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Abstract
We present an agent-based simulation model developed to study how size, complexity and effort 

relate  to  each  other  in  the  development  of  open  source  software  (OSS).  In  the  model,  many 
developer agents generate, extend, and refactor code modules independently and in parallel. This 
accords with empirical observations of OSS development. To our knowledge, this is the first model 
of  OSS  evolution  that  includes  the  complexity  of  software  modules  as  a  limiting  factor  in 
productivity, the fitness of the software to its requirements, and the motivation of developers. 

Validation of the model was done by comparing the simulated results against four measures of 
software evolution (system size, proportion of highly complex modules, level of complexity control 
work, and distribution of changes) for four large OSS systems. The simulated results resembled the 
observed data,  except for system size:  three of the OSS systems showed alternating patterns of 
superlinear and sublinear growth while the simulations only produced superlinear growth. However, 
the fidelity of the model for the other measures suggests that developer motivation and the limiting 
effect of complexity on productivity have a significant effect on the development of OSS systems 
and should be considered in any models of OSS development. 

Keywords: simulation  models,  software  process,  open  source  software,  software  evolution, 
productivity, metrics, Agent-based simulation.

1. Introduction
The application of  simulation models to software processes includes the support of decisions 

about resources and the impact of process improvements, such as the introduction of inspections. 
Simulation modelling can also help in evaluating possible explanations for empirical observations. 
The vast majority of real world software applications are evolved from existing versions, not created 
from  scratch,  and  a  large  amount  of  effort  go  into  evolution,  not  into  initial  development 
(Sommerville 2001). There is now a body of knowledge about software evolution (e.g. Lehman & 
Belady 1985, Rajlich & Bennett 2000, Aoyama 2002, Madhavji et al. 2006) based on observations 
and on a variety of software process models (e.g. Lehman et al. 2002, Smith et al. 2005). In spite of 
the advances over the years, the management of software evolution is one of the most challenging 
software  engineering  problems.  In  order  to  make  progress  in  this  area,  we  are  interested  in 
understanding the drivers of software evolution, as a basis to the generation of theories of software 
evolution. 

This  is  an  important  topic  since  software  engineering  lacks  an  empirically  validated  theory 
(Lehman 2000a). Even though this could be seen as a topic of interest to academics only, it can have 
a  practical  and useful  output  in  terms of  guidance and justification for  good practice (Lehman 
2000b). Guidance to good practice is one of the roles of theory in other engineering disciplines. For 
example, one can use electromagnetic field theory to reduce electromagnetic interference between 
nearby cables. In a similar way, one could consider Brooks’s law (Brooks 1995) that “adding people 
to a late project make it later” to derive guidelines for managing a late project. Similarly, Lehman’s 
first law of software evolution, “Continual Change” (Lehman 1974), can justify the introduction of 
configuration and change management in the software process (Lehman 2000b). Due to the human 
involvement at all levels in the software process we expect that the theories related to the software 
process  will  be  more  qualitative  than  the  quantitative  theories  typical  of  physical  systems.  If 
software processes are subject to general influences that can be modelled and captured in theories, 
then process simulation modelling will play a role in evaluating the empirical support for them. The 
investigation of  such theories  should include not  only the study of  empirical  data  in  search of 



patterns,  but  also  the  investigation  of  ways  of  abstracting  and  representing  any  behavioural 
regularities found, and of the limits of such theories. For example, we would like to know whether 
theories are able to explain and predict break points in otherwise apparently regular evolution.

This  paper  reports  our  attempts  to  replicate  empirical  observations  of  size,  complexity, 
refactoring work and distribution of changes of a set of open source software (OSS) systems. The 
free availability of empirical data makes OSS an attractive topic for investigation. OSS development 
projects are very modular:  multiple developers work in parallel  on different parts of a software 
system  with  less  influence  from a formal  plan  than  in  proprietary software  development.  This 
suggests that an agent based model of the software development process would be appropriate.  The 
use of such a model was proposed some 10 years ago (Lehman & Stenning 1996). However, to our 
knowledge, the model presented here is the first model of open source evolution that includes three 
significant factors: the complexity of the software modules as a limiting factor in productivity; the 
fitness of the software to the requirements; and the motivation of developers. This is an advance 
over the work of other researchers (Madey et al. 2002, Robles et al.. 2005). These OSS simulations 
have  dealt  with  mainly two  dimensions  (system size  and  number  of  developers)  and  how  an 
increased number of developers produces more output (lines of code and source files).

The structure of this paper is as follows: Section 2 provides the motivation for this research. 
Section 3 introduces our agents-based model for simulating an OSS environment, the assumptions 
on which it is based, and the hypotheses of our research. Section 4 describes the empirical data and 
the system from which it is derived. Section 5 compares the simulation output with the empirical 
data. Section 6 describes related work in simulation of OSS software evolution. Section 7 concludes 
the paper and indicates topics for further work.

2. Motivation and Background
Many simulations of software development are based on the traditional approach to modelling 

complex systems. The system's behaviour is abstracted into a set of differential equations which 
define the structure of the causal links between the state variables in the model (Iwasaki & Simon 
1986); this describes the mechanisms that are believed to operate in the referent system. The set of 
equations is solved to produce a behaviour, which is compared to the empirical data. This approach 
has produced results in the study of traditional software development (e.g. Abdel-Hamid & Madnick 
1991)  and has  produced predictions  such as the diminishing growth rate  implied by Lehman’s 
second law of  increasing  complexity (Lehman 1974)  and  observed  in  a  number  of  proprietary 
software systems (Turski 1996, FEAST 2001, Turski 2002). In our previous work we explored the 
use  of  qualitative  simulation  to  bridge  the  gap  between  high  level  (qualitative)  theories  and 
empirical data (Ramil & Smith 2002, Smith et al. 2005). 

Computing is a rapidly evolving disciplineand there is a need to compare the theories to new 
emergent forms of software development, such as the OSS domain. This presents some challenges. 
Many OSS systems do  not  show the  types  of  evolutionary behaviour  seen  in  the  evolution  of 
traditional software (Godfrey & Tu 2002, Herraiz 2005). About one-third of OSS systems grow at 
super-linear rates (seemingly contradicting Lehman's second and fifth laws) (Herraiz 2005). In OSS, 
the inclusion of more contributors leads to more growth (also contradicting both Lehman’s second 
and fifth laws and Brooks's law). 

This different behaviour may be due to the different architectural structure of OSS development: 
our hypothesis is that OSS development behaves differently because OSS systems are more modular 
than proprietary software. We believe that the distributed nature of OSS applies not only to the 
software itself but also at the community evolving it (also following Brooks's observation that the 
architecture of a system reflects the structure of the organisation evolving it (Brooks 1995)).  OSS 
evolution involves a community of individuals providing their work mainly on a voluntary basis and 
without a strong centralised leadership (Raymond 2001, Scacchi 2006). This invalidates one of the 
assumptions of our previous simulation models: the existence of a centralised management control 
which will react against excessive complexity by assigning developers to complexity control work 
(Smith et al. 2005). 

We propose that, while each module within an OSS system may be monolithic, and will behave 
in the manner described by Lehman, Belady and Brooks, the overall  modular and decentralised 



architecture of the software and of the community evolving it will restrict the impact of software 
growth stagnation to small parts of the system where they will not have a significant effect on the 
evolution of the whole. To investigate this hypothesis, we have developed an agent-based model 
(Rocha 2003) that captures the  decentralised and modular nature of OSS development.  The next 
section describes the details of the model and section 5 shows the simulation results generated by it. 

3. Agent-based Simulation Model
Our simulation model  is  based on the  Lehman’s  laws of  software  evolution (Lehman 1974, 

Lehman & Belady 1985, Lehman 2000b), our own experience observing OSS development, as well 
as on the models developed by other researchers (Antoniades et al. 2005, Robles et al. 2005, Madey 
et al. 2002). However, to our knowledge, the model presented here is the first agent-based model of 
open source evolution that includes the complexity of the software modules as a limiting factor in 
productivity, the fitness of the software to the requirements, and the motivation of developers. We 
believe that these are important factors that need to be studied.

Our motivation for developing this model lies in our understanding of the actions of individual 
OSS developers (Mockus et al. 2002, Raymond 2001). OSS development is inherently decentralised 
and  non-coercive:  developers  choose  to  become involved  in  an  OSS  project  and  choose  what 
aspects of the project to work on. They generally have pride in their work and take pains to ensure 
that it is easily maintainable.

We used the NetLogo (2005) multi-agent simulation tool to develop our model. We selected 
NetLogo primarily because it is freely available on the web and well documented and supported. In 
this tool, agents move around a virtual world, interacting with it and with other agents. There is no 
centralised control or co-ordination of the agents' actions. Agents are responsible to maintaining 
their own state. The NetLogo virtual world consists of a grid of “patches”, each of which can have a 
state.  Generally,  agents  have  only local  knowledge  about  their  surroundings.  Both  agents  and 
patches are active agents in the simulation, performing actions and asking other agents to perform 
other actions. Simulation proceeds by each agent and patch repeating its behaviour independently, 
often  by following  stochastic  functions  influenced  by the  agent's  state  and  local  environment. 
Agents perform their own actions asynchronously and as rapidly as they can. In an agent-based 
simulation,  the  overall  behaviour  of  the  system  is  an  emergent  property  of  the  individual, 
independent  interactions  of  the  agents.  This  approach  differs  from  the  traditional  modelling 
approach where the state of the system is captured in a single set of global state variables, such as 
stocks and flows. 

In our  model,  patches  represent  modules of  software  source  code  and agents  represent  both 
developers and unfulfilled  requirements. Figure 1 shows a class diagram that illustrates the main 
concepts of developers interacting in the system by creating, modifying, and refactoring modules. 
The level of abstraction of the model is not determined a priori: a module could represent a single 
procedure, a file, a library, or some other modular part of a software system. Each module records 
both its fitness for purpose (gauged against a set of external requirements) and its complexity. The 
complexity of a module acts as an inhibitor to changes to that module. To model the changes in 
external  requirements  and invalidation  of  assumptions  that  are  a  driving force  behind software 
evolution, patches have a stochastic process for modelling their decrease in fitness.  Modules also 
have  a  random  chance  to  spawn  a  new  requirement  in  a  neighbouring,  empty  patch.  Finally, 
modules have a chance to capture the attention of a developer passing through cyberspace, and so 
“create” a new developer agent in the model; this only happens is the module is interesting (i.e. its 
fitness is below the developer boredom threshold; see below). In the model, each patch repeatedly 
exhibits these behaviours, checking if it should generate a new requirement, decrease in fitness, or 
capture the attention of a new developer agent. These behaviours are shown in Figure 2.

<<Figure 1 approx here>>
In the model, software developers are represented by agents. These agents walk randomly around 

the software system, changing the code as they go. Agents have four behaviours, depending on their 
location.  As  with  patches,  each  developer  repeatedly and  asynchronously cycles  through  these 
behaviours, following the pseudocode in Figure 2.



1. If  a  developer  is  on  an  unfulfilled  requirement,  it  creates  a  new  module that  fulfils  that 
requirement, with a certain (low) fitness and complexity. 

2. If a developer is on a module with high complexity and high fitness, it may attempt to refactor 
that module. Refactoring leaves the module's fitness unchanged, but reduces its complexity by a 
random amount. 

3. If the developer is on a module that it is not refactoring, it will attempt to  develop the module; 
this increases both the module's fitness and complexity by a random amount. It will also slightly 
reduce the fitness of adjacent modules, due to coupling between them. However, if the module is 
complex, the agent may not be able to improve the module, in which case the module is left 
unchanged. 

4. Finally, developers have a motivation factor (we call this boredom threshold in the model). If the 
fitness of the module they are on is above this threshold, there is a chance that the developer will 
find the project boring and leave. Developers may also leave if they move outside the system.

<<Figure 1 approx here>>
Simulation  starts with a single module.  This  both spawns new requirements and attracts  the 

attention of developers. The developers will create modules to fulfil the requirements and therefore 
enlarge the project. As the project grows, more developers are attracted and more requirements are 
identified.  The  code  of  the  full  NetLogo  model  is  freely  available  from 
http://mcs.open.ac.uk/ac5468/simulation/.

4. Empirical Data
To validate the model, we compared the simulated output to empirically observed behaviour. The 

empirical data was derived from data in OSS repositories. Previous research has shown that data 
such as change-log records, program headers and configuration management offer a rich source to 
derive data for the study of software evolution (Capiluppi 2003, Capiluppi et al. 2004a,b, Mens et 
al. 2004, Fischer et al. 2003, RELEASE 2005). For this study, we selected four OSS systems which 
we have examined in previous studies (Capiluppi et al. 2004a,b). Table 1 indicates the data sources 
we used to extract the empirical data used in this research.

<<Table 1 approx here>>
We extracted several attributes for each software system, taking measurements over releases for 

size in number of files,  files handled (Lehman & Belady 1985),  average complexity (measured 
using the McCabe index (McCabe 1976)), and the level of complexity control work (measured as 
the  proportion  of  files/functions  which  were  subject  to  a  decrease  in  their  complexity  in  two 
contiguous releases).  The data collection was aimed at measuring the systems' size, complexity, 
amount  of  anti-regressive  work,  and  distribution  of  touches:  the  purpose  of  this  work  is  to 
characterise an OSS environment in order to compare it against the simulated results obtained from 
the model described above.
 Measurement of size of the system:   size was evaluated using number of source functions (as a 

surrogate for the systems' growth). When release data was available, the code base and its size at 
each release were evaluated using our tools. We believe that an approach based on measuring 
size of the released source code more genuinely displays the overall evolution of the system than 
measuring the size of the whole repository. Releases contain those parts of code that were chosen 
to be included in what is normally called a stable configuration. We prefer releases for the study 
of size of code contained onto the whole CVS server, because they represent stable points. The 
right-most column in Table 1 indicates the number of releases studied. The evaluation of the size 
achieved is displayed in a joint visualisation in Figure 3a for all the projects: the X axis indicates 
the time of each release, while the Y axis indicates the size achieved. Measures are relative to the 
maximum values  of  both metrics,  in  order  to  allow the comparison of  systems with largely 
different values in size achieved. As can be seen, only one case (Wine) exhibited a monotonically 
increasing trend; in the other systems at least one period of stagnation was observed between two 
periods of growth. Figure 3b shows one of the cases with a discontinuous pattern of growth 
(Gaim system).

<<Figure 3a and 3b approx here>>

http://mcs.open.ac.uk/ac5468/simulation/


 Measurement of   complexity:   We looked at complexity at the level of granularity of functions. 
Within  this  level  we  consider  the  McCabe  cyclomatic  number  as  a  measure  of  complexity 
(McCabe 1976). Next, we define the highly complex subpart of the system as the set of highly 
complex functions. We use the accepted threshold value for the McCabe index of 15 in order to 
distinguish between less complex functions and more complex ones (McCabe & Butler 1989). 
One of the proposed systems had already been evaluated (Capiluppi et al. 2005) for the purpose 
of tracking the amount of highly complex functions: a similar approach has been used for the 
other systems in this  case study.  This  is  shown through a boxplot  [Box 1978]  visualisation, 
which displays the variation of the dataset (i.e. the percentage of the highly complex elements in 
a specific system) along the number of its releases.  Figure 4a shows that, in all the analysed 
systems, the highly complex subpart is never larger than 10% of the overall system. Figure 4b 
shows the overall trend of highly complex functions for two Gaim and Mplayer.

<<Figure 4a and 4b approx here>>
 Measurement  of  the  level  of  complexity  control  work:   An  adequate  level  of  complexity 

control (also termed anti-regressive work Lehman 1974; Lehman & Belady 1985)) is  widely 
recognized as an essential countermeasure to software aging (Parnas 1994), and to sustain the 
evolution of software (Ratzinger & Gall 2005). We measured the level of complexity control 
work by comparing every function between two consecutive releases and by counting how many 
of them experienced a reduction in their cyclomatic complexity. From a quantitative analysis, our 
results illustrate that there is a correlation between the trend of the size growth and the amount of 
complexity control work: Figure 5a, 5b, 5c and 5d show the trends for the studied systems.

<<Figure 5a, 5b, 5c and 5d approx here>>
 Distribution of changes:   We term the number of different releases during which a file has been 

manipulated, via addition, removal, or modification of code as the release touches of that file. A 
single release touches indicates that the file has  never been modified after its  creation.  The 
maximum  possible  number  of  release  touches  for  a  file  is  the  number  of  releases.  The 
quantitative observation we drew from the chosen case studies, when analysing the distribution 
of release touches, resembled those already achieved (Capiluppi  et al. 2005): a small subset of 
elements (files or functions/methods/classes) is touched a large number of times by developers, 
whilst most of the elements receive few (if not none) touches (Figure 6). This behaviour can be 
summarised  by  visualising,  per  each  system,  its  release-touches  profile,  or  by  giving  the 
skewness of the distribution. The higher the skewness, the more asymmetric the distribution of 
the release touches in a system.

<<Figure 6 and Table 2 approx here>>

5. Results and validation
We used the empirical data describe above to calibrate and validate our model. We did this by 

exploring the parameter space of the models, looking at the generated output, and comparing it to 
the empirical evidence from the four case studies. The comparison was done by examining four 
groups of attributes: growth, complexity complexity control work, and distribution of touches.

We exhaustively explored the parameter space of the model by determining a range of possible 
values  for  each  of  the  nine  controlling  parameters  in  the  model.  This  resulted  in  256 distinct 
combinations of parameter values. The model was run for each of these parameter combinations and 
the results logged.

The  model  seemed  most  sensitive  to  the  value  of  the  boredom threshold  parameter,  which 
controls when new developers join and leave the project (if a module's fitness is below the boredom 
threshold, it may attract new developers; if the fitness is above the boredom threshold, developers 
on that module may leave the project). If the boredom threshold of developers was set very high, 
developers did not leave the project when they encountered high-fitness modules. As these modules 
continued to attract new developers, the number of developers grew extremely rapidly and soon 
swamped the development environment. In contrast, if the boredom threshold was very low, the 
evolution of the first few modules resulted in a system that was sufficiently fit for purpose that no 
new developers were attracted; the original developers soon left the project and were not replaced. 



Neither  of  these  behaviours  is  at  all  similar  to  the  empirical  data,  so  the  results  from  these 
simulation runs were discarded.

The simulation results were also strongly affected by the effectiveness of the refactoring work 
done  by developers.  When  refactoring  was  ineffectual  or  not  attempted,  the  both  the  average 
complexity of the system and the proportion of the highly complex subpart grew over time. This in 
turn led to an unusual behaviour for the average fitness of the system: it peaked in the early stages of 
development and gradually declined thereafter. This was due to the large number of 'old' modules 
that had suffered bitrot (so they became unfit for purpose) but could not be improved due to their 
complexity. This also led to the anomalous situation of these modules attracting many functionally 
ineffectual developers. 

The rest of the runs yielded very similar behaviours (up to linear scalings of the various results): 
the system size grew super-linearly, the proportion of complex modules remained constant and low, 
the portion of work assigned to complexity control increased over time, and the distribution of 
touches was very skewed.
 Growth  patterns  :  Figure  3  shows  the  empirical  growth  patterns.  Figure  7a  shows  that  the 

simulation model is able to reproduce the continuous growth pattern seen in Wine. The second 
pattern (discontinuous growth) is not directly reproduced by the model, but it can be generated by 
varying  the  controlling  parameters  during  simulation,  such  as  adjusting  the  chance  of  new 
developers appearing (thus changing the number of developers) or changing the threshold that 
determines  when a  module adequately meets  its  requirements  (similar  to  the  idea of  S-type 
programs defined by Lehman & Belady (1985)). In the further work section we highlight an 
extension of the model for capturing the discontinuous trends, based on the fulfilment of the 
initial requirements.

<<Figure 7a approx here>>
 Complexity patterns:   As shown in Figure 4, all of the four systems studied present a similar trend 

when analysing the percentage of highly complex functions. The simulated data is similar to 
them  (Figure  7b),  as  long  as  new  modules  have  an  initial  complexity  below  the  reporting 
threshold.  Both  complex  and  non-complex  modules  attract  developers  who  perform  some 
refactoring work and hence keep the average complexity constant. This is very similar to the 
empirical observations.

<<Figure 7b approx here>>
 Complexity  control  :  in  the  four  systems  studied  the  empirical  observations  show  that  the 

cumulative amount of complexity control (also termed refactoring) work, that is, the work aimed 
at decreasing the complexity of a software system, increases slowly but then closely follows the 
growth trend. That is, the complexity control rate meets and even exceeds the functional growth 
rate. As visible in Figure 8a, the simulation model is able to reproduce this pattern. Refactoring 
work is taking an increase amount of work but this is sustained because in OSS the effort comes 
from an unbounded pool of developers.

<<Figure 8a approx here>>
 Release Touches  : as shown in the empirical observations (Figure 6), the studied software systems 

show a long-tailed distributions of release touches. The model is able to simulate this aspect. 
Albeit  a  qualitative  resemblance  is  obtained,  the  skewness  factor  is  not  very  large,  as  we 
observed a value of 0.81 for the simulated output.  The highly skewed profile is reproduced by 
our simulation engine, as visible in Figure 8b.

<<Figure 8b approx here>>

6. Related Work
The study of evolutionary trends in software evolution has been the focus of several quantitative 

simulation models using system dynamics (e.g., Lehman  et al. 2002). This modelling effort has 
been inspired by observations of proprietary software. The OSS domain was originally studied using 
direct  visualization  of  trends  based  on  quantitative  metric  data  extracted  from  OSS  system 
(Capiluppi et al. 2004). A important study by Godfrey & Tu (2001) highlighted differences between 
the  evolution  of  Linux  (a  popular  OSS  operating  system)  and  previously  studied  systems, 



particularly its apparently super-linear growth. Our model provides a possible explanation for such a 
super-linear growth.

Research efforts  specifically involving simulation  of  some aspects  of  OSS development  and 
evolution  have  taken  place  and  this  area  of  research  is  becoming very popular,  driven  by the 
availability of OSS data. Examples include Madey et al. (2002), who used the existing SWARM 
agent-based  simulation  tools,  and  Dalle  & David  (2004),  who  built  their  own agent  platform, 
SimCode. A dynamic simulation of OSS processes is also described by Antoniades  et al. (2005), 
where  empirically  observed  patterns  of  size  growth  and  developers  joining  the  project  are 
reproduced by a simulation. Robles et al. (2005) propose a biologically-inspired simulation, where 
developers learn from other developers through observing changes in the source code, rather than 
explicitly communicating with each other. This type of model has been used to investigate questions 
related to the amount of effort allocated to OSS projects and whether a significant attraction of new 
developers can be achieved in  the evolution of  the project.  Their  research shares  our focus on 
product characteristics (e.g. size and complexity) and on evolution. However, to our knowledge, the 
model presented here is the first model of open source evolution that includes the complexity of the 
software modules as a limiting factor in productivity, the fitness of the software to the requirements, 
and the motivation of developers.

7. Conclusions and Further Work
This  paper  presented an agent-based simulation  model  of  OSS evolution.  Our model,  while 

simple,  incorporates  many of  the  features  that  may explain  the  differences  between  OSS  and 
proprietary development (Godfrey & Tu 2001, Herraiz 2005). We found that the model was able to 
replicate the observed patterns in three of the four areas examined (complexity, complexity control, 
distribution of changes) in the four systems studied. In one area, system growth, the model was only 
able to replicate the continuous superlinear growth pattern seen in one of the four systems studied. 
Discontinuous behaviour can be artificially generated by changing parameters during a simulation. 
However, this is not satisfying as an explanation and more work is needed. Having said that,  the 
model presented here appears to provide an explanation for the unbounded growth trends (Godfrey 
&  Tu  2001,  Herraiz  2005)  observed  in  some  OSS  software.  By  itself,  this  is  an  important 
contribution.

We included three novel factors in our model: the complexity of software modules as a limiting 
factor  in  productivity,  the  fitness  of  the  software  to  its  requirements,  and  the  motivation  of 
developers. All three of these factors are required for the model to produce plausible results. If the 
fitness of modules and the interests of developers are misaligned, the model quickly deviates from 
empirical observations. If the modules created are perfectly fit for purpose, developers have little to 
do and leave the project, resulting in a moribund project. If the developers never leave the project, 
no matter how fit for purpose existing modules are, the number of developers grows excessively 
large.  The  'desire'  of  developers  in  the  model  to  refactor  complex  code,  which  reduces  the 
complexity of that module and hence the system overall, leads to the highly complex subpart of the 
model  to  remain  at  a  constant  and  low  level,  in  accordance  with  the  empirical  observations. 
Experiments  where this  refactoring behaviour  was prevented led to situations  where the highly 
complex subpart grew much faster than the overall size of the system and the average fitness of the 
system  decreased  over  time.  This  indicates  that  refactoring  is  a  significant  activity  in  OSS 
development that allows the system to remain fit for purpose and able to continuously grow. These 
results  indicate  that  all  of  the  novel  factors  introduced  in  this  model  are  required  for  faithful 
simulations of OSS evolution. 

The work reported in this paper, particularly the problem in simulating discontinuous trends, has 
lead to the view that a better model may be developed by modelling the actions of core developers. 
Observations of some OSS projects indicate that they are led by core developers who perform most 
of the changes in the software while others make a much smaller number of contributions (Mockus 
et al. 2002). This suggests that we need to include mechanisms in the model which reflect the role 
of  core  developers  in  influencing  the  evolution  of  some  OSS  systems.  An  alternative  way of 
explaining the discontinuous trends of size growth could be to make the distribution of requirements 
less  even,  with  clusters  of  requirements  representing  new  functional  areas  for  the  project  to 



incorporate.  This  would  generate  rapid  growth while  a new area is  explored followed by slow 
growth then those requirements are fulfilled.
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