

IEEE Communications Magazine • March 2009166 0163-6804/09/$25.00 © 2009 IEEE

INTRODUCTION

The last decade has seen unprecedented growth
in the scale and complexity of computer net-
works; networks today are much larger and far
more complex than originally anticipated. In
turn, the larger and more complex the network,
the harder it becomes to test and evaluate its
design and eventual implementation. Modeling
and simulation (M&S) serves a vital role in the
design and development of distributed interact-
ing systems because of their peculiar stochastic
nature, especially if they involve systems with
decentralized self-organizing capabilities [1, 2].
Although networks have grown in both size as
well as complexity, the tools to model and simu-
late them have not scaled at the same rate. This
has not gone entirely unnoticed, so papers such
as [3] have attempted to point out problems with
the current simulation methodologies for
telecommunications networks, such as the use of
pseudo-random number generators. However,
another problem with the existing toolset, which
has not received much attention, lies in what ini-
tially was their strongest point: their focused ori-
entation on computer networks. Since newer
networks have grown in size and complexity in

directions such as pervasive computing (includ-
ing but not limited to body area networks, vehic-
ular area networks, and other pervasive
networks), the existing M&S tools are not quite
designed to deal with these emerging paradigms.
With so much unanticipated change in the air,
there is a need for alternative flexible tools
equipped with effective techniques for modeling
modern networks as they evolve into complex
systems. This article seeks to address this impor-
tant area of research for the M&S community in
the domain of computer networks by demon-
strating, for the first time, the use of agent-based
modeling tools for modeling self-organizing
mobile nodes and peer-to-peer (P2P) networks.
We focus on NetLogo, a tool that has proven its
worth in the M&S domain of complex systems.
We conclude that not only can agent-based tools
model P2P and ad hoc networks, they can also
be used to effectively model complex systems
where the network is only a part of the system,
and where humans, animals, habitat, and other
environment-related interactions need to be
modeled and simulated as well.

BACKGROUND
In the domain of complex networks, being the
new kid on the block, pervasive computing
applications do not have many dedicated tools
at their disposal, unlike the P2P and wireless
network M&S communities. These tools range
from general-purpose tools such as Opnet,
OMNET++, and NS 2 to customized tools for
particular domains such as Tiny OS Simulator
(TOSSIM) for wireless sensor networks.
Designed from the ground up for modeling
computer networks, these specialized tools satis-
fy the basic requirements of M&S. However, the
main focus of these tools is to model and simu-
late computer networks only. On one hand, we
have complex problems where humans and
mobile systems/users are involved, and on the
other, we have pervasive computing and large-

ABSTRACT

Agent-based modeling and simulation tools
provide a mature platform for development of
complex simulations. They however, have not
been applied much in the domain of mainstream
modeling and simulation of computer networks.
In this article, we evaluate how and if these tools
can offer any value-addition in the modeling &
simulation of complex networks such as perva-
sive computing, large-scale peer-to-peer systems,
and networks involving considerable environ-
ment and human/animal/habitat interaction.
Specifically, we demonstrate the effectiveness of
NetLogo — a tool that has been widely used in
the area of agent-based social simulation.

MODELING AND SIMULATION: A PRACTICAL GUIDE
FOR NETWORK DESIGNERS AND DEVELOPERS

Muaz Niazi and Amir Hussain, University of Stirling

Agent-Based Tools for Modeling and
Simulation of Self-Organization in
Peer-to-Peer, Ad Hoc, and Other
Complex Networks

NIAZI LAYOUT 2/17/09 3:00 PM Page 166

IEEE Communications Magazine • March 2009 167

scale global networks on an Internet scale. Per-
vasive computing, being a set of immersive tech-
nologies, always has a need for tools with
stronger modeling capabilities. The modeler
needs the ability to work at a higher level of
abstraction instead of just being able to tweak
the network parameters. Tools are needed that
are flexible enough to conveniently model and
simulate complex interactions and protocols
with ease. Such tools need to have inherent
strengths, and should have demonstrated abili-
ties to model self-organization techniques, engi-
neered emergence, and other socio- and
bio-inspired techniques including domains such
as ambient intelligence [4].

Another area of application of such tools
and techniques is large networks such as
unstructured P2P systems, which tend to grow
in unpredicted dimensions. A recent example is
Gnutella, where strong emergence and unex-
pected/unexplored graphs have been discovered
quite recently.1 Although in these domains
tools primarily designed for modeling of com-
puter networks can occasionally be used to
model and simulate, the norm is to have vari-
ous levels of add-ons; this, however, is not
exactly an easy marriage. The designers, being
human, feel over-constrained by the limitations
of having to keep tweaking and tracking low-
level network parameters when their primary
focus is on modeling more abstract concepts. It
is important to note that the problem emerges
because these concepts are natural for the
designer but alien for the tool; modern complex
network M&S specialists not only require the
ability to change sensor ranges and other basic
parameters, they also need abilities to model
and simulate a myriad of entities and tech-
niques: humans, mobile robots, animals, habitat
interaction, as well as self-* techniques (self-
organization, self-healing, self-adaptive, etc.).
This could eventually be extended to any con-
ceivable concept that could be expected to form
a part of the system. So in this domain, even if
existing network oriented tools can somehow be
used to model these concepts, the concept is
typically an add-on and an afterthought to the
design. Tools that are not specifically developed
to cater for complex simulations and situations
make the M&S specialist work longer to fulfill
these requirements.

In contrast to this, in another part of the
M&S landscape, there are a set of tools focusing
on agent-based M&S techniques. These are a
mature set of tools whose utility has been
demonstrated in various domains. They are used
primarily for M&S of complex systems’ simula-
tion models ranging from social networks and
groups to self-organizing systems and bio-
inspired models.

The important question we address in this
article is the following: Is there any value addi-
tion to the use of generic and highly flexible
agent-based modeling tools (which are already
known to be very effective in modeling self-orga-
nization and complex systems) in the modeling
and simulation of communication networks such
as P2P, wireless, and pervasive networks?

The rest of the article is organized as follows.
The next section briefly reviews the background

and distinction of agent-based M&S tools. We
then introduce NetLogo, and evaluate its useful-
ness using a number of M&S experiments. Final-
ly, some concluding remarks are given.

REVIEW OF AGENT-BASED TOOLS

ARE THERE ANY EXISTING TOOLS?
Before we start our detailed analysis on the use
of NetLogo in this particular domain, it is perti-
nent to mention some of the previous tools in
use by network designers. The literature men-
tions a large set of tools, which range anywhere
from customized scripts such as GnutellaSim,2
which runs on general purpose tools (e.g., NS-2),
to packet-level discrete event simulators for sim-
ulation of similar networks as in Structella.

AGENT-BASED TOOLS
In the agent-based arena, a number of popular
tools are available. These range from Java-based
tools such as Mason to Logo-based tools such as
StarLogo and NetLogo [5]. Each of these tools
has different strengths and weaknesses. In the
rest of the article we focus on just one of these
tools, NetLogo, as a representative of this set.
We attempt to critically evaluate NetLogo and
see how it fares when compared to other stan-
dard tools that are already in use for M&S of
communication networks. Building on the expe-
rience of previous tools based on the Logo lan-
guage, NetLogo has been developed from
grounds up for complex systems research. His-
torically, NetLogo has been used for modeling
and simulation of complex systems, including
multi-agent systems, social simulations, and bio-
logical systems, on account of its ability to model
problems based on human abstractions rather
than purely technical aspects. However, it has
not been widely used to model computer net-
works, especially by any mainstream practition-
ers in the computer network M&S domain.

Agent-Based Thinking — In a distributed
environment with large-scale complex interacting
entities, sometimes it makes more sense to work
on a simulation based on local parameters of
each network node and assuming intelligence at
a local level. Now, for the network modeling
specialist to model a system in terms of agents,
the nodes, humans or robots or any other enti-
ties that might be part of the model, need to be
directly addressable. The designer of the system
should be free to address one or more types or
breed of objects/entities/nodes of the system.
This kind of addressability is the norm in agent-
based modeling and simulation.

As an example, it is fairly easy to address one
or more types of entities (called agents or turtles
in Logo-speak) just by their name. In other
words, programs in NetLogo3 are produced at a
higher level of abstraction. Instead of the regular
paradigms of looping through objects and exe-
cuting functions, the designer can ask entities/
nodes to move or change colors, or create links
with other entities without worrying about the
low-level details of how the animation or actual
interaction is going to be executed. This
paradigm actually produces small yet functional
programs. An important benefit of small pro-

In a distributed

environment with

large scale complex

interacting entities,

sometimes it makes

more sense to work

on a simulation

based on local

parameters of each

network node and

assuming intelligence

at a local level.

1http://personalpages.man
chester.ac.uk/staff/m.dodg
e/cybergeography/atlas/
topology.html

2http://www.cc.gatech.edu
/computing/compass/gnut
ella/usage.html

3 NetLogo is based on the
Logo language.

NIAZI LAYOUT 2/17/09 3:00 PM Page 167

IEEE Communications Magazine • March 2009168

grams is their ability to greatly reduce the tweak-
test-analyze cycle. This age-old paradigm of
development (coming from the heritage of inter-
preted languages) where paper-based models are
assisted by quick remodeling of the model to fit
the given parameters for verification and valida-
tion is very obvious in NetLogo. Thus, it is more
likely to model complex paradigms within a
short time without worrying about the lower lay-
ers of other parameters unless they are impor-
tant for the particular application. As we shall
see in this article, it also has great expressive
power and, most of all, is fun to use. Although
used very frequently to model complex and self-
organizing systems, it has not previously been
used extensively to model computer networks.

Distinction of Agent-Based M&S Tools — In
this section we distinguish the power of agent-
based techniques as compared to previous tools
in general and NetLogo in particular. There are
certain metrics by which we can evaluate agent-
based tools and compare them with their coun-
terparts in the domain of computer network
M&S. These metrics, however, are of a qualita-
tive nature. The existing tools for network-based
M&S are not specifically tailored to developing
self-organizing or complex system simulations.
The M&S tools from the agent-based M&S
domain have several strong features such as
direct addressability of nodes, ease of implemen-
tation and evaluation of self-organization, and
emergence and bio-inspired algorithms as well as
the capability of being understandable from the
human perspective (having their background
rooted in social simulation), all of which make
them extremely useful for application in the
domain of ad hoc, P2P, and pervasive systems.
One way of looking at this is that originally, the
object oriented programming features of the
C++ programming language were developed
entirely in C in the form of a front-end that
would compile to C code (as an academic exer-
cise); however, it was too cumbersome and coun-
terproductive for programmers to follow the
same practice in their regular development. It
was infeasible for companies to develop pro-
grams with object-oriented features using pure C
in general. However, with the advent of modern
languages with built-in features of object orien-
tation, it has become much easier and “natural”
for software engineers to start with a template
based on an object-oriented paradigm. Using the
same analogy, self-organization and emergence
techniques are even more abstract than object
orientation, but they do entice and fit well with
human nature.4 So the significance of agent-
based tools is to attain a level of comfort for the
M&S specialist in designing complex paradigms
such as self-organization.

Complex Interaction Protocols Modeling —
Another point to note here is that in NetLogo,
modeling complex protocols does not have to be
limited to the simulation of networks alone; it
can readily be used to model human users, intel-
ligent agents, mobile robots interacting with the
system, or virtually any concept the M&S design-
er feels worthwhile having in the model. NetLo-
go in particular has the advantage of LISP-like

list processing features (with LISP being one of
the most commonly used languages in the AI lit-
erature). Thus, modeled entities can be shown to
be interacting with the computer networks all at
the same time and with the same ease that is
there for modeling networks. Alternatively, the
simulationist can interact and create runtime
agents to interact with the network to experi-
ment with complex protocols that are not other-
wise straightforward to conceive in terms of
programs.

As an example, let us suppose that we were
to model the number of human network man-
agers (e.g., from 10 to 100) attempting to man-
age a network of 10,000 nodes by working on
workgroups the size of n nodes (e.g., ranging
from 5 to 100) at one time while giving a total of
8-hour shifts with network attacks coming in as a
Poisson distribution; this could all probably be
modeled in less than a few hours with only a lit-
tle experience in NetLogo per se. The simulation
can then be used to evaluate policies of shifts to
minimize network attacks.

Another example could be the modeling and
simulation of link backup policies in case of
communication link failures in a complex net-
work of 10,000 nodes along with network man-
agement policies based on part-time network
managers carrying mobile phones for notifica-
tion and management vs. full-time network man-
agers working in shifts, all in one simulation
model. And to really make things interesting, we
could try these out in reality by connecting the
NetLogo model to an actual J2ME-based appli-
cation in phones using a Java extension; so the
J2ME device sends updates using General Pack-
et Radio Service (GPRS) to a Web server that is
polled by the NetLogo program to get updates
while the simulation is updated in a user inter-
face provided by NetLogo. Again, although the
same could be done by a team of developers in a
man-year or so of effort using different tech-
nologies, NetLogo provides for coding these
almost right out of the box, and the learning
curve is not steep either.

This is the expressive power of NetLogo,
which lies in the sense of modeling even non-
network concepts such as pervasive computing
where human mobile users (e.g., in the forma-
tion of ad hoc networks for location of injured
humans) or body area networks come in play
along with the network. Now, it is important to
note here that simulation would have been
incomplete without effective modeling of all
related concepts that come into play. Depending
on the application, these could vary from ambu-
lances, doctors, and nurses to concepts such as
laptops and injured humans. in addition to read-
ily available connectivity to GIS data provided
by NetLogo extensions.

Range of Input Values — Being a general-
purpose tool, the abstraction level of NetLogo is
specifically much higher. As such, the concepts
of nodes, antenna patterns, and propagation
modeling are all user-dependent. On one hand,
this may look burdensome to the user accus-
tomed to using these on a regular basis, as it
might appear that he or she will be working a lit-
tle extra to code these in NetLogo modeling. On

In NetLogo, model-

ing complex proto-

cols does not have

to be limited to the

simulation of net-

works alone; it can

readily be used to

model human users,

intelligent agents,

mobile robots inter-

acting with the sys-

tem or virtually any

concept that the

M&S designer feels

worthwhile having in

the model.

4 As is clear from their
prevalence in social
simulation literature.

NIAZI LAYOUT 2/17/09 3:00 PM Page 168

IEEE Communications Magazine • March 2009 169

the other hand, NetLogo allows for the creation
of completely new paradigms of network model-
ing, wherein the M&S specialist can focus on,
for example, purely self-organization aspects or
developing antenna patterns and propagation
modeling — directly in NetLogo, a relatively
trivial task per se.

Range of Statistics — NetLogo is quite flexi-
ble in terms of statistics and measurements. Any
variable of interest can be added as a global
variable, and statistics can be generated based
on a single run or multiple runs. Plots can be
automatically generated for these variables as
well.

Handling Complex Metrics — Measurements
of complex terms in NetLogo programs are lim-
ited only by the imagination of the M&S special-
ist. Almost any concept that can be conceived as
important can easily be added to the model. As
an example, if it is required to have complex
statistics such as network assembly time, global
counters can be used easily for this. Similarly,
statistics such as network throughput, network
configuration time, and throughput delay can
easily be modeled by means of similar counters
(which need not be integral). By default, NetLo-
go provides for real-time analysis. Variables or
reporters (functions that return values) can be
used to measure real-time parameters, and the
analyst can actually have an interactive session
with the modeled system without modifying the
code using the command window.

NETLOGO TUTORIAL
In this section we introduce NetLogo, and
demonstrate its usefulness using a number of
modeling and simulation experiments.

WHAT NETLOGO IS AND HOW TO GET IT
NetLogo is a popular tool based on the Logo
language with a strong user base and an active
publicly supported mailing list. It provides visual
simulation and is freely available for download
[5], and has been used considerably in multi-
agent systems literature [6]. It has also been
used considerably in social simulation and com-
plex adaptive networks [7]. One thing that distin-
guishes NetLogo from other tools is its very
strong user support community. You can usually
get a reply from someone in the community in
less than a day. The current version of NetLogo
is 4.0.4; the higher number actually demonstrates
its stability and active development. NetLogo
also contains an enormous number of code sam-
ples and examples. Most of the time, it is rare to
find a problem for which there is no similar sam-
ple freely available either within NetLogo’s
model library or elsewhere from the NetLogo
M&S community.

BASIC STRUCTURE OF A NETLOGO PROGRAM
The NetLogo World — Based on the Logo lan-
guage, the NetLogo world consists of an interface
that is made up of “patches.” The inhabitants of
this world can range from turtles to links. In
addition, one can have user interface elements
such as buttons, sliders, monitors, and plots.

The NetLogo Interface — NetLogo is a visual
tool and is extremely suitable for interactive sim-
ulations. When one first opens up a NetLogo
screen, an interface with a black screen is visible.
There are three main tabs and a box called the
command center. Briefly, the interface tab is
used to work on the user interface manually, and
theinformation tab is used to write the documen-
tation for the model. Finally, the procedures tab
is where the code is actually written. The com-
mand center is a sort of interactive tool for
working directly with the simulation. It can be
used for debugging as well as trying out com-
mands similar to the interpreter model which, if
successful, can be incorporated in one’s pro-
gram. The commands of a NetLogo procedure
can be executed in the following main contexts.

Turtle — The key inhabitants of the Logo world
are the turtles, which, from our perspective of
designing networks, can be used to easily model
network nodes. The concept of agents/turtles is
to provide a layer of abstraction similar to the
layer of abstraction object-oriented program-
ming adds to structured programming paradigms.
In short, the simulation can address much more
complex paradigms, including pervasive models,
environment or terrain models, or indeed any
model the M&S specialist can conceive of, with-
out requiring many additional add-on modules.
However, the tool is extensible and can be direct-
ly connected to Java-based modules. By writing
modules using Java, the tool can potentially be
used as the front-end of a real-time monitoring
or interacting simulation. For example, we could
have a Java-based distributed file synchroniza-
tion systemthat reports results to the NetLogo
interface and vice versa; the NetLogo interface
could be used by the user to set up the simula-
tion at the back-end (e.g., how many machines,
how many files to synchronize), and subsequent-
ly, with the help of the simulation, the user
could simply monitor the results. Although the
same can be done with a lot of other tools and
technologies, the difference is that NetLogo
offers these facilities almost out of the box and
requires minimal coding besides being noncom-
mercial, free, and easy to install.

Patch — A single place where the turtle exists is
a patch.

Observer — This is a context that can be used
in general without relating to either a patch or a
turtle. The NetLogo user manual, which comes
prepackaged with NetLogo, says: “Only the
observer can ask all turtles or all patches. This
prevents you from inadvertently having all tur-
tles ask all turtles or all patches ask all patches,
which is a common mistake to make if you’re
not careful about which agents will run the code
you are writing.”

Explanation of NetLogo Nomenclature —
Inside the NetLogo world, we have the concept
of agents. Coming from the domain of complex
systems, all agents inside the world can be
addressed in any conceivable way the user can
think of; for example, if we want to change the
color of all nodes with communication power

NetLogo is quite

flexible in terms of

statistics and

measurements. Any

variable of interest

can be added as a

global variable and

statistics can be

generated based on

single or multiple-

runs. Plots can be

automatically

generated for these

variables as well.

NIAZI LAYOUT 2/17/09 3:00 PM Page 169

less than 0.5 W, a user can simply say: ask nodes
with [power < 0.5] [set color green]; or if a user
wants to check nodes with two link neighbors
only, this can also be done easily, and so on.

The context of each command is one of three.
The observer object is the context when the con-
text is neither turtle nor the patch. It is called
the observer because this can be used in an

interactive simulation where the simulation user
can interact in this or another context using the
command window.

The Setup and Go Buttons — Although there
are no real rules to creating a NetLogo program,
one could design a program to have a set of pro-
cedures that can be called directly from the com-
mand center. However, in most cases it suffices
to have user interface buttons to call procedures.
For the sake of this article, we shall use the stan-
dard technique of buttons.

In our program, to start with, we shall have
two key buttons: setup and go. The idea is that
the setup button is called only once, and the go
button is called multiple times (automatically).
These can be inserted easily by right clicking
anywhere on the interface screen and selecting
buttons. So just to start with NetLogo, the user
will need to insert these two buttons in his or
her model, remembering to write the names of
the buttons in the commands. For the go, we
shall make it a forever button. A forever button
is a button that calls the code behind itself
repeatedly.

Now, the buttons show up in red text. This is
actually NetLogo’s way of telling us that the
commands here do not yet have any code associ-
ated with them. So let us create two procedures
named setup and go.

The procedures are written, as shown in Fig.
1a, in the procedures tab, and the comments
(which come after a semi-colon on any line in
NetLogo) explain what the commands do.

The code in Fig. 1a creates 100 turtles (nodes
in our case) on the screen. However, the shape
is a peculiar triangle by default, and colors are
assigned at random. Notice that we have written
code here to have the patches colored randomly.

To create the procedure for go, write the
code shown in Fig. 1b.

IEEE Communications Magazine • March 2009170

nn

Figure 2. Mobile nodes.

n Figure 1. a) Code for setup; b) code for go.

(a)

1. to setup
2. ca ; Clears everything so if we call setup again, it won’t make a mess
3. crt 100 ;This means we are creating a 100 turtles
4. [
5. setxy random-pxcor random-pycor ;These 100 turtles, we want them to be spaced out at random
6. ; patch x and y co-ordinates
7.]
8. let mycolor random 140 ; Randomly select a color value from 0 to 139
9. ask patches
10. [
11. set pcolor mycolor ; Ask all patches to set their color to this random color
12.]
13. end

(b)

1. to go
2. ask turtles
3. [
4. fd 0.001 ; ask each turtle to move a small step
5.]
6. end

NIAZI LAYOUT 2/17/09 3:00 PM Page 170

IEEE Communications Magazine • March 2009 171

Now, if we press setup and then go, we see
turtles walking slowly in a forward direction
on the screen, a snapshot of which is shown in
Fig. 2.

MODELING SELF-ORGANIZATION
Experiment I: Model ing Flocking of
Mobile Nodes — In this model flocking of
mobile wireless nodes within a certain radius
of a transmission tower is simulated. There are
two types of nodes. One type is spatially fixed
and corresponds to the transmission towers.
The second type performs a random walk until
they come within a certain (prespecif ied)
radius of one of the towers, when they stop
moving and change their color to the transmis-
sion tower’s color. We are using this behavior
to model flocking of wireless nodes within a
certain radius of a tower. These are illustrated
in Fig. 3.

MODELING COMPLEX PARADIGMS IN P2P
SYSTEMS

In the next set of experiments we demonstrate
the use of NetLogo for modeling and simulation
of complex paradigms in P2P systems.

Experiment II: Clustering of Nodes in a P2P
System — Clustering is an important technique
extensively used in the literature [8]. In this
example we demonstrate the use of NetLogo for
clustering in P2P systems. To generate this self-
organizing behavior, nodes initiate messaging
between nodes. The nodes first discover other
nodes within their sensing radius. Next, nodes
perform an election algorithm looking for a
node with the lowest ID (as is the norm in elec-
tion algorithms). Figures 4a and 4b illustrate ,
the initial unclustered nodes and clustered nodes
after applying self-organization, respectively.

nn

Figure 3. a) Towers (flags) and nodes; b) nodes after flocking.

(a) (b)

nn

Figure 4. a) Initial unclustered nodes; b) clustered nodes after applying self-organization.

(a) (b)

There are two types

of nodes; one type is

spatially fixed and

corresponds to the

transmission towers.

The second type of

nodes perform a

random walk until

they come within a

certain (pre-specified)

radius of one of the

towers, when they

stop moving and

change their color to

the transmission

tower’s color.

NIAZI LAYOUT 2/17/09 3:00 PM Page 171

IEEE Communications Magazine • March 2009172

Experiment III: Modeling Unstructured
Overlay Networks — Here we show how Net-
Logo can be used to model real-world examples
of unstructured overlay forming algorithms such
as Gnutella, random walk in P2P networks, as
well as pervasive environments as shown in [9].
Figure 5a shows the expanding ring algorithm
being applied to a lattice. The expanding ring
algorithm is an advanced form of flooding algo-
rithm where flooding is first performed with a
time-to-live (TTL) value of 1 and then subse-
quently 3, 5, and so on, until one of the queries
reaches the destination. Figure 5b shows the
application of an advanced form of random

walk, k-random walk with check, where there are
k random walkers. The idea is that every few
hops, these random walkers (queries) send a
message back to the source node to verify
whether or not the query needs to continue its
quest.

Experiment IV: Distributed Averaging
Using Gradients — In this final experiment we
first show, in Fig. 6a, how NetLogo can be used
to evaluate distributed consensus formation
using gradients. Next, we illustrate gradient for-
mation in wireless sensors (Fig. 6b). Fast self-
healing gradients are discussed in [10].

nn

Figure 5. a) Expanding ring algorithm in a lattice; b) k-random walk with check on a randomly connected
graph.

(a) (b)

nn

Figure 6. a) Mobility based-consensus formation in n = 1000 nodes; b) gradients formed around wireless sensors.

(a) (b)

NIAZI LAYOUT 2/17/09 3:00 PM Page 172

IEEE Communications Magazine • March 2009 173

CONCLUSIONS

In this article we have demonstrated the use of
NetLogo, an increasingly popular tool for agent-
based modeling in the M&S communities, from
the perspective of modeling and simulation of
self-organizing mobile and P2P systems. We
have illustrated the strengths and distinctive
aspects of agent-based modeling tools by
employing a number of simple experiments to
demonstrate the utility of the NetLogo tool in
the important domain of modeling and simula-
tion of P2P and ad hoc networks. In summary,
we conclude that NetLogo is not only extremely
flexible with a very short learning curve, but its
powerful generic capabilities can readily be
exploited to model self-organization in any com-
plex system.

ACKNOWLEDGMENTS
We would like to thank Prof. Jose Vidal for his
suggestion to try out NetLogo and Prof. Michael
Huhns for helping in selection of agent-based
toolkits, both from the University of South Car-
olina.

REFERENCES
[1] L. F. Perrone, Y. Yuan, and D. M. Nicol, “Simulation of

Large Scale Networks II: Modeling and Simulation Best
Practices for Wireless Ad Hoc Networks,” Proc. 35th
Winter Simulation Conf., 2003, pp. 685–93.

[2] V. Naoumov and T. Gross, “Simulation of Large Ad Hoc
Networks,” Proc. 6th ACM Int’l. Wksp. Modeling Analy-
sis Simulation Wireless Mobile Sys., 2003, pp. 50–57.

[3] K. Pawlikowski, J. Jeong, and R. Lee, “On Credibility of
Simulation Studies of Telecommunications Networks,”
IEEE Commun. Mag., 2000.

[4] M. Niazi and A. Baig, “Phased Approach to Simulation
of Security Algorithms for Ambient Intelligent (AmI)
Environments,” Proc. 40th Winter Simulation Conf.,
Ph.D. Student Colloqium, Dec. 7–11, 2007.

[5] U. Wilensky, NetLogo, Center for Connected Learning
Comp.-Based Modeling, Northwestern Univ., Evanston,
IL, 1999; http://ccl.northwestern.edu/netlogo

[6] J. M. Vidal, P. Buhler, and H. Goradia, “The Past and
Future of Multiagent Systems,” AAMAS Wksp. Teaching
Multi-Agent Sys., 2004.

[7] M. Niazi et al., “Simulation of the Research Process,” Proc.
2008 Winter Simulation Conf., 2008, pp. 1326–34.

[8] O. Younis, and S. Fahmy, “HEED: A Hybrid, Energy-Effi-
cient, Distributed Clustering Approach for Ad Hoc Sen-
sor Networks,”IEEE Trans. Mobile Comp., vol. 3, no. 4,
pp. 366–79.

[9] M. Niazi, “Self-Organized Customized Content Delivery
Architecture for Ambient Assisted Environments,”
UPGRADE-CN ’08, Boston, MA, June 23, 2008.

[10] J. Beal et al., “Fast Self-Healing Gradients,” ACM SAC
’08, Fortaleza, Ceará, Brazil, Mar. 16–20, 2008.

BIOGRAPHIES
MUAZ NIAZI [M] (man@cs.stir.ac.uk) obtained his B.S. in
electrical engineering from NWFP UET, Pakistan, and a
Master’s degree in computer science from Boston Universi-
ty in 1996 and 2004, respectively. After working in indus-
try for several years, he is currently an assistant professor
of software engineering at Foundation University, Pakistan,
as well as a doctoral student at the University of Stirling,
Scotland. He is a member of the IEEE Communications and
Computational Intelligence Societies. He is also a member
of the IEEE CIS Task Force on Intelligent Agents and the
IEEE CIS Task Force on Organic Computing. He has served
on the program committees of a number of conferences
and workshops such as Bio-Inspired Algorithms for Dis-
tributed Systems and the IEEE Wireless Communications
and Networking Conference 2009, as well as the IEEE CIS
Symposium on Intelligent Agents, where he is also co-chair
of a special session on self-adaptive agents. He is also a
reviewer for international journals, including the Elsevier
Journal of Network and Computer Applications. His areas
of research interest are modeling and simulation of self-
organizing and self-adaptive systems in the P2P and ad hoc
network domain, and novel applications of socially inspired
techniques.

AMIR HUSSAIN [SM] (a.hussain@cs.stir.ac.uk) obtained his
B.Eng. (with 1st Class Honors) and Ph.D., both in electronic
and electrical engineering from the University of Strath-
clyde in Glasgow, Scotland, in 1992 and 1996, respectively.
He is currently a reader in computing science at the Univer-
sity of Stirling in Scotland. His research interests are mainly
interdisciplinary, and include machine learning and cogni-
tive computing for modeling and control of complex sys-
tems. He holds one international patent in neural
computing, is editor of five books, and has published over
100 papers in journals and refereed international confer-
ence proceedings. He is Editor-in-Chief of Springer’s Cogni-
tive Computation, Associate Editor for IEEE Transactions on
Neural Networks, and serves on the Editorial Boards of a
number of other journals. He is IEEE Chapter Chair of the
U.K. & RI IEEE Industry Applications Society and is a Fellow
of the U.K. Higher Education Academy.

NetLogo is not only

extremely flexible

with a very short

learning curve,

but its powerful

generic capabilities

can be readily

exploited to model

self-organization in

any complex system.

NIAZI LAYOUT 2/17/09 3:00 PM Page 173

