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,e most common travel demand model type is the trip-based model, despite major shortcomings due to its aggregate nature.
Activity-based models overcome many of the limitations of the trip-based model, but implementing and calibrating an activity-
basedmodel is labor-intensive and running an activity-basedmodel often takes long runtimes.,is paper proposes a hybrid called
MITO (Microsimulation Transport Orchestrator) that overcomes some of the limitations of trip-based models, yet is easier to
implement than an activity-based model. MITO uses microsimulation to simulate each household and person individually. After
trip generation, the travel time budget in minutes is calculated for every household.,is budget influences destination choice; i.e.,
people who spent a lot of time commuting are less likely to do much other travel, while people who telecommute might
compensate by additional discretionary travel. Mode choice uses a nested logit model, and time-of-day choice schedules trips in 1-
minute intervals. ,ree case studies demonstrate how individuals may be traced through the entire model system from trip
generation to the assignment.

1. Introduction

,e most common travel demand modeling approach is the
trip-based model, sometimes called the four-step model,
which is essentially based on the concept proposed by
Manheim [1]. But the conventional trip-based model has
significant limitations, such as static definition of travel
market segments across all modeling steps, independent
trips that ignore activity schedules over the entire day, lack of
intrahousehold coordination, or coarse representation of
time of day. Activity-based models [2] were introduced in
the 1970s to model travel behavior explicitly, overcoming
many of these limitations of the trip-based model. However,
it took two decades before activity-basedmodels leaped from
academia into application [3]. Even today, the vast majority
of transport agencies continues to use trip-based models,
despite their well-known shortcomings.

Major challenges to move from a trip-based model to an
activity-based model include longer model runtimes, more

sophisticated hardware requirements, larger efforts to cali-
brate the model, lack of experience with activity-based
models, and lack of established software packages, among
others. ,ere is a need of methodology that overcomes some
of the limitations of the trip-based model mentioned above.
At the same time, models need to be agile enough to be
prepared to analyze a large range of scenarios (including
unanticipated scenarios) and fast enough to allow for
multiple model runs (particularly if stochastic variation
leads to nondeterministic model results).

In this paper, a microsimulation model is presented that
creates travel demand for individual synthetic households
and persons. ,e agent-based design makes the model very
flexible. Every module may use a different set of households
or person attributes. While household size is important in
trip generation, it is irrelevant in destination choice.
Microsimulation also allows adding attributes. For example,
if three different levels of transit pass ownership (such as no
pass, daily pass, and monthly pass) shall be distinguished,
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this attribute can be added to the synthetic population and
be used by those modules where transit pass ownership
might be relevant (such as mode choice). In the traditional
four-step model, the market segmentation would be tripled
by adding transit pass ownership, which would seriously
affect runtime, calibration, and memory requirements. ,e
agent-based approach also allows tracing of individual
travelers. If travel demand is simulated for individuals, it
would be trivial to identify travel demand of, for example,
five-person households with 2 cars, no transit pass, and low
income. Such a detailed analysis is possible with an activity-
based model but almost impossible in traditional trip-based
models.

,e methodology described here microsimulates travel
demand but simplifies the construction of activity schedules.
To compensate for this shortcoming, travel time budgets are
modeled explicitly for every household. ,ereby, longer
work trips will, in tendency, reduce discretionary travel, and
vice versa.

,e paper reviews the state of the art in microscopic
travel demand modeling in Section 2, followed by a detailed
description of the proposed methodology in Section 3.
Section 4 provides a case study application, and the paper
provides some conclusions in Section 5.

2. State of the Art

By far, the most common approach for travel demand
modeling is the aggregate trip-based model, first applied for
Chicago in 1955 [4]. ,e form of this model used nowadays
is largely based on the framework proposed byManheim [1].
Even though the fifth-step time-of-day choice was added
later [5], the term “four-step model” was kept due to its
popularity. ,e terms four-step, five-step, and trip-based
models are used synonymously today. McNally [6] provided
a comprehensive overview of the individual steps of the trip-
based model.

,e limitations of the trip-based model were identified
early by Horowitz [7]. While this modeling approach
showed practical usefulness to model transportation sys-
tems, it onlymodels the result (travel) but not themotivation
(activities at different places). Activity-based models, in
contrast, model activities for which travel needs to occur
[8, 9]. As such, the motivation for travel is modeled rather
than the traveling itself.

Adler and Ben-Akiva [2] introduced the concept of
modeling activities throughout an entire day (travel pattern),
where several purposes (sojourn) may be combined on one
tour and each travel segment between activities is called a
trip. ,ey also pointed out the necessity to model joint
activities of household members of the same household and
provided econometric solutions to estimate activity patterns
from a household travel survey. Damm and Lerman [10]
expanded the approach by modeling discretionary activities
around the work activity, recognizing that much of the daily
activity pattern is driven by the need to be at work. Kitamura
[11] further refined the simulation on nonwork activities and
provided estimation guidelines that strictly followed utility
maximization theories.

Bhat and Koppelman [12] point out that trip chaining,
such as going from home to work to shopping to home (H-
W-S-H), is a major limitation of the trip-based model. It
represents this trip chain as one home-based work trip (H-
W-H) and one non-home-based other trip (Other-Other).
Schultz and Allen [13] estimated that non-home-based trips
account for 25 to 30 percent of all trips. In trip-basedmodels,
home-based and non-home-based trips are handled inde-
pendently. A change of the home-based trip (such as a delay
due to congestion) does not affect the non-home-based trip
in a trip-based model.

Applications of activity-based models remained mostly
academic through the end of the 20th century. An exception
is the Portland Metro model that was briefly used in 1998
and later abandoned [14]. Limitations in data and lack of
confidence in this new modeling paradigm prevented
widespread use [15]. A breakthrough in the application of
microsimulation for modeling activities was provided by
Kitamura et al. [16]. For the first time, it was possible to
estimate (relatively simple) models that generate travel
demand at the microscopic level.

,e San Francisco County Model followed the design of
the Portland Oregon Model and became operational in 2001
[3] and shortly thereafter followed New York City and
Columbus, Ohio, using the CT-RAMP model design [17].
Several model developments in academia are worth men-
tioning as well.,e ALBATROSSmodel was developed as an
activity-based framework to model travel demand [18].
TASHA was developed by Miller and Roorda [19] for the
Greater Toronto Area. ,e CEMDAP model was developed
by Bhat et al. [20] for Dallas/Fort-Worth Area in Texas.
mobiTopp [21] was developed by the Karlsruhe Institute of
Technology and is currently applied to the Stuttgart met-
ropolitan area. mobiTopp simulates activities over the course
of an entire week, which allows for a more reasonable
scheduling of occasional activities, such as shopping or going
out to eat. ,is weekly simulation of activities was later
enhanced by Arentze and Timmermans [22] with the explicit
negotiation of activities among household members.

A hybrid model has been developed by Bernardin and
Conger [23]. Auto-ownership, tour generation, and tour
mode choice were built as disaggregate models, while the
remaining tour stops and departure times were modeled in
an aggregate model. ,e hybrid approach reduces the
computational burden at least by a factor of six [23].

,us far, there have been few studies that explicitly
compare the trip-basedmodel with the activity-basedmodel.
At a theoretical level, Rasouli and Timmermans [24] ana-
lyzed four commonly cited limitations of the trip-based
model (including (1) insufficient spatial and temporal res-
olution, (2) lack of behavioral foundation, (3) lack of in-
tegration in model estimations, and (4) interdependency of
trip generation, destination choice, mode choice, and route
choice) and concluded that the activity-based model has
only partly overcome these shortcomings. Erhardt et al. [25]
compared the trip-based model with the activity-based
model for the San Francisco Bay Area and found that both
models perform similarly, but the activity-based model
offers additional scenario capabilities. Lemp and McWethy

2 Journal of Advanced Transportation



et al. [26] implemented a trip-based model and an activity-
based model for Austin, Texas. ,ey point out that the
activity-based model is more difficult to calibrate and the
creation of a synthetic population may be time consuming.
On the other hand, they commended the enhanced scenario
capabilities of activity-based models.

A comprehensive analysis of benefits and limitations of
activity-based models is given in the NCHRP Synthesis
Report 406 [27].,ey conclude that the activity-basedmodel
needs to validate at least as well as the trip-basedmodel.,ey
further argue that agencies that make use of the added
scenario capabilities of activity-based models should up-
grade to this model type. At the same time, however, they
discourage agencies tomove to an activity-basedmodel if the
added scenario capabilities are not exploited, as the trip-
based model may work reasonably well for many simpler
scenario analyses.

Challenges with model calibration and runtime are often
cited as major concerns for using a full scale activity-based
model [26, 28]. For many applications, the scenario capa-
bilities are not utilized, and a simpler model would perform
just as well.,is paper attempts to fill this gap by proposing a
model that overcomes some of the limitations of the trip-
based model yet runs significantly faster and is easier to
calibrate than activity-based models.

3. Model Overview

,e Microsimulation Transport Orchestrator (MITO) has
been developed as a microsimulation for travel demand. A
synthetic population was generated [29] and travel demand
is simulated for every household and person individually. As
shown in Figure 1, mandatory trips (home-based work
(HBW) and home-based education (HBE)) are distin-
guished from discretionary trips (home-based shop (HBS),
home-based other (HBO), non-home-based work (NHBW),
and non-home-based other (NHBO)). For mandatory trips,
the trip destination is already set in the synthetic population
(as work place or school place). For discretionary trips, the
model calculates a travel time budget, which is calculated for
each household individually. Based on theory of constant
travel time budgets [30], longer work trips will lead to
shorter discretionary trips, while telework may lead to more
time spent on discretionary trips. In line with Zahavi’s
theory, the travel time budget is not a hard constraint for an
individual household but rather used to influence the
probabilities to choose different destinations. On the aver-
age, however, travel time budgets are modeled to remain
constant over time. Destination and mode choice are built as
logit models, and the time-of-day choice is simulated by a
Markov model. ,e assignment is currently conducted in
MATSim [31], but any other assignment model can be
linked to MITO.

,e model can be set up with a traditional household
travel survey. For the application presented below, the
German survey “Mobilität in Deutschland” from 2008 [32]
was used to estimate and calibrate each modeling step.
Highway traffic counts were used for model validation.
MITO is written in Java. It is open source and can be

accessed at https://github.com/msmobility/mito. A sample
setup with all required input can be provided by the authors.
,e following five sections describe the MITO step by step.

3.1. Trip Generation. Traditionally, average trip generation
rates are applied to the number of households segmented by
predefined household types. Every household of a given type
will be assigned the same (real) number of trips, such as 1.26
work trips for a given household type. In reality, however,
trip generation is more heterogeneous, with some house-
holds making no trips and other households making more
than a dozen trips, even if they are of the same household
type. For MITO, a microsimulation trip generation model
was built [33] to simulate the full diversity of trip making.

Using the observed trip frequencies of a household travel
survey, this method uses sample enumeration to select the
number of trips individually for every household. Household
types were defined inductively by testing over 67 million
possible household-type definitions and selecting for every
purpose the one household-type definition that best de-
scribed the observed differences in trip making. As an ex-
ample, Table 1 shows the distribution of number of trips
generated by 24 household types for the trip purpose home-
based work.

Number of workers and economic status (Economic
status was defined by the survey as a relationship between
number of adults, number of children, and net income of a
given household [32]. ,ereby, the survey attempts to
represent an “equivalent income,” where a one-person
household tends to have a higher economic status than a
two-person household with the same net household in-
come.) were found to be most descriptive to explain the
number of work trips. Other demographic attributes
(namely, household size, car ownership, and urban area
type) were not found to be as explanatory to describe the
number of work trips [33]. As expected, the data show a
tendency of more work trips for households with more
workers and higher economic status.

In application, sample enumeration is used to select the
number of trips generated for every household for each trip
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Figure 1: Model flow chart of MITO.

Journal of Advanced Transportation 3

https://github.com/msmobility/mito


purpose. As a result, some households will make dozens of
trips, while other households do not make a single trip.

3.2. Travel Time Budgets. Based on the number of trips, this
module estimates the total time by purpose that households
allocate to travel within a day. Travel time budget (TTB) is a
concept which postulates that only a certain and quite stable
amount of time will be allocated to travel to move between
activities during an average day [30]. All over the world and
in different decades, people in most countries travel between
60 and 75min per day [34, 35]. ,e results may indicate that
there is an unobserved desired travel time budget and that
the variations that can be found in individual TTB are
balanced out at the aggregated level [34, 36].

Despite empirical evidence, TTBs have not been con-
sidered in most travel demand models. While activity-based
models recognize that the day has no more than 24 hours
and allows only for activities that fit into one day; time
budgets for travel time are commonly ignored.

Common approaches in a traditional trip-based model
will attempt to select closer destinations when congestion
worsens. ,is behavior does not match observed work-trips
destination choice. To respect the total TTB, themodel needs
to select shorter trips of non-work trip purposes if con-
gestion worsens, while work and school trips should be kept
unchanged. If congestion worsens significantly, work and
school (and housing) locations should change in the long
run, which can be handled in a land usemodel.,e transport
model should not change origins and destinations of
mandatory trips instantaneously. ,is is accomplished in
MITO by calculating household TTB for every trip purpose.

Seven models were estimated using the household travel
survey [37] for six trip purposes and the total TTB. At the
household level, the explanatory variables for the house-
hold’s TTB depend on its sociodemographic characteristics,

its location, and its travel behavior. ,e number of trips for
each trip purpose, which were microscopically simulated in
trip generation, was used as an inverse proxy for the
remaining time for other activities that the household would
perform.

Survival analysis was selected to account for duration
dependence effects [38]. In survival analyses, the dependent
variable is the time until an event occurs and is commonly
used in clinical studies to model the time in remission of a
disease or time until death. In transportation analysis, the
survival time can be referred as the travel time and the event
is to travel. ,e survivor function S(t) gives the probability
that the time traveling (t) is longer than the specified time T.
Parametric survival models are more consistent with the
theoretical survivor function and simpler, and the calcula-
tion of the quantiles (i.e., median travel time) is defined.
,erefore, if the underlying distribution assumption is met,
parametric survival models are preferred over semi-
parametric models (also called Cox proportional hazards
model).

Assuming a Weibull distribution, the survivor function
can be expressed by using equation (1), while the median
travel time can be calculated using equation (2):

S(t) � e− λt
p

, (1)

t50 �(− ln 0.5)1/p · eβ0+∑ βi·xi , (2)

where λ � eβ0+∑ βi ·xi , 1/p is the scale of theWeibull model, t50
is the median TTB, β0 is the intercept of the Weibull model,
βi are the coefficients of the Weibull model, and xi are the
explanatory variables.

,e scale and coefficients of the model were fitted using
the package Survival from the free software environment R
for statistical computing [39]. ,e best model was selected

Table 1: Number of work trips by household type.

HH type Workers from Workers to Economic status 0 trips 1 trips 2 trips 3 trips 4 trips 5 trips 6 trips 7 trips 8 trips

A 0 0 1 1,056 35 4 2 0 0 0 0 0
B 0 0 2 636 14 5 0 0 0 0 0 0
C 0 0 3 3,601 47 2 1 0 0 0 0 0
D 0 0 4 1,474 18 2 0 0 0 0 0 0
E 0 0 5 330 4 0 0 0 0 0 0 0
F 1 1 1 351 266 30 3 0 0 0 0 0
G 1 1 2 362 291 45 3 1 0 0 0 0
H 1 1 3 1,234 1,198 104 11 1 0 0 0 0
I 1 1 4 954 833 79 4 1 0 0 0 0
J 1 1 5 295 252 19 0 0 0 0 0 0
K 2 2 1 122 90 63 13 1 0 0 0 0
L 2 2 2 243 223 140 28 8 0 0 0 0
M 2 2 3 995 898 716 87 9 0 0 0 0
N 2 2 4 1,015 897 715 65 6 1 0 0 0
O 2 2 5 467 325 272 32 4 1 0 0 0
P 3 4 1 25 24 19 12 5 1 0 0 0
Q 3 4 2 66 65 79 40 13 2 1 0 0
R 3 4 3 150 157 146 81 21 3 1 0 0
S 3 4 4 191 125 146 104 26 7 2 0 0
T 3 4 5 61 45 30 32 4 2 1 0 1

Data source: German household travel survey “Mobilität in Deutschland.”
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for each trip purpose based on the AIC (Akaike Information
Criterion) with a backwards stepwise approach.

,e number of trips by purpose and selected socio-
demographic attributes were statistically significant to ex-
plain the TTB. ,e estimation results published in [37]
suggest that trip purposes compete for travel time budget
among each other. In other words, households distribute
their total travel time among the different purposes and an
increase in number of trips for one purpose will reduce the
travel time allocated for other trip purposes.

3.3. Destination Choice. ,e trip distribution module selects
destinations for the generated trips at a microlocation level.
Trips generated at the household level are assigned to
persons within the household using a rule-based approach.
HBW and NHBW trips are assigned to workers, HBE trips
are assigned to students and other trips are assigned plau-
sibly to all household members depending on their age. Trip
destinations are selected as zones at first. In a subsequent
step, microscopic coordinates are assigned inside the se-
lected zone. A multinomial logit choice model is used to
select destinations from a given origin.

To speed up computation time, a matrix containing the
exponentiated utilities of each origin-destination relation is
precalculated for every trip purpose :

e
Ui|j � e

β∗impi|j+ln(attraction) � e
β∗impi|j ∗ attraction, (3)

where eUi|j is the exponentiated utility for choosing the
destination j for trip purpose p, starting from origin i and
impi|j|p is the impedance for this trip. ,e attraction variable
reflects the number of opportunities in the destination zone
for the given purpose and is estimated in the trip generation
phase. ,e weight of the impedance is defined by the
purpose-specific parameter β. Impedance is calculated by

impi|j � e
tdi | j ∗cp( ), (4)

where, tdi|j is the travel distance between i and j and cp is a
(negative) parameter that is calibrated for each trip purpose
p separately. Travel distances are used for the impedance.
However, travel times are accounted for by a travel time
budget constraint. ,e parameters β and cp are calibrated to
match the distribution and the average reported trip dis-
tances for each purpose in the household travel survey.

In trip distribution, all home-based trips are processed
first, as the origin is already fixed at the home location of the
person. In a second step, origins and destinations for the
non-home-based trips are assigned and connected to trip
ends of home-based trips.

For the mandatory trips HBW and HBE, no destination
choice is modeled here, as school or work places are already
defined in the synthetic population. For the nonmandatory
trip purposes shopping and other, destinations are chosen
constrained by the overall TTB distribution. Origins are
again set as the home location. ,e model attempts to select
destinations within the TTB calculated for this household
and trip purpose. ,e budget constraint is not considered to
be a hard constraint for a given household. Rather, the model

adjusts probabilities for all destinations to achieve that the
TTB is met on the average, though some households may
exceed or underuse their TTB. After one household is
completed, the TTB for the following households is adjusted
up or down (ttbadjusted) to match the TTB across all
households on the average.

For each trip of the next household, the choice proba-
bilities for every destination are multiplied by an adjustment
factor µj. ,is factor is taken from a normal distribution with
a mean of ttbadjusted and a standard deviation of ten minutes
to allow for some deviation from the ideal travel time budget.
If previous households have exceeded their TTB, this normal
distribution is shifted to the left to encourage shorter des-
tinations for subsequent households, and vice versa. Over
time, the model will select destinations that best fit both the
observed trip length frequency distribution and the average
TTB.

In a last step, the non-home-based trips are distributed.
As neither origin nor home is known for these, a reference
zone has to be selected first. ,e model looks for the des-
tinations of previous assigned home-based trips in an at-
tempt to spatially relate non-home-based trips with home-
based trips. For non-home-based work trip, the workplace
provided by the synthetic population is used as the origin,
while previous home-based shop and other trips are used as
origins for non-home-based other trips. If there were several
home-based trips, the reference zone is randomly selected
among those candidates. When no fitting trip was found, the
work zone of the assigned person will be used as a reference
zone for non-home-based trips, if applicable.

3.4. Mode Choice. MITO employs mode-choice models
based on data from the national household travel survey. We
estimated individual models for trips by purpose, as modal
utilities differ across purposes. For example, individuals tend
to accept longer travel times for leisure trips as opposed to
shopping trips. ,e models simulate the choice among the
modes—Auto driver, Auto passenger, Bicycle, Bus, Train
(suburban and regional), Tram or Metro, and Walk. Modal
utilities are computed as a function of the following
attributes:

(1) Characteristics of the individual making the trip—
age, sex, and possession of driver’s license

(2) Characteristics of the household the individual be-
longs to—household size, number of autos owned,
number of children, number of employed persons,
residential area type, and distance to the nearest
transit stop

(3) Characteristics of the trip—trip length and gener-
alized cost (travel time plus travel cost converted to
equivalent time using value of time)

,e coefficients of modal attributes were estimated in a
logit-modeling framework using Biogeme [40], an open-
source freeware designed for maximum likelihood estima-
tions of discrete-choice models. As some modes are more
similar than others, we adopted a nested logit structure
which accounts for correlation within nests. After examining

Journal of Advanced Transportation 5



different nested structures, the most appropriate structure
was found to be one with Auto driver and Auto passenger in
an Auto nest, the three transit modes in a Transit nest, and
Bicycle andWalk as independent modes alongside Auto and
Transit, as shown in Figure 2(a) the left. ,e nested logit
models were then estimated in an incremental manner to
ensure a minimum 95% confidence level while avoiding
significant correlations of independent variables. Sample
estimation results for the mode choice model were published
by Rayaprolu et al. [41].

MITO is also equipped to predict mode choice in an
impending scenario with autonomous vehicles (AVs) or self-
driving cars. To model the impact of AVs on mode choice,
we extended the choices by including AVs in the choice set.
We distinguish the modes privately owned AVs and AVs
offered as a shared service, assuming their impact on travel
behavior and choice to be different. Given that little is known
about their characteristics, we adopted an incremental logit
approach [42] considering AV Private as an improved
version of Auto driver and AV Shared as an improved
version of the transit service bus. We assume that the value
of time (VOT) for AV Private will be the lowest. In the
estimated mode choice model (without AVs), Auto driver
had the lowest VOT. It was also assumed that other unin-
cluded attributes between AV Private and Auto driver are
similar, such as the ability to use air conditioning or the
privacy of the personal vehicle. We chose bus as the base for
shared AVs assuming they would be offered as a service with
vehicles shared by multiple passengers. ,e modified model
structure is shown in Figure 2(b). ,e main benefit of the
incremental logit model is that assumptions need to be made
explicit. ,e user can set the benefits of AVs in comparison
with the existing modes Auto driver and Bus. Given the lack
of observed data and the challenges of stated-preference
surveys about choices, the respondent has not experienced
yet; these assumptions are rather arbitrary for the time being.
,e incremental mode choice model forces at least the model
user to make those assumptions explicit.

3.5. Time-of-Day Choice. MITO simulates a departure time
for each trip. Time-of-day choice is based on the observed
departure times in the national household travel survey.

,e survey data are used to obtain empirical distribu-
tions of arrival times and duration of the activity for each
travel purpose. Based on these distributions, the times are
selected by means of a probabilistic choice. Arrival time
distributions are selected instead of the departure time for
two main reasons: first, we had more confidence in self-
reported arrival times (start of the activity) rather than self-
reported departure times (start of the trip). Secondly, de-
parture times are subject to the selected destination and
mode, while arrival times are mostly dependent on the start
of an activity. ,ese two hypotheses are particularly relevant
for mandatory trip purposes, where the starting time of the
activity is defined, but they are also compatible with non-
mandatory trips. By choosing arrival times, we reduce the
amount of required data input to single distributions by
purpose, independent of mode or destination of the trip.

,e following steps are carried out for every trip:

(i) Select an arrival time by randomly sampling the
corresponding arrival time distribution

(ii) Calculate the departure time by subtracting the
travel time by the selected mode from the arrival
time

Up to this step, all trips are stored in production-at-
traction (P-A) format. To convert trips into origins-desti-
nation (O-D) format, a return trip is added to all home-
based trips. ,erefore, a departure time for the return trip is
generated for all home-based trip purposes:

(i) Select an activity duration by randomly sampling
the corresponding duration activity distribution of
the given trip purpose

(ii) Calculate the departure time of the return trip by
adding the duration to the arrival time

(iii) Reverse origin and destination to account for the
return travel direction

Departure times before or after midnight are trans-
formed by adding or subtracting 24 hours. ,e time reso-
lution of the time-of-day choice model is 1 minute.

3.6. Traffic Assignment. MITO trips can be fed into any
traffic assignment model. Individual trips can be either
aggregated to origin/destination matrices to perform a static
user equilibrium traffic assignment or used by an agent-
based assignment, such as a Dynamic Traffic Assignment
(DTA) or microscopic traffic assignment models. Using an
agent-based traffic assignment model allows tracing indi-
viduals all the way from trip generation to the assignment.

For the application of MITO presented below, the agent-
based transport simulation framework MATSim [31] was
used for traffic assignment. MATSim can be used as a
Dynamic Traffic Assignment (DTA) model that simulates
individual vehicles on the road network. In contrast to
microsimulation models, overtaking of vehicles is not
modeled, but the first-in-first-out assumption is applied for
every link. A major benefit of a DTA model like MATSim is
that the number of vehicles on a link can never be larger than
the link capacity, which is a common shortcoming of static
user equilibrium assignment methods.

While MATSim is able to adjust mode, departure time,
route, and even supress single trips in response to con-
gestion, all adjustments except route choice were turned off
in the simulations presented below. ,e travel demand
presented below is the original travel demand by MITO.
MATSim is merely used to select routes for all trips. Travel
times and distances are fed back to MITO.

3.7. Model Validation. MITO was applied to the metro-
politan area of Munich (Germany). All modules described in
Sections 3.1 to 3.6 were calibrated to match observed data of
the German national household travel survey. Figure 3
shows the traffic volumes that were assigned to the network.
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,emodel was validated by comparing the output of the
traffic assignment (road traffic only) with traffic counts.
Figure 4 compares traffic counts on motorways with sim-
ulated volumes. ,e Root Mean Squared Error (RMSE) was
14,769 veh/day, and the Percent Root Mean Square (%
RMSE) error was 45%.

4. Case Studies

MITO was applied to three case studies to demonstrate its
ability to analyze changing travel demand of individuals.

4.1. Refugee Group Arrival. ,e first case study covers the
integration of a larger group of refugees.,e goal of this case

study was to analyze alternative ways of allocating such
incoming population. Specifically, the effects on travel de-
mand of the implementation of a refugee camp and the equal
distribution of refugees across an entire city were compared.
MITO was applied to the metropolitan area of Munich
(Germany), and 20,000 refugees were allocated in the city of
Munich. ,e base year model was used that did not include
autonomous vehicles.

,e sociodemographic characteristics of refugees are
likely to differ from residents. In absence of observed data,
we assumed that all refugees belong to single-person
households are 25 years old, have a small income, and own a
driver’s license but have no car. For travel time budgets, the
lowest economic status was assumed, and for mode choice,
the lowest income category was assigned to refugees.

With these specifications, three MITO runs are com-
pared: the base scenario (no refugees), the refugee camp
scenario, and the scenario with distributed refugees. Figure 5
shows the average number of trips per household by trip
purpose. As the impact of refugees on trip generation and
trip distribution of residents is minimal (20,000 refugees
against 4.4 million residents), average values per household
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Figure 2: Mode choice nesting structure without (a) and with (b) autonomous vehicles.
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by trip purpose are presented. ,e number of trips of ref-
ugees is, on average, smaller than the number of trips of
residents. As the refugees do not have a work or education
place, yet the number of home-based work (HBW) and
home-based education (HBE) trips is very small (yet a few
may go for a job interview). ,ey do not make any non-
home-based work (NHBW) trips. ,e number of home-
based shopping trips is almost equal between residents and
refugees, as everyone needs to buy groceries. As expected,
there were almost no differences found in trip generation
between the two refugee allocation scenarios.

Figure 6 shows the average travel distance of the trips by
purpose. ,e distance travelled by refugees is smaller than
the distance travelled by residents due to smaller travel time
budgets of refugees that were caused by lower income levels.
Figure 7 shows the number of trips (using all transport
modes) that end in each model zone for the two scenarios
that include refugees. As expected, Figure 7(a) shows a high
concentration of trips with destination in the vicinity of the
refugee camp, while the number of trips is spread out over a
larger area when the refugees are allocated across the entire
city.

Lastly, Figure 8 shows the traffic assignment inMATSim.
,e plots show the additional daily traffic volume caused by
trips made by car by refugees under the two allocation
scenarios. ,e number of car trip legs was around 15,000 in
both scenarios (each home-based trip has two car trip legs
and each non-home-based trip only one). Refugees’ car
modal share is around 30%, in contrast to residents’ car
share of 40%.,e spatial distribution of these traffic volumes
is very different between Figures 8(a) and 8(b), showing that
significant congestion increases are expected when a large
number of refugees are allocated in one camp. With a
refugee camp, the added volumes exceed 1,600 veh/day on
selected arterial roads close to the camp. When the refugees
are allocated across the entire city, the affected area is larger
but the additional traffic volumes are below 400 veh/day.

As expected, the impacts of added population are
stronger when the new residents are concentrated in a small
area like a refugee camp. ,is case study showed that MITO
is able to simulate changes in the input data at the resolution
of individuals. MITO can trace the resulting travel demand
of individuals that share a common attribute (such as being a
refugee). ,e information can be traced through every
modeling step, from the trip generation all the way to the
traffic assignment.

4.2. People with Disability. For the second case study, we
added a variable to categorize if a person has a severe
physical or mental disability. ,e German Statistical Office
collects and publishes data on people who own a disability
pass. In 2018, 9.4% of the population had a severe disability
(7.6 million). ,e goal of this case study was to evaluate how
modal split may vary within a region if it is taken into
account how people with disabilities experience different
modes, as well as which policies could be more effective to
increase transit share of people with disabilities.

Disability was added as an attribute to the synthetic
population based on the distribution of severe disability by
age, gender, and type of disability. A base scenario was
generated with some service assumptions (Table 2). Spe-
cifically, persons with disabilities experience restrictions to
certain modes and also have an increased disutility for
walking. ,e disutility for walking was modeled as a re-
duction of walking speed (from 5.0 to 2.5 km/h) and as an
increased perception of walking distance (by 50%).

Figure 9 shows the modal shares for the base scenario by
disability type. Even though the auto travel time is increased
for people with disabilities, auto modes have a higher share
than people without disabilities (72.4% and 75.8% compared
to 65.2%). ,e higher share of private motorized modes is
caused by the unavailability of cycling and the increased
disutility for walking. Although transit travel times increased
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Figure 8: Increase of traffic volume due to trips made by refugees (base map source: openstreetmaps.org). (a) Refugees located in one camp.
(b) Refugees distributed.

Table 2: Assumptions by modes in the base scenario.

Mode Persons without disability Persons with mental disability
Persons with physical

disability

Auto driver Auto travel time Not available
Auto travel time + 4

minutes (access/egress)
Auto
passenger

Auto travel time Auto travel time + 4 minutes (access/egress)

Bicycle Distance by bicycle Not available
Walk Distance by walk Increased disutility for walking (distance +50%)

Transit
In vehicle, travel time + access/egress at
5 km/h + transit fare at 0.12 EUR/km

In vehicle, travel time + access/egress at 2.5 km/h + 1.5
extra minutes per transfer + transit fare at 0.12 EUR/km

Refugee camp

Munich (city)

Munich (county)

Starnberg

Dachau

(a)

Munich (city)

Munich (county)

Starnberg

Dachau

(b)

Figure 7: Number of trips by destination zone made by refugees. (a) Refugees located in one camp. (b) Refugees distributed (the refugees’
home locations are randomly distributed within the Munich city boundaries).
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for people with disabilities, their transit share is higher due
to the limitation of other modes.

To test policies that intend to increase the transit share of
people with disabilities, three policy scenarios were gener-
ated: policy A “faster transit”; policy B “free transit”; and
policy C “faster and free transit” (all apply to people with
disability only). Table 3 summarizes the transit service as-
sumptions by policy scenario.

,e results indicate that people with disabilities are more
sensitive to travel time than cost (Figure 10). Providing free
transit increased the transit share by 0.1%, while a faster
access and egress travel time increased transit by 0.8%. ,e
combination of both measures increased the transit share by
1% for persons with mental disabilities and by 0.7% for
persons with physical disabilities. ,e majority of travelers

with mental disabilities shifted from the auto passenger
mode; while travelers with physical disabilities shifted from
both auto driver and auto passenger. ,e case study showed
how MITO can incorporate new attributes in mode choice
and simulate the service for a certain group of travelers.

4.3. Flexible Work Start Hours. In a third case study, we
tested the effects of assigning work starting times with the
goal to alleviate peak hour congestion in dense urban areas
and their access roads.

For demonstration purposes, we assumed a policy that
realizes a uniform distribution of work start times between 6
and 9. We reassigned the arrival time for trips from home to
work for all workers in the city of Munich (the return trips

Table 3: Transit service assumptions for persons with disability by scenario.

Scenario People with mental or physical disability

Base
In vehicle, travel time + access/egress at 2.5 km/h + 1.5 extra minutes per transfer + transit fare at 0.12

EUR/km
Policy A “faster transit” In vehicle travel time + access/egress at 5 km/h + transit fare at 0.12 EUR/km
Policy B “free transit” In vehicle, travel time + access/egress at 2.5 km/h + 1.5 extra minutes per transfer + free transit fare
Policy C “faster and free
transit”

In vehicle travel time + access/egress at 5 km/h + free transit fare
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are shifted consistently). Figure 11 shows the original and
modified departure time distribution for these trips. ,e
results were evaluated by comparing traffic counts between
the scenario with shifted working hours and the base
scenario.

Figure 12 shows that assigned work starting hours
increase the traffic volumes between 5:00 and 6:00 AM. On
the contrary, they mostly reduce the traffic volumes during
the most congested hours. ,e differences in link volumes
before and after the adjusted period (6–9 AM) and the
adjacent hours are due to random variations between
model runs. Because the scenario helped to slightly reduce
congestion during the morning peak hour, the average
travel time to work by car was reduced by 6%, or from 18.1
minutes to 16.9 minutes. Traditional aggregate models

commonly are limited to a few time-of-day periods (often
defined as AM Peak, Midday, PM Peak, and Night). Every
time-of-day period is assigned separately in static user
equilibrium assignments, and the network is assumed to be
cleared by the end of each period. In contrast, MITO can
easily simulate the time-of-day choice of selected agents
and MATSim is able to assign flows continuously over the
course of the day without the need to define static time-of-
day periods.

5. Conclusions

,e presented model is capable to present travel demand of
individuals using a disaggregate trip-based design that was
enhanced by simulating travel time budgets (TTB) and time-
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of-day choice. ,e TTB module accounts for the fact that
people who have to commute longer tend to do less other
travel. Vice versa, the model will create more other travel for
someone who telecommutes and does not travel to a work
place.

,e microscopic nature of the model made it possible to
analyze travel demand by detailed travel market segmen-
tations, as shown with the refugee scenarios in the previous
section. While traditional trip-based models generate non-
home-based trips that are entirely disconnected from home-
based trips of this households, the presented model can
allocate, for example, non-home-based-work trips starting
from the person’s work location. Furthermore, micro-
simulation also allowed each modeling step to select socio-
demographic attributes that are relevant for the modeling
step at hand. Trip generation of discretionary trips, for
example, is segmented among others by area type (which is
not used anywhere else), while mode choice uses driver’s
license ownership (which is not used anywhere else). ,e
microscopic structure of the model makes the model design
much more flexible than traditional trip-based models.

However, microsimulation comes at a price. Due to its
stochastic nature, every model run is slightly different. On
the average, these differences balance out and produce
practically identical results for the entire study area. When
small subareas are investigated, however, each model run
may show noteworthy different results. ,e user needs to
apply caution to not interpret scenario differences that are as
small as the expected stochastic variation [43]. Sometimes,
various random seeds are set purposefully to analyze the
range of plausible outcomes [44, 45]. ,is is a useful ap-
proach to handle stochastic variation, yet it requires multiple
model runs, and therefore, more runtime.

During model development, great emphasis was put on
fast model runtimes. ,e resulting model runs even faster
than many traditional trip-based models. On a workstation
with 16 processors with 2.6 Ghz and 64MB RAM, this
model generates the complete travel demand for 4.5 million
people and 4,924 zones in 11 minutes. ,e assignment,
however, required much more runtime. For this study area,
a coarse network that excludes local roads with 138,080
links was used. MATSim ran with a sampling rate of 5
percent and iterated 50 times to approximate an equilib-
rium. In total, the assignment runtime required 2 h 45min
on a regular workstation. If multiple years and many
scenarios need to be simulated, this may be an obstacle. A
static user equilibrium assignment algorithm would run
much faster, and could be the preferred approach when
runtime is a concern.

,e developed model has overcome some significant
shortcomings of conventional trip-based models. However,
it does not provide the full capacity of activity-based models.
Shortcomings of MITO include the lack of intra-household
coordination or the lack of feedback that a delayed activity
should delay subsequent activities. For applications where
such model capabilities are of relevance, an activity-based
model is still the best choice. For many other applica-
tions, however, this level of detail may not be relevant. In
those cases, MITO provides a simpler approach that is

behaviorally richer than the trip-based model but less
complex than activity-based models.
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