
Provided by the author(s) and University College Dublin Library in accordance with publisher

policies. Please cite the published version when available.

Title Agent migration and communication in WSNs

Authors(s) Muldoon, Conor; O'Hare, G. M. P. (Greg M. P.); O'Grady, Michael J.; Tynan, Richard

Publication date 2008-12

Publication information Huang, Z. ...[et al.] (eds.). Ninth International Conference on Parallel and Distributed

Computing, Applications and Technologies PDCAT 2008 : proceedings

Conference details 1st International Workshop on Sensor Networks and Ambient Intelligence 1-4th December

2008, Dunedin , New Zealand

Publisher IEEE Computer Society Press

Link to online version http://doi.ieeecomputersociety.org/10.1109/PDCAT.2008.58

Item record/more information http://hdl.handle.net/10197/1329

Publisher's version (DOI) 10.1109/PDCAT.2008.58

Downloaded 2022-08-22T21:42:29Z

The UCD community has made this article openly available. Please share how this access

benefits you. Your story matters! (@ucd_oa)

© Some rights reserved. For more information, please see the item record link above.

https://twitter.com/intent/tweet?via=ucd_oa&text=DOI%3A10.1109%2FPDCAT.2008.58&url=http%3A%2F%2Fhdl.handle.net%2F10197%2F1329

Agent Migration and Communication in WSNs

Conor Muldoon, Gregory M.P. O’Hare, Michael J. O’Grady, Richard Tynan
CLARITY: The Centre for
Sensor Web Technologies,

School of Computer Science and Informatics,
University College Dublin (UCD),

Belfield, Dublin, Ireland.
{conor.muldoon, gregory.ohare, michael.j.ogrady,richard.tynan}@ucd.ie

Abstract

Intelligent agents offer a viable paradigm for enabling
AmI applications and services. As WSN technologies
are anticipated to provide an indispensable component in
many application domains, the need for enabling the agent
paradigm to encompass such technologies becomes more
urgent. The resource-constrained ad-hoc nature of WSNs
poses significant challenges to conventional agent frame-
works. In particular, the implications for agent function-
ality and behaviour in a WSN context demand that issues
such as unreliable message delivery and limited power re-
sources, amongst others, be considered. In this paper, the
practical issues of agent migration and communication are
considered in light of WSN constraints. The discussion is
illustrated through a description of approaches adopted by
Agent Factory Micro Edition (AFME).

1 Introduction

Ambient Intelligence (AmI) is an emerging field whose
focus is on the development of applications that combine
the concepts of intelligent systems with those of ubiquitous
computing. The goal of ambient intelligence is the creation
of intelligent electronic environments that are sensitive and
adaptive to people and their perceived requirements. If sys-
tems are to be truly sensitive to the context of the user, they
must be capable of dynamically altering their behaviour at
run-time. In essence, they must be capable of acting in an
intelligent and proactive manner.

Considerable research has been invested in the devel-
opment of proactive intelligent systems by the agent de-
velopment community and, as such, agent technology has
much to offer the ambient domain. This is why ubiqui-
tous computing has been recognised as one of the key ar-

eas of research for agent technologies [1] [2]. The abil-
ity to migrate enhances an agent’s capabilities to adapt and
respond to unexpected events. This flexibility makes mo-
bile agents adept at managing the complexity of emergent
behaviour synonymous with ambient systems. Traditional
agent frameworks have implicitly assumed the availability
of fixed network communications and significant computa-
tional resources. Ubiquitous computing and its constituent
technologies of mobile devices and Wireless Sensor Net-
works (WSNs) challenge this assumption. One framework
that seeks to address the constraints and heterogeneity of
AmI environments is Agent Factory Micro Edition (AFME)
[3] [4].

AFME is a minimised footprint intelligent agent plat-
form that was originally developed for use with 3G mobile
phones. Deploying the platform on sensor motes introduces
a number of problems to be addressed. As an example, con-
sider communication. In 3G networks, communication and
migration is facilitated through the use of sockets that oper-
ate on top of a TCP/IP stack. Sensor nodes do not typically
support such a stack; therefore, it was necessary to reengi-
neer the original AFME message transport and migration
[5] services. As an initial target platform, the Sun SPOT
mote was chosen as it comprised the Squawk JVM [6] and
has relatively high processing capabilities when compared
to other motes.

2 Some Reflections on Agents

The majority of computer systems currently in operation
employ algorithms that are based on the concept of perfect
information. In ubiquitous environments, the situation is
more complex. Pervasive or ubiquitous systems necessi-
tate a capability to deal with partial information and uncer-
tainty. Such types of systems are highly complex and are in-
tractable using traditional approaches to software develop-

UCD Library
Text Box
©2008 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrightedcomponent of this work in other works must be obtained from the IEEE.

ment. Agent architectures encapsulate a number of mecha-
nisms for dealing with uncertainty and change. One sophis-
ticated agent architecture is based on the mentalistic con-
structs of Belief, Desire, and Intention (BDI) [7]. AFME is
strongly influenced by the BDI paradigm.

Beliefs represent knowledge that an agent has of the
world at a given moment in time. Beliefs are necessary for
a number of reasons. The world is dynamic, therefore past
events must be remembered. Agents have a limited view
of the world and only remember events within their sphere
of perception. In resource-bounded scenarios, agents cache
important information rather than re-compute it from per-
ceptual data.

Desires or goals represent a state of the world that an
agent wishes to bring about. Goals provide an agent with
the means by which it can identify the purpose of a par-
ticular task. Traditional approaches to software develop-
ment are activity-oriented rather than goal-oriented. With
an activity-oriented approach, the system has no memory of
why a particular activity was executed. By abstracting this
information, agents are endowed with a mechanism to re-
cover from failures and to opportunistically take advantage
of unexpected events or possibilities as they become avail-
able.

Agents are resource-bounded and will not be capable of
achieving all of their desires even if the desires are consis-
tent. An agent must fix upon a subset of its desires and
commit resources to achieving them. This subset of desires
represents an agent’s intentions.

Agents rarely exist in isolation, but usually form a coali-
tion of agents or a Multi-Agent System (MAS). Though
endowed with particular responsibilities, each individual
agent interacts with other agents in the framework to fulfil
the objectives of the system. Fundamental to this cooper-
ation and collaboration is the existence of an Agent Com-
munication Language (ACL) shared and understood by all
agents. The necessity to support inter-agent communica-
tion has led to the development of an international ACL
standard, which has been ratified by the Foundation for In-
telligent Physical Agents (FIPA), an autonomous standards
committee of the IEEE.

Migration refers to an agent’s capability to transport its
state from one environment to another, with its data intact,
so that it is capable of continuing to operate at its destina-
tion. There have been several uses for migration reported in
the literature [8] [9]. For instance, in certain circumstances
it will be more efficient for agents to migrate to a shared lo-
cation and communicate locally, rather than communicate
remotely. Mobile agents are more autonomous than static
agents, if something goes wrong at a particular location, a
mobile agent will move to a new location and from there
continue to achieve its objectives. In certain cases, it is bet-
ter in terms of network load to bring the computation to the

data rather bringing the data to the computation.

3 Overview of AFME

Agent Factory Micro Edition (AFME) is an intelligent
agent framework for ubiquitous devices. Typically, intelli-
gent agent frameworks are based on a declarative agent pro-
gramming language, although in practice most of them are
used in conjunction with imperative components. This is
the case with AFME. AFME agents are imbued with mech-
anisms that enable them to interact with their environment.
Agents perceive and act upon the environment through per-
ceptors and actuators respectively. The word perceptor is
used rather than sensor to distinguish the software compo-
nent from hardware sensors. Perceptors and actuators rep-
resent the interface between the agent and the environment
and are implemented in Java. This interface acts as an en-
abling mechanism through which the agents are situated.

AFME uses the Agent Factory Agent Programming Lan-
guage (AFAPL), which is declarative. AFAPL is based on a
logical formalism of belief and commitment [10]. AFME
agents follow a sense-deliberate-act cycle.The agents are
executed at periodic intervals using a scheduler. Four func-
tions are performed when an agent is executed. First, the
perceptors are fired. The perceptors generate beliefs, which
are a symbolic representation of information content. The
information content is in relation to either the agent’s state
or to something in the environment. To adopt a belief, the
perceptor calls a method that adds the belief to the agent’s
belief set. Second, the agent’s desires are identified using
resolution-based reasoning. Resolution-based reasoning is
the goal-based querying mechanism commonly employed
within Prolog interpreters. Third, the agent’s commitments
are identified using a knapsack procedure [11]. Fourth, de-
pending on the nature of the commitments adopted, various
actuators are fired.

In AFME, rules that define the conditions under which
commitments are adopted are used to encode an agent’s be-
haviour. The following is an example of an AFME rule1:

message(request,?sender,
removeData(?user))>deleteRecord(?user);

The truth of a belief sentence (text prior to the > symbol)
is evaluated based upon the current beliefs of the agent. The
result of the query process is either failure, in which case the
belief sentence is evaluated to false or to a set of bindings
that cause the belief sentence to be evaluated to true. In
AFAPL, the ? symbol represents a variable. In this exam-
ple, if the agent has adopted a belief that it has received a
message from another agent to remove user data, it adopts

1It should be noted that this is a shorthand version of AFAPL, used
within AFME to reduce development time.

a commitment to delete the record related to the user. At
an imperative level, a perceptor that is written in Java mon-
itors the message transport service, which contains a server
thread that receives incoming messages. Once a message
is received, it is added to a buffer in the service. Subse-
quently, the perceptor adds a belief, which is a first order
structure Java class, to the agent’s belief set. The interpreter
periodically evaluates the belief set. If the conditions for
a commitment are satisfied (that is, all of the beliefs prior
to the > symbol in the rule have been adopted), either a
plan is executed to achieve the commitment or a primitive
action or actuator is fired. In this paper, we shall only con-
sider primitive actions. When an actuator is created, it is
associated with a symbolic trigger. In this case, a delete
record actuator, written in Java, is associated with the trig-
ger string deleteRecord(?user). Once the commitment is
activated, the ?user variable is passed to the actuator and
the imperative code for deleting the file is executed. Struc-
turing agents in this manner is useful in that it enables their
behaviour to be altered at a symbolic level rather that having
to modify the imperative code.

In AFME, the commitment to the right of the implica-
tion (the > symbol) can take additional arguments. These
arguments represent to whom the commitment is made, the
time at which the commitment should be executed, the pred-
icate for maintaining the commitment, and the utility values
of the commitment. These additional arguments go beyond
the scope of this paper and shall not be described here (for a
discussion of how these arguments are supported in AFME
see [12]).

3.1 Platform Architecture

In AFME, as with the majority of agent frameworks,
agents operate on platforms rather than as stand alone pro-
cesses. This reduces resource usage as separate JVM in-
stantiations or Java Isolates are not required for each indi-
vidual agent. Additionally, agents share common platform
services. Typically, there is one platform per device or com-
puter and multiple agents on the platform. Within a plat-
form there are usually a number of platform services, such
as the message transport service. A service is a shared infor-
mation space between agents on a local agent platform that
provides functionality that the agents can avail of through
the use of actuators and perceptors.

Figure 1 illustrates the AFME architecture. An AFME
platform comprises a scheduler, a group of agents, and
serveral platform services. This paper concerns the devel-
opment of two such services, namely the wireless message
transport and migration services.

To improve reuse and modularity within AFME, actua-
tors, perceptors, and services are prevented from containing
direct object references to each other. Rather than passing

Figure 1. AFME Architecture

messages directly, they interact via perception and affect
managers, which are generic AFME classes. This ensures
that communication between the components is agnostic.
The messages that are passed between the components are
in the form of first order structures. First order structures
provide a symbolic representation of the information con-
tent and ensure that messages passed do not expose internal
details of the message senders. Actuators and perceptors
developed to interact with a platform service in one appli-
cation can be used, without making any imperative alter-
ations, to interact with a different service in a different ap-
plication and vice versa. The implementation of platform
services can be completely altered without having to mod-
ify or recompile the actuators and perceptors. A completely
different class could even be used to provide the function-
ality. Additionally, the same platform service may be used
within two different applications to interact with a different
set of actuators and perceptors. This provides a more flexi-
ble approach than simply using object polymorphism in that
the classes’ inheritance structure or implemented interfaces
need not be known and can thus be altered without affecting
caller or callee constructs2.

The system components of AFME are interchangeable
because they interact without directly referencing one an-
other. They contain dependencies on the first order struc-
ture class and the affect and perception managers. They do
not contain dependencies on each other. When a service is
created, it is associated with a uniquely identifiable name.
Actuators and perceptors use this name to indicate the target
object for a particular message. They call the appropriate
method on the affect and perception managers. The name is
resolved to a service instance and the message is forwarded
on appropriately.

To illustrate the advantage of decoupling the actuators,
perceptors, and services, consider the situation whereby an

2The callee is restricted from knowing (referencing) the class structure
of the service. The only assumption that can be made is that it extends a
particular abstract class. If the abstract class is changed, it will still not
affect the callee only the managers.

Figure 2. Agent migration path between het-
erogeneous temperature platforms.

agent must monitor and control a network of heterogeneous
temperature sensors (see Figure 2). The imperative code
for calibrating and obtaining information from the sensors
on each platform is different and has been implemented
within a local platform service. In this example, the agent
migrates from platform to platform, obtaining information
from the service, and calibrating the various sensors accord-
ingly. Since the agent does not obtain a direct object refer-
ence to the local temperature service as it’s operating on it,
the developer need only write a single set of actuators and
perceptors for interacting with the services.

Decoupling the system components is useful when
agents must migrate between significantly different types of
environment, such as a mobile phone and a sensor mote. In
such situations, internal services will be implemented dif-
ferently and have a different class structure.

4 Wireless Message Transport Service

The wireless message transport service discussed here
differs significantly from the original message transport ser-
vice [4], which was developed for mobile phones. The
Sun SPOT motes communicate using the IEEE 802.15.4
standard, including the base-station approach to sensor net-
working. The wireless message transport service facilitates
peer to peer communication between agents and is based on
the Sun SPOT radiogram protocol rather than TCP/IP. The
radiogram protocol uses datagrams to facilitate communi-
cation between motes. With the Sun SPOT radiogram pro-
tocol, the connections operating over a single hop have dif-
ferent semantics to those operating over multiple hops. This
is due to a performance optimisation. When datagrams are

sent over more than one hop, there are no guarantees about
delivery or ordering. In such cases, datagrams will some-
times be silently lost, be delivered more than once, and out
of sequence. When datagrams are sent over a single hop,
they will not be silently lost or delivered out of sequence,
but sometimes they will be delivered more than once.

The radiogram protocol operates in a client server man-
ner. When the message transport service is created, a server
thread is created to receive incoming messages. When a
message is received it is added to an internal buffer within
the service. An agent will subsequently perceive messages
through the use of a perceptor.

When an agent is sending a message, it attempts to open
a datagram client connection. The datagram server connec-
tion must be open at the destination. With datagrams a con-
nection opened with a particular address can only be used to
send to that address. The wireless message transport service
only allows agents to send messages of a maximum size. If
the contents of the message is greater than the limit, it is
first split into a number of sub messages within an actuator
and each sub message is then sent using the message trans-
port service. When all sub messages have been received,
the entire message is reconstructed within a perceptor and
then added to the belief set of the agent.

5 Wireless Migration Service

Migration refers to the process of transferring an agent
from one platform to another. Agent migration is often
classified as either strong or weak. This classification is
related to the amount of information transferred when an
agent moves. The more information transferred the stronger
the mobility. The strongest form of migration possible re-
quires the transfer of the entire internal stack of the process
in question. With this type of migration, execution is in-
terrupted midway through a method or operation invocation
at the source and started again at the destination at exactly
the same point. This is not possible in heterogeneous envi-
ronments, where the internal stacks are implemented differ-
ently. In such environments, weaker forms of mobility are
necessary.

Truly strong migration is not possible in Java, since
much of an application’s state is under the control of the
JVM. Within Java the internal implementation details of the
JVM remain hidden. This facilitates platform independent
development. The consequences of this, however, are that
a Java application is prevented from transferring a process
midway through execution in a transparent manner. For the
majority of mobile applications though it is not necessary
to transfer the internal stack of the JVM. It is usually suffi-
cient to transfer the requisite code and the internal states of
the objects within the system.

Within AFME, support is only provided for the trans-

fer of the agent’s mental state. Any classes required by
the agent must already be present at the destination. This
is because the Constrained Limited Device Configuration
(CLDC)3 does not contain an API for dynamically loading
foreign objects.

In the Squawk JVM, it is possible to migrate an appli-
cation to another Squawk enabled device. Squawk imple-
ments an isolate mechanism, which can be used can for a
type of code migration [6]. Isolate migration is not used in
AFME. The reason for this is that isolate migration is de-
pendent on internal details of the JVM and is therefore not
really platform independent in the sense that an isolate can
only be transferred to another Squawk JVM. It could not be
used to transfer an application to a CLDC JVM written in C
or C++, such as those used on the majority of mobile phone
JVMs, for example. Additionally, with isolates, it would
be necessary to migrate the entire application or platform,
rather than just a single agent, which is not what we want.

The AFME wireless migration service uses both the Sun
SPOT radiogram protocol and radiostream protocol. The ra-
diostream protocol operates in a similar manner to TCP/IP
sockets. It provides reliable, buffered, stream-based com-
munication between motes. This, however, comes at a
cost in terms of power usage. The reason this approach is
adopted for agent migration is that we wish to ensure that
agent does not become corrupt or lost due to the migration
process. If a message is lost or corrupt, the system can re-
cover by resending the message. If an agent is lost or cor-
rupt, it can not be recovered without duplication or redun-
dancy, which would also use up resources and would be-
come complex to manage as agent artefacts would be scat-
tered throughout the network.

The problem with the radiostream protocol, however, is
that both the target platform and the source platform must
know each others MAC address before a connection can be
established. That is, it does not adopt a client server ap-
proach or operate in a similar manner to the radiogram pro-
tocol. In a dynamic mobile agent setting, it is unlikely that
the addresses of the platforms of all source agents will be
known a priori at compile time. To get around this prob-
lem, when an agent wishes to migrate to a particular plat-
form, initial communication is facilitated through the use of
datagrams. Using datagrams, the platforms exchange ad-
dress and port information and subsequently construct a ra-
diostream. Once the radiostream is established, the agent
is transferred through the reliable connection and then ter-
miniated at the source. Subsequently, the stream connection
is closed. At the destination, the platform creates and starts
the agent.

3CLDC is the Java platform specification for resource constrained de-
vices.

Service Jar Size NCSS McCabe Complexity
Migration 7k 151 2.08

MTS 9k 249 4.25

Table 1. Results

6 Evaluation

The following metrics were used to evaluate the footprint
and maintainability of the wireless migration and message
transport services: McCabe Cyclomatic Complexity, Non-
Commenting Source Statements (NCSS), and independent
Jar size4. The results are presented in Table 1.

7 Related Work

There have been a number of alternative agent frame-
works developed for mobile devices [13] [14] [15] [16],
such as mobile phones and PDAs, but at present there are
no intelligent agent frameworks for sensor nodes. To de-
ploy such frameworks in a WSN setting, significant changes
would have to be made to their networking platform ser-
vices. Indeed, some of these frameworks do not include a
networking capability. Agilla [17] is an agent platform for
embedded devices, but it does not contain reasoning capa-
bilities and therefore does not conform to the same defini-
tion of agency as AFME.

There have been several frameworks developed to facil-
itate agent migration. At present, however, most of these
frameworks are based on protocols that are not supported
by WSN motes. For such frameworks to be deployed in a
WSN setting, significant modifications would be required

8 Conclusion

This paper detailed the wireless message transport and
migration services of AFME, an open source intelligent
agent framework for ubiquitous devices. The original mi-
gration and message transport services of the framework
had to be reengineered due to the different communications
mechanisms available on the Sun SPOT when compared to
mobile phones. Due to the manner in which AFME is struc-
tured, the consequences of this alteration remained hidden.
When AFME agents wish to interact with platform services,
they do so through the use of first order structures. That
is, information is transferred through the use of a symbolic
construct rather than directly through the use of object ref-
erences. The consequences of this are that if a new service

4Indpendent Jar size refers to the individual Jar size of the service. In
deploying the software to a device, only a single Jar file, containing AFME
and requisite services, would be used.

is created or is replaced, no alterations are required to the
agents that use the service.

At present, there are no other intelligent agent frame-
works designed to operate on Sun SPOT motes. The reason
for this is likely that, until recently, the processing power
of WSN motes was insufficient to deploy such frameworks.
Agent frameworks do exist for low specification devices,
such as Berkeley motes, but those frameworks do not con-
tain reasoning capabilities. With more powerful motes, such
as the Sun SPOT, on the market, it is feasible to implement
more intelligent applications; such developments are a pre-
requisite to the attainment of the AmI vision.

Acknowledgment

This material is based upon works supported by the Sci-
ence Foundation Ireland and the Irish Research Council for
Science, Engineering, and Technology.

References

[1] S. Creese, “Future challenges in pervasive computing
environments,” SC Infosec article, Mar. 5, 2003.

[2] J. Pearce, “Pervasive computing is the future,” ZD Net
article, Jan. 30, 2003.

[3] C. Muldoon, “An agent framework for ubiquitous ser-
vices,” Ph.D. dissertation, School of Computer Sci-
ence and Informatics, Dublin, Ireland, 2007.

[4] C. Muldoon, G. M. P. O Hare, R. W. Collier, and M. J.
O Grady, “Agent Factory Micro Edition: A Frame-
work for Ambient Applications,” in Intelligent Agents
in Computing Systems, ser. Lecture Notes in Computer
Science, vol. 3993. Reading, UK: Springer, 28-31
May 2006, pp. 727–734.

[5] C. Muldoon, G. M. P. O Hare, and J. F. Bradley, “To-
wards Reflective Mobile Agents for Resource Con-
strained Mobile Devices.” in AAMAS 07: Proceed-
ings of the Sixth International Joint conference on Au-
tonomous Agents and Multiagent Systems. Honolulu,
Hawai’i: ACM, May 14-18 2007.

[6] D. Simon and C. Cifuentes, “The squawk virtual ma-
chine: Javatm on the bare metal,” in OOPSLA ’05:
Companion to the 20th annual ACM SIGPLAN confer-
ence on Object-oriented programming, systems, lan-
guages, and applications. New York, NY, USA:
ACM, 2005, pp. 150–151.

[7] A. S. Rao and M. P. Georgeff, “BDI Agents: from the-
ory to practice,” Proceedings of the First International

Conference on Multi-Agent Systems (ICMAS’95), pp.
312–319, June 1995.

[8] T. Schlegel, P. Braun, and R. Kowalczyk, “Towards
autonomous mobile agents with emergent migration
behaviour,” in AAMAS ’06: Proceedings of the fifth
international joint conference on Autonomous agents
and multiagent systems. New York, NY, USA: ACM
Press, 2006, pp. 585–592.

[9] A. E. Fallah-Seghrouchni and A. Suna, “An unified
framework for programming autonomous, intelligent
and mobile agents.” in CEEMAS, 2003, pp. 353–362.

[10] R. W. Collier, “Agent Factory: A Framework for the
Engineering of Agent-Oriented Applications,” Ph.D.
Thesis, 2001.

[11] M. R. Garey and D. S. Johnson, Computers and
Intractability; A Guide to the Theory of NP-
Completeness. New York, NY, USA: W. H. Freeman
& Co., 1990.

[12] C. Muldoon, G. M. P. O Hare, and M. J. O Grady,
“Managing Resources in Constrained Environments
with Autonomous Agents.”

[13] M. Berger, S. Rusitschka, D. Toropov, M. Watzke, and
M. Schlichte, “The Development of the Lightweight
Extensible Agent Platform,” EXP in Search of Inno-
vation, vol. 3, no. 3, pp. 32–41, 2003.

[14] F. Koch, J.-J. Meyer, F. Dignum, and I. Rahwan, “Pro-
gramming Deliberative Agents for Mobile Services:
the 3APL-M Platform,” AAMAS’05 Workshop on Pro-
gramming Multi-Agent Systems (ProMAS05), 2005.

[15] S. Khalique, S. Farooq, H. F. Ahmad, H. Suguri, and
A. Ali, “Sage-lite: An architecture and implementa-
tion of light weight multiagent system,” ISADS, vol. 0,
pp. 239–244, 2007.

[16] W. Wright and D. Moore, “Design considerations for
multiagent systems on very small platforms,” in AA-
MAS ’03: Proceedings of the second international
joint conference on Autonomous agents and multia-
gent systems. New York, NY, USA: ACM Press,
2003, pp. 1160–1161.

[17] C.-L. Fok, G.-C. Roman, and C. Lu, “Rapid devel-
opment and flexible deployment of adaptive wireless
sensor network applications,” in Proceedings of the
24th International Conference on Distributed Com-
puting Systems (ICDCS’05). IEEE, June 2005, pp.
653–662.

