
Agent Space Architecture for Search Engines

Ben Choi & Rohit Dhawan

Computer Science, College of Science and Engineering
Louisiana Tech University, LA 71272, USA

pro@BenChoi.org

This research was supported in part by a grant from the Center for Entrepreneurship and Information Technology (CEnIT),
Louisiana Tech University.

Abstract

The future of computing is moving from individual
processing units to communities of self organizing
agents. In this paper we propose a new agent and
network based architecture for parallel and
distributed computing called Agent Space
Architecture. Our architecture builds upon the
notions of agent and Object Space and utilizes
multicast networks. The building blocks for our
proposed architecture consist of an active processing
unit called agent, a shared place for communication
called space, and a communication medium called
multicast network. One unique feature of our
architecture is that we extend the concept of Object
Space to become an Active Space. Our Active Space
functions as a rendezvous, a repository, a cache, a
responder, a notifier, and a manager of its own
resources. The organization of our architecture is as
general as network topology. Any number of agents,
spaces, or networks can be added to achieve high
performance. It is as scalable as Ethernet and adding
agents or spaces is as easy as plug and play. High
availability and fault tolerance is achieved through
multiple agents, spaces, and networks. All these
features are particularly beneficial for challenging
applications such as search engine, which is used as
a test case to implement and to test our proposed
architecture.

1 Introduction

Parallel and distributed computing has great potential
for exploiting the vast computational power of
millions of personal computers all over the world.
Although there are successful cases of using large
number of PC’s, the current difficulty for scalability
is due largely to the highly coupling on the
underlying management software and parallel
programming interfaces such as Message Passing
Interface (MPI). For instance, Google architecture
utilizes over 15000 PC’s and continues to adding
more for keeping up with the explosive growth of the
number of Web pages [2-4]. It also utilizes separated

fault tolerance software [4] and MPI, which make
management, administration, and configuration of
such a large server farm become a major issue. The
search engine architecture of Inktomi Corporation
[1,7] serves portals such as Yahoo, HotBot,
Microsoft MSN, Geocities, NTT “goo” Tokyo. It is a
cluster based architecture utilizing RAID arrays [6]
and Myrinet [14]. AltaVista, Lycos, and Excite make
use of large SMP supercomputers [1] and as such
fault tolerance is done through multiple replicated
SMP, which results in limited scalability but costly
replications. Search engine represents a challenging
application for parallel and distributed processing,
which is used as a test case to implement and to test
our proposed architecture.

In this paper we propose a parallel and distributed
computing architecture that is highly modular and
requires least human intervention. Our architecture
builds upon the notions of agent and Object Space
and utilizes multicast networks. The building blocks
for our proposed architecture consist of an active
processing unit called agent, a shared place for
communication called space, and a communication
medium called multicast network. Multiple building
blocks are organized to form a parallel and
distributed computing architecture.

2 Related Research

Our proposed architecture is built upon an extended
notion of Object Space [5]. An Object Space is a
shared medium that simply acts as a rendezvous for
agents to meet there either to serve or be served
without the knowledge of each others identity,
location, or specialization. Other variations of Object
Space are JavaSpace [5], IBM’s TSpaces [10],
TONIC [11], JINI [15], and TupleSpace [12, 16].

Several architectures based on the notion of Object
Space have been proposed. One of the proposed
architecture [8] utilizes an Object Space as a
repository of various roles where agents adapt to
changing demands placed on the system by
dynamically requesting their behavior from the space.
A framework for cluster computing using JavaSpace
[5], Object Space for Java, has been described in [9].

Proceedings of the IEEE/WIC/ACM International Conference on Intelligent Agent Technology (IAT’04)
0-7695-2101-0/04 $ 20.00 IEEE

BCs
BenChoi.info

http://BenChoi.info

It uses a network management module for monitoring
the state of the agents and uses the state information
to schedule tasks to the agents. JavaSpaces has also
been used for scientific computation [13]. It supports
the perspective that JavaSpace solution has merits
when used in high performance computing.

3 Our Proposed Agent Space
Architecture

The building blocks for our proposed Agent Space
Architecture consists of an active processing unit
called agent, a shared place for communication called
space, and a communication medium called multicast
network. Multiple building blocks can easily be
organized to form a parallel and distributed
computing architecture.

3.1 Agent

Our agent plays many active roles in parallel and
distributed computing. In the concept of Object
Space, our agent can function as a master or a
worker. In general, our agent is an active processing
unit. Once started it actively seeks for tasks to be
done and actively monitors events to be handled.

Multiple agents work in groups. Agents can join or
leave a workgroup. Agents within a workgroup
communicate with each other through shared spaces.
If an agent needs a certain task to be done by other
agents, it can simply deposit the task into a shared
space. Another agent monitoring the space can pick
up the task, complete the task, and deposit the results
back into the space. Then, the original agent can
simply pick up the results from the space.

An agent who needed a task to be completed only
cares the task eventually got done. It does not care
who completed the task. In our Agent Space
Architecture, an agent does not even know the
identity of other agents. This creates a working
environment in which agents can join or leave with
ease. However, this also creates a working
environment in which an agent does not have the
assurance that its task will eventually get done. One
way to have such an assurance is to insure at least
one agent that can complete the task remains in the
workgroup. The abilities of a workgroup are in part
the sum of the abilities of its agent workers.

3.2 Space

Our space extends the concept of Object Space to
become an Active Space. Our Active Space functions
as a rendezvous, a repository, a cache, a responder, a
notifier, and a manager of its own resources. It acts as
a rendezvous for Agents to communicate with each
others. It acts as a repository and a share memory for

agents to deposit requests and temporally save
results. It acts as a cache in that results are stored
there and when an agent needs the results it simply
reads the results. This reduces repeated computations
when several agents need the same results.

Our Active Space also acts as a responder to let
agents know that it is there, when an agent is trying
to discover a space to join. In addition, it acts as a
notifier to broadcast its state changes for events such
as, new requests are deposited or new results are
returned.

The Active Space also acts as a manager of its own
resources. It is a manager for its rendezvous,
repository, cache, responder, and notifier. For
instance, it manages its memory as cache manager
that takes care of cache replacements.

3.3 Multicast Network

We select multicast network as a medium for our
agents to communicate with our Active Spaces and
for the Active Spaces to broadcast events to agents.
Multicast network [17, 18] provides the facilities for
agents and spaces to function in a group. An agent
joins the group by simply connecting to the network
and announces its present. Active Spaces in the
network will respond to the newcomer. This
establishes direct communication between the agent
and the spaces.

3.4 Organization for Parallel and Distributed
Computing

The organization of our parallel and distributed
computing architecture is as general as network
topology. The minimum functional configuration
requires one agent, one space, and one multicast
network. This configuration can easily be expanded
by simply connecting more agents or more spaces
into the network. It is as easy as plug and play. Once
connected, an agent will automatically discover
spaces to join, and a space will automatically
announce its present and invite agent to join the new
space. The organization can further be expanded by
adding more networks. An agent or a space can
connect to multiple networks (or network segments)
by using multiple ports.

4 Design for Search Engine Application

Although our Agent Space Architecture is a general
framework for parallel and distributed computing, we
choose search engine application as a test case for
implementing and testing our architecture. We have
implemented and tested our Search Engine
Architecture (Figure 1) [21]. To reduce development
time we implemented our architecture by utilizing

Proceedings of the IEEE/WIC/ACM International Conference on Intelligent Agent Technology (IAT’04)
0-7695-2101-0/04 $ 20.00 IEEE

API’s of JINI platform provided by Sun
Microsystems [15] and by using Apache and Tomcat
as our web and application servers.

Implementing Agents

All our agents automatically discover a space to join
as soon as they are started. After joining a space, an
agent becomes a member of the workgroup specified
by the name of the space. For instance, as shown in
Figure 1, the agents in the bottom row, Agent A,
Agent B, and so on, are members of workgroup
Space Word. An agent can be a member of multiple
workgroups. For instance, each of the Agent Word in
Figure 1 is a member of workgroup Space Word and
a member of workgroup Space Search. We
implemented this automatically discovery process for
our agent by utilizing the Discovery and Lookup

protocols provided by JINI [15]. In particular, as
shown in Figure 2, we use a SpaceListener interface
that extends the DiscoverListener interface defined in
JINI. During the discovery process, an agent
broadcasts a request through a multicast network.
Active Spaces, such as Space Search or Space Word
in Figure 1, actively monitoring the multicast
network will respond to the request. As soon as the
agent receives a response from a space, it becomes
part of the workgroup.

All our agents also automatically monitor events to
be handled within their workgroups. The events
include new tasks need to be completed or new
results returned. An event is implemented as a type of
net.jini.core.event.RemoteEvent provided in JINI
API. To reduce communication overhead, we further
divide events into to types: group events and
individual events. Group events, such as new tasks
needed to be handled, are broadcast to all members of
the workgroup. Individual events, such as new results
that an agent is waiting for have returned, are sent to
the particular agent waiting for the events.

Different types of agents are able to handle
different types of tasks. For example, as shown in
Figure 1, those agents directly below the distributor
are able to handle search requests and to send the
search results directly to the clients, while those
agents in the bottom row of Figure 1 are able to
search database for web pages matching the
requested keywords. To capture the common
characteristics of agents and the individual abilities of
different types of agents, we implemented each of our
agents as defined in Figure 2. The individual abilities
of different types of agents are specified by using the
attribute called config that has the type Configuration
defined in net.jini.config.Configuration of the JINI
API.

Figure 1. Agent Space Architecture for
Search Engines

Figure 2. An Agent

Proceedings of the IEEE/WIC/ACM International Conference on Intelligent Agent Technology (IAT’04)
0-7695-2101-0/04 $ 20.00 IEEE

Implementing Spaces

To implement and test our Active Spaces, the Space
Search and the Space Word for our Search Engine
Architecture (Figure 1), we utilized the Lookup
service and the JavaSpace service provided by Sun
Microsystems [15]. Our Active Space automatically
responds to agents during the process for the agents
to discover spaces to join. This is made possible
through the Lookup service and the multicast
networks (to be described). The Lookup service
monitors multicast requests and helps establish direct
communication between an agent and a space.

Our Active Space functions like a repository for
agents to write, read, or take (that is read and
remove) tasks, for which we simply used the
corresponding functions provided by JavaSpace
service. We also make our Active Space functions
like a cache, in which the results of a task are stored
for a specific duration. When an agent needs to
complete certain task and finds that the results of the
task are already available, it will simply retrieve the
results. We simulated the first-in-first-out cache
replacement policy by using the Lease function
provided in JINI API. After a lease has expired, the
results of a task will be removed from the space.

When a new task is written into our Active Space,
the space will broadcast this event to all worker
agents who are listening to the space. This function is
implemented by using the notify method available in
JavaSpace service. In addition, we also use the notify
method for a space to notify a particle agent when the
results that the agent is waiting have been written by
other agent.

Implementing Multicast Networks

We implemented our multicast networks by using
three protocols, multicast request protocol, multicast
announcement protocol, and unicast protocol, which
are provided in JINI API. Multicast request protocol
is used by agents to discover Active Spaces via
Lookup service. Multicast announcement protocol is
used by Active Spaces to announce, via Lookup
Service, their presence in the network. And, unicast
protocol is used to establish direct communication
between agents and spaces after the discovery
process has been completed.

In our implementation, we simulated the three
different multicast networks as depicted in Figure 1
by using one ordinary Ethernet. This simulation does
not allow partitioning of network traffics, but is
sufficient for our testing purpose. An agent is preset
to discovery certain spaces. For example, the agents
in the bottom row of Figure 1 are preset to discover
Space Word, while an Agent Word is present to
discover both Space Word and Space Search.

Implementing Distributor

The distributor receives requests from clients and
distributes the requests to be processed by agents as
depicted in Figure 1. For our testing purpose, we used
Apache web server to receive requests from clients
and to pass the requests to Tomcat application server.
We implemented the distributor by using a Java
Server Page running within Tomcat and redirecting
the requests to the underlying agents. For load
balance, the distributor redirects a request to an agent
that is least recently used.

5 Benefits of Our Proposed Agent Space
Architecture

Our Agent Space Architecture provides a general
framework for parallel and distributed computing.
Supported by our test results, the proposed
architecture addresses major issues including high
performance, high scalability, ease of management,
high availability, and fault tolerance.

High Performance

High performance of our proposed architecture is
achieved by simply adding more agents, spaces, or
networks. Another feature of our architecture for high
performance is the result of using space as cache.
When an agent needs to perform certain task and
finds that the result of the task is already stored in the
space, there is not need to repeat the computations.
The agent simply reads the results from the cache.
This not only reduces repeated computations when
several agents need the same results but also reduces
the response time, which is practically beneficial for
search engine applications.

High Scalability and Ease of Management

Our architecture is as scalable as Ethernet. Any
number of agents, spaces, or networks can be added.
Adding an Agent is as simple as connecting the agent
to a network. The agent will then discover a space in
the network and become part of the workgroup. It is a
plug and play process. No manual configuration is
needed. Similarly, adding a space is simply
connecting the space to the network and the space
will broadcast its present through the multicast
network. Adding a network is as easy by connecting
agents and spaces into the network. This is made
possible by the fact that agents and spaces can be
connected to multiple networks through multiple
ports.

Proceedings of the IEEE/WIC/ACM International Conference on Intelligent Agent Technology (IAT’04)
0-7695-2101-0/04 $ 20.00 IEEE

High Availability and Fault Tolerance

High availability and fault tolerance is achieved
through multiple agents, spaces, and networks. For
instance, having multiple agents performing the same
role, the failure of an agent only downgrade the
performance and will not affect the overall
functionality of the system. Replacing an agent can
be as simple as disconnecting the agent from the
network and connecting another one. Having multiple
spaces, the failure of one space again will only
downgrade the performance. An agent pending for a
request to be completed will discover that the space is
not available and will then send the request to another
space. Similarly, having multiple networks, the
failure of one network will only downgrade the
performance in a larger extent. Agents and spaces can
continue to communicate through their ports that are
connected to a live network.

6 Conclusion and Future Research

Our highly distributed, hierarchical, modular
architecture promises high performance, scalability,
and availability, requires less human intervention,
and provides natural fault tolerance. Our experiences
with the architecture indicate that such a system is
easily configurable, extensible and hence mitigates
the management issues confronted by existing search
engine architectures. Although we implemented and
tested our proposed Agent Space Architecture for
search engine application and in particular used to
run our Information Classification and Search Engine
[19-22], the proposed architecture is general enough
for other high demand applications that require
parallel and distributed computing.

The framework outlined in this paper by using
agents and by using shared space for communication
among the agents can be applied to form computing
communities where agents come and leave at will.
The power of a computing community may be more
the sum of its parts. The future of computing is
moving from individual processing units to
communities of self organizing agents.

References

[1] Eric A. Brewer, “Inktomi Architecture, UC Berkley,”
http: //www.acm.org/ sigs/ sigmod/ disc/ disc99/
disc/nsf_acad_ind/ brewer/ index.htm.

[2] Sergey Brin and Lawrence Page, “The anatomy of a
large-scale web search engine”, Proceedings of the
7th Intl. WWW Conf., 107-117, 1998.

[3] Intel Corporation, Google, “http: //www. intel.com/
eBusiness/casestudies/snapshots/ google.htm”

[4] Mitch Wagne, “Google defies Dotcom DownTurn,”
http:// www. Internetwk.com/ story/
INW20010427S0010

[5] Eric Freeman, Susanne Hupfer, and Ken Arnold,
JavaSpaces: Principles, Patterns, and Practice,
Addison-Wesley, Reading, Massachusetts, 1999.

[6] Vijay Karamcheti, “Scalable Clusters: Architecture
and Software” http://www.Cs.nyu.edu/ courses/
spring98/ G22.3033.10/ lectures/lect0414.pdf, 1998.

[7] Inktomi, http://inktomi.com

[8] Engelhardtsen and Gagnes, “Using JavaSpaces to
create adaptive distributed systems”,
http://www.nik.no/ 2002/ Engelhardtsen.pdf , 2002.

[9] Batheja and Parashar, “A Framework for
Opportunistic Cluster Computing using JavaSpaces”,
http: //www. caip. rutgers. edu/ TASSL/ Papers/
jinihpc-hpcn01.pdf , 2001

[10] T.Lehman et al, IBM Almaden research Center,
http://www.almaden.ibm.com/cs/TSpaces/

[11] TONIC, “Scientific Computing with JAVA
TupleSpaces”, http://hea-www.harvard.edu/
~mnoble/tonic/doc/

[12] OpenWings, “Service Oriented Architecture”,
http://www.openwings.org.

[13] Michael S. Noble and Stoyanka Zlateva, “Scientific
computation with javaspaces,” in Proceedings of the
9th International Conference on High Performance
Computing and Networking, June 2001.

[14] Myrinet, http://www.myrinet.com

[15] JINI, "Jini Specifications and API Archive",
http://java.sun.com/products/jini/

[16] Nicholas Carriero, David Gelernter: A Computational
Model of Everything. CACM 44(11): 77-81, 2001.

[17] Su Wen, James Griffioen, and Kenneth Calvert.
Building multicast services from unicast forwarding
and ephemeral state. In OPENARCH 01, March
2001.

[18] Beau Williamson, Developing IP Multicast
Networks, Vol. 1, Cisco Press, 1999.

[19] Ben Choi, “Making Sense of Search Results by
Automatic Web-page Classifications,” Proc. of
WebNet 2001 -- World Conference on the WWW
and Internet, pp.184-186, 2001.

[20] Ben Choi and Xiaogang Peng “Dynamic and
Hierarchical Classification of Web Pages,” Online
Information Review, Vol. 28, No. 2, pp. 139-147,
2004

[21] Ben Choi and Rohit Dhawan, “Distributed Object
Space Cluster Architecture for Search Engines,” High
Availability and Performance Computing Workshop,
2003.

[22] Zhongmei Yao and Ben Choi, “Bidirectional
Hierarchical Clustering for Web Mining,” Proc. of
the 2003 IEEE/WIC International Conference on
Web Intelligence, pp. 620-624, 2003.

Proceedings of the IEEE/WIC/ACM International Conference on Intelligent Agent Technology (IAT’04)
0-7695-2101-0/04 $ 20.00 IEEE

