 18. Within this selection process the
domain specific information types food relevance info and action relevance are used; see Figure 19. The agent’s
experiences are formalised by a (dynamic) linear ordering of the colours: the higher a colour in this ordering, the
more successful experiences the agent has in finding food at positions of that colour.

ACTION WORLD INFO ELEMENT

ignored action for goal

21

action selection info

appropriate action

Figure 18: The information type action selection info

This linear ordering is represented by

has_higher_food_relevance(C1:COLOUR, C2:COLOUR)

which means that colour C1:COLOUR is higher than colour C2:COLOUR in the linear ordering. The linear
ordering is maintained and updated in the component own adaptation within own process control. It is only used
in the component action selection.

COLOUR COLOUR

has higher food relevance

21

food relevance

ACTION ACTION

has higher relevance
for goal

2
1

action relevance

WORLD INFO ELEMENT

3

Figure 19: The information types food relevance and action relevance

The update of the relevance information makes use of the generic information type reinforcement info (see Figure
20), and the domain specific information type food precedence info (see Figure 21) are used. The food precedence
relation expresses the immediate neighbours in the linear ordering on food relevance.

WORLD INFO ELEMENT WORLD INFO ELEMENT

to be reinforced
association

2
1

reinforcement info

SIGN

3

Figure 20: The information type reinforcement info

Besides the information types introduced above, the domain information is extended by the sort COLOUR and the
relation is_colour_at_position between COLOUR and POSITION. For more interesting experiments, also the
number of positions was extended.

food precedence info

COLOUR COLOUR

food precedence

212

new food precedence

1

has higher food relevance

1

COLOUR

least food experience best food experience

Figure 21: The information type food precedence info

7.2.2. Knowledge used

The following knowledge bases are used in the different components.

Knowledge used within observation management
The knowledge used within observation management is simple. For the goal find food, if it is unknown whether
food is present at the own position, the observation to explore this position is always selected:

if selected_goal(find_food)

 and belief(at_position(self, P1:POSITION), pos)

 and not belief(at_position(food, P1:POSITION), neg)

 and not belief(at_position(food, P1:POSITION), pos)

then to_be_observed(at_position(food, P1:POSITION))

Knowledge used within action generation
The knowledge used within action generation is kept simple. For the goal find food
(1) if it is known that there is no food at the own position, all actions that are generated, are those of the form
goto(P:POSITION) for the positions P:POSITION for which the agent has no belief on whether there is food
present, and
(2) if it is known that food is present at the own position, the action eat is generated.

if selected_goal(find_food)

 and belief(at_position(self, P1:POSITION), pos)

 and belief(at_position(food, P1:POSITION), neg)

 and not belief(at_position(food, P2:POSITION), neg)

 and not belief(at_position(food, P2:POSITION), pos)

then possible_action_for_goal(goto(P2:POSITION), find_food)

if selected_goal(get_food_inside)

 and belief(at_position(self, P:POSITION), pos)

 and belief(at_position(food, P:POSITION), pos)

then possible_action_for_goal(eat, get_food_inside)

Knowledge used within action selection
For the action eat, the generated action is always selected:

if selected_goal(find_food)

 and possible_action_for_goal(explore_position, find_food)

then appropriate_action(explore_position)

if selected_goal(get_food_inside)

 and possible_action_for_goal(eat, get_food_inside)

then appropriate_action(eat)

For the other case the knowledge used within action selection is based on what the agent has experienced. From
the colour relevancy ordering relations, within action selection action relevance ordering relations (relative for a
given goal) are derived:

if belief(is_colour_at_position(C1:COLOUR, P1:POSITION), pos)

 and belief(is_colour_at_position(C2:COLOUR, P2:POSITION), pos)

 and has_higher_food_relevance(C1:COLOUR, C2:COLOUR)

then has_higher_relevance_for_goal(goto(P1:POSITION), goto(P2:POSITION), find_food))

Using this total ordering of relevancy of actions the decision is made to ignore all actions for which at least two
more relevant actions exist:

if possible_action_for_goal(A1:ACTION, G:WORLD_INFO_ELEMENT)

 and possible_action_for_goal(A2:ACTION, G:WORLD_INFO_ELEMENT)

 and possible_action_for_goal(A3:ACTION, G:WORLD_INFO_ELEMENT)

 and has_higher_relevance_for_goal(A1:ACTION, A2:ACTION, G:WORLD_INFO_ELEMENT))

 and has_higher_relevance_for_goal(A2:ACTION, A3:ACTION, G:WORLD_INFO_ELEMENT))

then ignored_action_for_goal(A3:ACTION, G:WORLD_INFO_ELEMENT)

Finally, all actions relevant for the selected goal, which were not ignored, are derived as appropriate:

if selected_goal(G:WORLD_INFO_ELEMENT)

 and possible_action_for_goal(A:ACTION, G:WORLD_INFO_ELEMENT)

 and not ignored_action_for_goal(A:ACTION, G:WORLD_INFO_ELEMENT)

then appropriate_action(A:ACTION)

From these appropriate actions only one is derived, at random.

The action selection approach discussed here is just one possible approach. Another, more simple approach
would be to just take the highest action in the relevance ordering. However, this more simple decision model
allows the agent less space for experimentation, and implies slower adaptation in certain circumstances. Also
numerical approaches are possible; for an example, see Section 7.3 below.

Knowledge used within own adaptation
Within the component own adaptation the linear order of relevancy of colours for food is maintained and updated,
on the basis of experiences. First experiences are evaluated: if there was food found at a position with a certain
colour, a positive reinforcement has to be implemented for this colour, otherwise a negative reinforcement:

if observation_result(at_position(food, P:POSITION), S:SIGN)

 and belief(is_colour_at_position(C:COLOUR, P:POSITION), pos)

then to_be_reinforced_association(is_colour_at_position(C:COLOUR, P:POSITION),

at_position(food, P:POSITION), S:SIGN)

The positive reinforcement is modelled by movingthe colour upwards in the linear ordering one place, as long as
it is not the highest colour. If it already was the highest colour, then nothing changes. If it was second highest,
then it becomes the highest. The relation food_precedence(C1:COLOUR, C2:COLOUR) represents the immediate
succession in the linear ordering.

if to_be_reinforced_association(is_colour_at_position(C:COLOUR, P:POSITION),

at_position(food, P:POSITION), pos)

 and food_precedence(C0:COLOUR, C1:COLOUR)

 and food_precedence(C1:COLOUR, C:COLOUR)

 and food_precedence(C:COLOUR, C2:COLOUR)

then new_food_precedence(C0:COLOUR, C:COLOUR)

 and new_food_precedence(C:COLOUR, C1:COLOUR)

 and new_food_precedence(C1:COLOUR, C2:COLOUR)

if to_be_reinforced_association(is_colour_at_position(C:COLOUR, P:POSITION),

at_position(food, P:POSITION), pos)

 and best_food_experience(C0:COLOUR)

 and food_precedence(C0:COLOUR, C:COLOUR)

 and food_precedence(C:COLOUR, C1:COLOUR)

then new_best_food_experience(C:COLOUR)

 and new_food_precedence(C:COLOUR, C0:COLOUR)

 and new_food_precedence(C0:COLOUR, C1:COLOUR)

If the colour was the lowest, the second lowest becomes the lowest:

if to_be_reinforced_association(is_colour_at_position(C:COLOUR, P:POSITION),

at_position(food, P:POSITION), pos)

 and least_food_experience(C:COLOUR)

 and food_precedence(C2:COLOUR, C:COLOUR)

 and food_precedence(C1:COLOUR, C2:COLOUR)

then new_least_food_experience(C2:COLOUR)

 and new_food_precedence(C:COLOUR, C2:COLOUR)

 and new_food_precedence(C1:COLOUR, C:COLOUR)

For negative reinforcement, the opposite of the above takes place. The colour is moved downwards in the linear
ordering, as long as it is not the lowest colour. If it already was the lowest colour, then nothing changes. If it
was second lowest, then it becomes the lowest. If the colour was the highest, the second highest becomes the
highest:

If the colour was the lowest, the second lowest becomes the lowest:

if to_be_reinforced_association(is_colour_at_position(C:COLOUR, P:POSITION),

at_position(food, P:POSITION), neg)

 and best_food_experience(C:COLOUR)

 and food_precedence(C:COLOUR, C1:COLOUR)

 and food_precedence(C1:COLOUR, C2:COLOUR)

then new_least_food_experience(C1:COLOUR)

 and new_food_precedence(C1:COLOUR, C:COLOUR)

 and new_food_precedence(C:COLOUR, C2:COLOUR)

if to_be_reinforced_association(is_colour_at_position(C:COLOUR, P:POSITION),

at_position(food, P:POSITION), neg)

 and food_precedence(C1:COLOUR, C2:COLOUR)

 and food_precedence(C:COLOUR, C1:COLOUR)

 and food_precedence(C0:COLOUR, C:COLOUR)

then new_food_precedence(C:COLOUR, C2:COLOUR)

 and new_food_precedence(C1:COLOUR, C:COLOUR)

 and new_food_precedence(C0:COLOUR, C1:COLOUR)

if to_be_reinforced_association(is_colour_at_position(C:COLOUR, P:POSITION),

at_position(food, P:POSITION), neg)

 and least_food_experience(C1:COLOUR)

 and food_precedence(C:COLOUR, C1:COLOUR)

 and food_precedence(C0:COLOUR, C:COLOUR)

then new_least_food_experience(C:COLOUR)

 and new_food_precedence(C1:COLOUR, C:COLOUR)

 and new_food_precedence(C0:COLOUR, C1:COLOUR)

After updating the precedence relations by the new ones, by taking the transitive closure a total ordering is
derived:

if food_precedence(C1:COLOUR, C2:COLOUR)

then has_higher_food_relevance(C1:COLOUR, C2:COLOUR)

if food_precedence(C1:COLOUR, C2:COLOUR)

 and has_higher_food_relevance(C2:COLOUR, C3:COLOUR)

then has_higher_food_relevance(C1:COLOUR, C3:COLOUR)

For more details of the behaviour of agent type E, see Appendix E.

7.3. A numerical approach based on weight values

An alternative approach that can be built in the same agent model makes use of numerical weight values wE(a)
for actions under given environmental circumstances E. As a special case, the weight values can be normalised to
overall sum 1:

Íb wE(b) = 1

Within the component action selection the selection can be made by making a random choice based on the
probability distribution

 wE(a) / Íb wE(b)

over the actions a (in the case the overall sum is 1, the denominator can be left out).

Within the component own adaptation, the update for a successful experience for action a can be done by (here ¬
is a factor between 0 and 1, for example 0.9):

1 - w’E(a) = ¬ (1- wE(a))
 w’E(b) = ¬ wE(b) for b ≠ a

The update for an unsuccessful experience for action a can be done by, for example:

 w’E(a) = ¬ wE(a)
1 - w’E(b) = ¬ (1 - wE(b)) for b ≠ a

These formulae guarantee that, if the sum is 1 (in this, most simple, case the weights themselves can be used as
a probability distribution) it will remain 1 after updates. For example, when ¬ = 0.9 and

wE(a1) = 0.3
wE(a2) = 0.3
wE(a3) = 0.4

then after a successful experience on a1, the update results in:

wE(a1) = 0.37
wE(a2) = 0.27
wE(a3) = 0.36

8. OVERVIEW OF THE BEHAVIOUR OF THE DIFFERENT AGENT MODELS

In this section the different types of behaviour of the agent models are presented and compared.

8.1. Global differences in behaviour

In Table 1 below the global differences in behaviour of the agent models are summarised. The different variants
of behaviour depicted in this table indeed satisfiy the requirements expressed in Section 2.

8.2. More specific traces

In the Appendices A to E for each of the agent models a more detailed trace is shown. The information shown
follows the graphical intereface that has been made for demonstration purposes.

First, in Appendix A a behaviour trace of agent model A is presented for Situation 3. In this trace the rows
represent states (states of the world and mental states of the animal), and all steps in the process are depicted as
transitions from one of the rows to the next row; for example: observation (from row 0 to 1), an event in the
world (appearance of the cup, from 1 to 2), observation (making the mental model of the world state up to date
by removing the food and adding the cup, from 2 to 3), an event in the world (disappearance of the screen, from 3

to 4), observation (taking out the screen of the mental model, from 4 to 5). It is shown that at each time point,
the animal only has an image of the current world situation, not of the past. Therefore the animal is not
successful in reaching the food.

agent A agent B agent C agent D agent E

situation 1
(no food)

do nothing do nothing look for food
at random

look for food
at positions
without
higher
competitors

look for food
at places with
relevant
colours

situation 2
(visible food)

go to food go to food go to food go to food
at positions
without
higher
competitors

go to food

situation 3
(visible food
made invisible)

do nothing go to food go to food go to food
at positions
without
higher
competitors

go to food

situation 4
(invisible food)

do nothing do nothing look for food
at random

look for food
at positions
without
higher
competitors

look for food
at places with
relevant
colours;
learn from
experience

Table 1: Global overview of the different behaviours

Next, in Appendix B behaviour of agent model B is shown for the same Situation 3. Also in this trace all
steps in the process are depicted as transitions from one of the rows to the next row; for example: observation
(from row 0 to 1), an event in the world (appearance of the cup, from 1 to 2), observation (this time the food
remains in the mental model and the cup is added, from 2 to 3), action in the world (disappearance of the screen,
from 3 to 4), observation (from 4 to 5), generating an action (the action go to p2, from 5 to 6), execution of the
generated action (from 6 to 7). In this case the animal maintains beliefs about the world, and therefore still has
the information about the position of the food, after the food was covered. It is shown that this animal is
successful in reaching the food.

In Appendix C the behaviour of agent model C is shown for Situation 4. For shortness, in this trace (and in
the traces for agent models D and E) a more condensed presentation is used. As in the previous traces changes of
the world state are represented by a transition from one row to the next row. However, the observations
following changes of the world state and also the mental steps following the observations are depicted in the
same row as the new world state occurs. This trace shows that the animal first examiones position p1, without
success, and next position p2, with success. It is shown how not only beliefs but also goals play a role in the
determination of actions.

Appendix D describes behaviour of agent model D. First the agent visits p1, as in the case of model C. Next
(in row 3) it waits, because at the other position, p2, a competitor is observed which is higher in the hierarchy.
It is shown that the agent is not going to this position as long as a higher competitor is present there, but as
soon as this other animal leaves (depicted in row 4), it is visiting that position. Note that the short phrase
‘higher competitor at p2’ actually refers to a combination of two types of information: (1) another animal is at
position p2, (2) this other animal is higher than me. The first type of information is about the world, whereas
the second type of information is about other agents.

Appendix E shows adaptive behaviour based on reinforcement in Situation 4. In the initial relevance ordering
of colours red-green-blue, red is the highest, then green, and blue is the lowest in relevance (see row 0). If
nothing is known about food at the positions p1, p2 and p3, then going to any of these positions is an option.
The relevance ordering of actions is just copied from the relevance ordering of colours. From the highest two,

one is selected at random: p1, with a green colour (see row 1). From exploring this position (see row 2) a
negative experience results. This leads to adaptation of the colour relevance ordering: green is pushed one
position down, and blue pops up to the second position (see row 3, middle column). On the basis of this new
ordering a decision is made about the next position to visit. Only the two candidates p2, p3 remain because it is
known that at p1 no food is available. From these two, although going to p3 has the highest relevance, going to
position p2, with the blue colour, is chosen at random (see row 3, rightmost column). Here a positive experience
results. This again leads to adaptation of the relevance ordering of colours: blue and red are interchanged (see row
4). After eating (row 5), which makes the food disappear, at last p3 (with colour red) is visited (see row 6) which
leads to a negative experience. Based on this experience the relevance ordering of colours is adapted: red and green
are interchanged (not depicted). At this point the relevance ordering is blue-red-green. On the basis of this new
relevance ordering a next session can be started.

9. CONCLUSIONS

In this paper it is shown how different types of animal behaviour can be modelled and simulated at a conceptual
level on the basis of the compositional multi-agent development method DESIRE (cf. [4]). Different (variants of)
reusable compositional agent models were used to model the different required behaviours. The advantage of this
approach is that the models are designed at a high conceptual level, in terms of the processes, information and
knowledge that is needed, and abstracting from implementation details. Nevertheless they can be executed by the
DESIRE software environment. Besides the simulation of animal behaviour discussed in this paper, a variety of
other applications have been developed using DESIRE. Some recent multi-agent applications can be found in [3]
(negotiation between agents), [5] (simulation of a society of agents), [6] (distributed work flow and agenda
scheduling), and [15] (agents in brokering processes).

Simulation of animal behaviour is an interesting type of application for multi-agent systems. Both areas can
benefit from a more extensive study of this type of application. The area of multi-agent systems can benefit from
the more detailed analyses and distinctions that have been made for different types of animal behaviour (see the
Introduction). The study of animal behaviour can benefit from software tools for agent modelling at a conceptual
level that support simulation. Moreover, formal techniques in the area of verification can be used to analyse and
formalise behaviour properties of animals and their logical relations; e.g., [9], [14]. These formalisations can be
a basis for the development of a theory of animal behaviour.

ACKNOWLEDGEMENTS

In the implementation and testing Frank Cornelissen and Wouter Wijngaards have supported this work. Parts of
an earlier version of this paper were read by Frances Brazier. Based on her comments a number of improvements
have been made in the text.

REFERENCES

 1. Agre, P.E., and Chapman, D., Pengi: an Implementation of a Theory of Activity. In: Proceedings of the
sixth National Conference of the American Association for Artificial Intelligence (AAAI-87), Morgan
Kaufmann, 1987, pp. 268-272.

 2. Allen, C., and Bekoff, M., Species of Mind: the philosophy and biology of cognitive ethology. MIT Press,
1997.

 3. Brazier, F.M.T., Cornelissen, F., Gustavsson, R., Jonker, C.M., Lindeberg, O., Polak, B., and Treur, J.,
Agents Negotiating for Load Balancing of Electricity Use. In: M.P. Papazoglou, M. Takizawa, B. Krämer,
and S. Chanson (eds.), Proceedings of the 18th International Conference on Distributed Computing
Systems, ICDCS'98, IEEE Computer Society Press, 1998, pp. 622-629.

 4. Brazier, F.M.T., Dunin-Keplicz, B., Jennings, N.R. and Treur, J., Formal specification of Multi-Agent
Systems: a real-world case. In: V. Lesser (Ed.), Proceedings of the First International Conference on Multi-
Agent Systems, ICMAS’95, MIT Press, Cambridge, MA, 1995, pp. 25-32. Extended version in:
International Journal of Cooperative Information Systems, M. Huhns, and M. Singh, (eds.), special issue
on Formal Methods in Cooperative Information Systems: Multi-Agent Systems, vol. 6, 1997, pp. 67-94.

 5. Brazier, F.M.T., Eck, P.A.T. van, and Treur, J., Modelling a society of simple agents: from conceptual
specification to experimentation. In: R. Conte, R. Hegselmann, and P. Terna, (eds.), Simulating Social
Phenomena, Proceedings of the International Conference on Computer Simulation and Social Sciences,

ICCS&SS’97, Lecture Notes in Economics and Mathematical Systems, vol. 456, Springer Verlag, 1997,
pp. 103-107.

 6. Brazier, F.M.T., Jonker, C.M., Jüngen, F.J., and Treur, J., Distributed Scheduling to Support a Call
Centre: a Co-operative Multi-Agent Approach. In: Proceedings of the Third International Conference on
Practical Applications of Agents and Multi-Agent Systems, PAAM’98, The Practical Application
Company Ltd, 1998, pp. 555-576.

 7. Brazier, F.M.T., Jonker, C.M., and Treur, J., Formalisation of a cooperation model based on joint
intentions. In: J.P. Müller, M.J. Wooldridge, N.R. Jennings (eds.), Intelligent Agents III (Proceedings of
the Third International Workshop on Agent Theories, Architectures and Languages, ATAL’96), Lecture
Notes in AI, volume 1193, Springer Verlag, 1997, pp. 141-155.

 8. Brooks, R.A., A robust layered control system for a mobile robot. In: IEEE Journal of Robotics and
Automation, vol. RA-2 (1), 1986, pp. 14-23.

 9. Cornelissen, F., Jonker, C.M., and Treur, J., Compositional verification of knowledge-based systems: a
case study in diagnostic reasoning. In: E. Plaza, R. Benjamins (eds.), Knowledge Acquisition, Modelling
and Management, Proceedings of the 10th European Workshop on Knowledge Acquisition, Modelling and
Management, EKAW’97, Lecture Notes in AI, vol. 1319, Springer Verlag, 1997, pp. 65-80.

10. Dennett, D.C., The Intentional Stance. MIT Press, Cambridge, 1987.
11. Dijkstra, E.W., A discipline of programming. Prentice Hall, 1976.
12. Gibson, J.J., The concept of the stimulus in psychology. In: American Psychology 15, 1960, pp. 694-703.
13. Hunter, W.S., The delayed reaction in animals. Behavioral Monographs, 2, 1912, pp. 1-85.
14. Jonker, C.M., and Treur, J., Compositional Verification of Multi-Agent Systems: a Formal Analysis of

Pro-activeness and Reactiveness. In: W.P. de Roever, A. Pnueli et al. (eds.), Proceedings of the
International Workshop on Compositionality, COMPOS’97, Lecture Notes in Computer Science, vol.
1536, Springer Verlag, 1998.

15. Jonker, C.M., and Treur, J., A Generic Architecture for Broker Agents. In: Proceedings of the Third
International Conference on Practical Applications of Agents and Multi-Agent Systems, PAAM’98, The
Practical Application Company Ltd, 1998, pp. 623-624.

16. Kaelbling, L.P., An archictecture for intelligent reactive systems. In: Allen, J., and J. Hendler, and A. Tate
(eds.), Readings in Planning, Morgan Kaufmann, 1990, pp. 713-728.

17. Maes, P. (ed.), Designing Autonomous Agents: Theory and Practice from Biology to Engineering and
Back. MIT / Elsevier, 1990.

18. Morgan, C.L., An introduction to comparative psychology. London: Scott, 1894.
19. Müller, J. P., The design of intelligent agents: a layered approach. Lecture Notes in Artificial Intelligence,

Vol. 1177, 1996.
20. Pavlov, I.P., Conditioned reflexes. London: Oxford, 1927.
21. Skinner, B.F., The generic nature of the concepts of stimulus and response. Journal of Gen. Psychology

12, 1935, pp. 40-65.
22. Tinklepaugh, O.L., Multiple delayed reaction with chimpanzees and monkeys. Journal of Comparative

Psychology, 13, 1932, pp. 207-243.
23. Vauclair, J., Animal Cognition. Harvard Univerity Press, Cambridge, Massachusetts, 1996.
24. Watson, J.P., Psychology from the standpoint of a behaviourist. Philadelphia: Lippincott, 1919.
25. Wooldridge, M.J., and Jennings, N.R., Intelligent Agents: Theory and practice. In: Knowledge Engineering

Review, 10(2), 1995, pp. 115-152.

APPENDIX A
BEHAVIOUR OF AGENT MODEL A IN SITUATION 3

world state o b s e r v a t i o n
info of A

a c t i o n s
of A

0 screen at p0

cup1 at p1

food at p2

no cup at p2

self at p0

1 screen at p0

cup1 at p1

food at p2

no cup at p2

self at p0

screen at p0

cup1 at p1

food at p2

no cup at p2

self at p0

2 screen at p0

cup1 at p1

food at p2

cup2 at p2

self at p0

screen at p0

cup1 at p1

food at p2

no cup at p2

self at p0

3 screen at p0

cup1 at p1

food at p2

cup2 at p2

self at p0

screen at p0

cup1 at p1

cup2 at p2

self at p0

Trace A 3rd situation: 0

Trace A 3rd situation: 1

Trace A 3rd situation: 2

Trace A 3rd situation: 3

p0

p1

p2

p0

p1

p2

p0

p1

p2

p1

p2

p0

p1

p2

p1

p2

Trace A 3rd situation: 4

p0

p1

p2

p1

p2

world state o b s e r v a t i o n
info of A

a c t i o n s
of A

4 no screen at p0

cup1 at p1

food at p2

cup2 at p2

self at p0

screen at p0

cup1 at p1

cup2 at p2

self at p0

5 no screen at p0

cup1 at p1

food at p2

cup2 at p2

self at p0

no screen at p0

cup1 at p1

cup2 at p2

self at p0

Trace A 3rd situation: 5

p1

p2

p1

p2

p0

p0

p1

p2

p1

p2

Trace A 3rd situation: 6

APPENDIX B
BEHAVIOUR OF AGENT MODEL B IN SITUATION 3

world state beliefs B actions B

0 screen at p0

cup1 at p1

food at p2

no cup at p2

1 screen at p0

cup1 at p1

food at p2

no cup at p2

screen at p0

cup1 at p1

food at p2

no cup at p2

2 screen at p0

cup1 at p1

food at p2

cup2 at p2

screen at p0

cup1 at p1

food at p2

no cup at p2

3 screen at p0

cup1 at p1

food at p2

cup2 at p2

screen at p0

cup1 at p1

food at p2

cup2 at p2

Trace B 3rd situation: 3

Trace B 3rd situation: 0

Trace B 3rd situation: 1

Trace B 3rd situation: 2

p0

p1

p2

p0

p1

p2

p0

p1

p2

p1

p2

p0

p1

p2

p1

p2

Trace B 3rd situation: 4

p0

p1

p2

p1

p2

world state beliefs B actions B

4 no screen at p0

cup1 at p1

food at p2

cup2 at p2

screen at p0

cup1 at p1

food at p2

cup2 at p2

5 no screen at p0

cup1 at p1

food at p2

cup2 at p2

no screen at p0

cup1 at p1

food at p2

cup2 at p2

6 no screen at p0

cup1 at p1

food at p2

cup2 at p2

no screen at p0

cup1 at p1

food at p2

cup2 at p2

go to p2

7 no screen at p0

cup1 at p1

food at p2

cup2 at p2

self at p2

no screen at p0

cup1 at p1

food at p2

cup2 at p2

go to p2

p0

p1

p2

Trace B 3rd situation: 5

p0

p1

p0

p1

p2

p1

p2

p0

p1

p2

p1

p2

p1

p2

p2

Trace B 3rd situation: 6

Trace B 3rd situation: 7

Trace B 3rd situation: 8

APPENDIX C BEHAVIOUR OF AGENT MODEL C IN SITUATION 4

world state beliefs C goals C actions and
observations C

0 screen at p0

cups at p1, p2

food at p2

self at p0

1 no screen at p0

cups at p1, p2

food at p2

self at p0

no screen at p0

cups at p1, p2

self at p0

be fed

find food

go to p1

2 no screen at p0

cups at p1, p2

food at p2

self at p1

no screen at p0

cups at p1, p2

self at p1

be fed

find food

to be observed

 food at p1

3 no screen at p0

cups at p1, p2

food at p2

self at p1

no screen at p0

cups at p1, p2

self at p1

no food at p1

be fed

find food

go to p2

4 no screen at p0

cups at p1, p2

food at p2

self at p2

no screen at p0

cups at p1, p2

self at p2

no food at p1

be fed

find food

to be observed

 food at p2

5 no screen at p0

cups at p1, p2

food at p2

self at p2

no screen at p0

cups at p1, p2

self at p2

no food at p1

food at p2

be fed

get food inside

eat

6 no screen at p0

cups at p1, p2

no food at p2

self at p2

no screen at p0

cups at p1, p2

self at p2

no food at p1

no food at p2

be fed

find food

APPENDIX D BEHAVIOUR OF AGENT MODEL D IN SITUATION 4

world state beliefs D goals D actions and

observations D

0 screen at p0

cups at p1, p2

food at p2

higher competitor at p2

self at p0

1 no screen at p0

cups at p1, p2

food at p2

higher competitor at p2

self at p0

no screen at p0

cups at p1, p2

self at p0

higher competitor at p2

be fed

find food

go to p1

2 no screen at p0

cups at p1, p2

food at p2

higher competitor at p2

self at p1

no screen at p0

cups at p1, p2

self at p1

higher competitor at p2

be fed

find food

to be observed

 food at p1

3 no screen at p0

cups at p1, p2

food at p2

higher competitor at p2

self at p1

no screen at p0

cups at p1, p2

self at p1

no food at p1

higher competitor at p2

be fed

find food

4 no screen at p0

cups at p1, p2

food at p2

no higher competitor at p2

self at p2

no screen at p0

cups at p1, p2

self at p1

no food at p1

no higher competitor at p2

be fed

find food

go to p2

5 no screen at p0

cups at p1, p2

food at p2

no higher competitor at p2

self at p2

no screen at p0

cups at p1, p2

self at p2

no food at p1

no higher competitor at p2

be fed

find food

to be observed

 food at p2

6 no screen at p0

cups at p1, p2

food at p2

no higher competitor at p2

self at p2

no screen at p0

cups at p1, p2

self at p2

no food at p1

food at p2

no higher competitor at p2

be fed

get food inside

eat

7 no screen at p0

cups at p1, p2

no food at p2

no higher competitor at p2

self at p2

no screen at p0

cups at p1, p2

self at p2

no food at p1

no food at p2

no higher competitor at p2

be fed

find food

APPENDIX E BEHAVIOUR OF AGENT MODEL E IN SITUATION 4

world state beliefs E experience E goals E actions and

observations E

0 cups at p1, p2, p3

green at p1

blue at p2

red at p3

food at p2

self at p0

food relevance:

 red-green-blue

be fed

find food

1 cups at p1, p2, p3

green at p1

blue at p2

red at p3

food at p2

self at p0

cups at p1, p2, p3

green at p1

blue at p2

red at p3

self at p0

food relevance:

 red-green-blue

be fed

find food

relevancy of actions:

 go to p3

 go to p1

 go to p2

selected:

 go to p1

2 cups at p1, p2, p3

green at p1

blue at p2

red at p3

food at p2

self at p1

cups at p1, p2, p3

green at p1

blue at p2

red at p3

self at p1

food relevance:

 red-green-blue

be fed

find food

to be observed

 food at p1

3 cups at p1, p2, p3

green at p1

blue at p2

red at p3

food at p2

self at p1

cups at p1, p2, p3

green at p1

blue at p2

red at p3

self at p1

no food at p1

food relevance:

 red-blue-green

be fed

find food

relevancy of actions:

 go to p3

 go to p2

selected:

 go to p2

4 cups at p1, p2, p3

green at p1

blue at p2

red at p3

food at p2

self at p2

cups at p1, p2, p3

green at p1

blue at p2

red at p3

self at p2

no food at p3

food relevance:

 red-blue-green

be fed

find food

to be observed

 food at p2

5 cups at p1, p2, p3

green at p1

blue at p2

red at p3

food at p2

self at p2

cups at p1, p2, p3

green at p1

blue at p2

red at p3

self at p2

no food at p1

food at p2

food relevance:

 blue-red-green

be fed

get food inside

relevancy of actions:

 eat

selected:

 eat

6 cups at p1, p2, p3

green at p1

blue at p2

red at p3

no food at p2

self at p2

cups at p1, p2, p3

green at p1

blue at p2

red at p3

self at p2

no food at p1, p2

food relevance:

 blue-red-green

be fed

find food

relevancy of actions:

 go to p3

selected:

 go to p3

