Agent UML: A Formalism for Specifying
Multiagent Software Systems

Bernhard Bauer*, Jorg P. Miiller*, James Odell”

* Siemens AG, ZT IK 6, D-81730 Miinchen, Germany
bernhard.bauer@mchp.siemens.de
joerg.mueller@mchp.siemens.de

* James Odell Associates, 3646 W. Huron River Dr,

Ann Arbor, MI 48103 USA
jodell@compuserve.com

Abstract. In the past, research on agent-oriented software engineering had been
widely lacking touch with the world of industrial software development.
Recently, a cooperation has been established between the Foundation of
Intelligent Physical Agents (FIPA) and the Object Management Group (OMG)
aiming to increase acceptance of agent technology in industry by relating to de
facto standards (object-oriented software development) and supporting the
development environment throughout the full system lifecycle. As a first result
of this cooperation, we proposed AGENT UML [1; 20], an extension of the
Unified Modeling language (UML), a de facto standard for object-oriented
analysis and design. In this paper, we describe the heart of AGENT UML, i.e.,
mechanisms to model protocols for multiagent interaction. Particular UML
extensions described in this paper include protocol diagrams, agent roles,
multithreaded lifelines, extended UML message semantics, nested and
interleaved protocols, and protocol templates.

1 Introduction

For the past decade, research on agent-oriented software engineering had suffered
from a lack of touch with the world of industrial software development. Recently, it
has been recognized that the use of software agents is unlikely likely to gain wide
acceptance in industry unless it relates to de facto standards (object-oriented software
development) and supports the development environment throughout the full system
lifecycle.

Successfully bringing agent technology to market requires techniques that reduce
the perceived risk inherent in any new technology, by presenting the new technology
as an incremental extension of known and trusted methods, and by providing explicit
engineering tools to support proven methods of technology deployment.

Applied to agents, these insights imply an approach that:



92

e introduces agents as an extension of active objects: an agent is an object that can
say "go" (flexible autonomy as the ability to initiate action without external
invocation) and "no" (flexible autonomy as the ability to refuse or modify an
external request)’;

e promotes the use of standard representations for methods and tools to support the
analysis, specification, and design of agent software.

The former aspect of our approach leads us to focus on fairly fine-grained agents.
More sophisticated capabilities can also be added where needed, such as mobility,
mechanisms for representing and reasoning about knowledge, and explicit modeling of
other agents. Such capabilities are extensions to our basic agents—we do not consider
them diagnostic of agenthood.

To achieve the latter, three important characteristics of industrial software
development should be addressed:

1. The scope of industrial software projects is much larger than typical academic
research efforts, involving many more people across a longer period of time. Thus,
communication is essential;

2. The skills of developers are focused more on development methodology than on
tracking the latest agent techniques. Thus, codifying best practice is essential;

3. Industrial projects have clear success criteria. Thus, traceability between initial
requirements and the final deliverable is essential.

The Unified Modeling Language (UML) is gaining wide acceptance for the
representation of engineering artifacts in object-oriented software. Our view of agents
as the next step beyond objects leads us to explore extensions to UML and idioms
within UML to accommodate the distinctive requirements of agents. To pursue this
objective, recently a cooperation has been established between the Foundation of
Intelligent Physical Agents (FIPA) [7] and the Object Management Group (OMG). As
a first result of this cooperation, we analyzed the requirements for such an endeavor
and proposed the framework of AGENT UML [1].

In this paper, we describe a core part within AGENT UML, i.e., mechanisms to
model protocols for multiagent interaction. This is achieved by introducing a new
class of diagrams into UML: protocol diagrams. Protocol diagrams extend UML state
and sequence diagrams in various ways. Particular extensions in this context include
agent roles, multithreaded lifelines, extended message semantics, parameterized
nested protocols, and protocol templates.

The model described in this paper has been proposed and accepted for inclusion
into the upcoming FIPA'99 standard. It was invited to be submitted as a response to a
Request for Information (RFI) issued by the OMG Analysis and Design Task Force
for the next release of UML (v2.0).

The paper is structured as follows: In Section 2, we survey approaches to software
specification, including UML. Section 3 specifies the extension of UML by multiagent
interaction protocols. Section 4 discusses further details of the extensions. Section 5

!'See [12], [16] for more comprehensive definitions of agents.



93

attempts a preliminary evaluation of the concepts, summarizes the results of the paper
and discusses future research topics.

2 Software Specification Techniques

AGENT UML is an attempt to bring together research on agent-based software
methodologies and emerging standards for object-oriented software development.

2.1 Methodologies for agent -based software development

There is a considerable interest in the agent R&D community in methods and tools for
analyzing and designing complex agent-based software systems, including various
approaches to formal specification (see [11] for a survey). Since 1996, agent-based
software engineering has been a focus of the ATAL workshop series and was the main
topic for MAAMAW’99 [9].

Various researchers have reported on methodologies for agent design, touching on
representational mechanisms as they support the methodology. Our own report at [22]
emphasizes methodology, as does Kinny's work on modeling techniques for BDI
agents [14; 15]. The close parallel that we observe between design mechanisms for
agents and for objects is shared by a number of authors, for example, [4; 6].

The GAIA methodology [25] includes specific recommendations for notation in
support of the high-level summary of a protocol as an atomic unit, a notation that is
reflected in our recommendations. The extensive program underway at the Free
University of Amsterdam on compositional methodologies for requirements [10],
design [3], and verification [13] uses graphical representations with similarities to
UML collaboration diagrams, as well as linear (formulaic) notations better suited to
alignment with the UML meta-model than with the graphical mechanisms that are our
focus.

Our discussion of the compositionality of protocols is anticipated in the work of
Burmeister et al. [5]. Dooley graphs [21] facilitate the identification of the character
that results from an agent playing a specific role (as distinct from the same agent
playing a different role).

The wide range of activity in this area is a sign of the increasing impact of agent-
based systems, since the demand for methodologies and artifacts reflects the growing
commercial importance of agent technology. Our objective is not to compete with any
of these efforts, but rather to extend and apply a widely accepted modeling and
representational formalism (UML) in a way that harnesses their insights and makes it
useful in communicating across a wide range of research groups and development
methodologies.



94

2.2 UML

The Unified Modeling Language (UML) [17] unifies and formalizes the methods of
many object-oriented approaches, including Booch, Rumbaugh (OMT), Jacobson, and
Odell. It supports the following kinds of models:

e use cases: the specification of actions that a system or class can perform by
interacting with outside actors. They are commonly used to describe how a
customer communicates with a software product.

e static models: describe the static semantics of data and messages in a conceptual
and implementational way (e.g., class and package diagrams).

e dynamic models: include interaction diagrams (i.e., sequence and collaboration
diagrams), state charts, and activity diagrams.

e implementation models: describe the component distribution on different platforms
(e.g., component models and deployment diagrams).

e object constraint language (OCL): a simple formal language to express more
semantics within an UML specification. It can be used to define constraints on the
model, invariant, pre- and post-conditions of operations and navigation paths within
an object net.

In this paper, we propose agent-based extensions to three following UML
representations: packages, templates, and sequence diagrams. This results in a new
diagram type, called protocol diagram, which we developed within FIPA 1999, and
which will be considered for inclusion into UML version 2.0 by OMG. The UML
model semantics are represented by a meta-model the structure of which is also
formally defined by OCL syntax. Extensions to this meta-model and its constraint
language are not addressed by this paper.

2.3 A rationale for AGENT UML

In a previous paper, we have argued that UML provides an insufficient basis for
modeling agents and agent-based systems [1], see also [20]. Basically, this is due to
two reasons: Firstly, compared to objects, agents are active because they can take the
initiative and have control over whether and how they process external requests.
Secondly, agents do not only act in isolation but in cooperation or coordination with
other agents. Multiagent systems are social communities of interdependent members
that act individually.

To employ agent-based programming, a specification technique must support the
whole software engineering process—from planning, through analysis and design, and
finally to system construction, transition, and maintenance.

A proposal for a full life-cycle specification of agent-based system development is
beyond the scope for this paper. Both FIPA and the OMG Agent Work Group are
exploring and recommending extensions to UML [1; 18]. In this paper, we will focus
on a subset of an agent-based UML extension for the specification of agent interaction
protocols (AIP).



Agent UML: A Formalism for Specifying Multiagent Software Systems 95

This subset was chosen because AIPs are complex enough to illustrate the
nontrivial use of and are used commonly enough to make this subset of AGENT UML
useful to other researchers. AIPs are a specific class of software design patterns in that
they describe problems that occur frequently in multiagent systems and then describe
the core of a reusable solution to that problem [8, p. 2].

The definition of interaction protocols is part of the specification of the dynamical
model of an agent system. In UML, this model is captured by interaction diagrams,
state diagrams and activity diagrams.

e [nteraction diagrams, i.e. sequence diagrams and collaboration diagrams are used
to define the behavior of groups of objects. Usually, one interaction diagram
captures the behavior of one use case. These diagrams are mainly used to define
basic interactions between objects at the level of method invocation; they are not
well-suited for describing the types of complex social interaction as they occur in
multiagent systems.

e State diagrams are used to model the behavior of a complete system. They define
all possible states an object can reach and how an object’s state changes depending
on messages sent to the object. They are well suited for defining the behavior of
one single object in different use cases. However, they are not appropriate to
describe the behavior of a group of cooperating objects.

e Activity diagrams are used to define courses of events / actions for several objects
and use cases. The work reported in this paper does not suggest modifications of
activity diagrams.

3 AGENT UML Interaction Protocols

The definition of an agent interaction protocol (AIP) describes

e a communication pattern, with
¢ an allowed sequence of messages between agents having different roles,
e constraints on the content of the messages, and

e a semantics that is consistent with the communicative acts (CAs) within a
communication pattern.

Messages must satisfy standardized communicative (speech) acts which define the
type and the content of the messages (e.g. the FIPA agent communication language
(ACL), or KQML). Protocols constrain the parameters of message exchange, e.g.,
their order or types, according to relationships between the agents or the intention of
the communication.

The new diagram type introduced in this paper are Protocol Diagrams. Since
interaction protocols, i.e. the definition of cooperation between software agents, define
the exact behavior of a group of cooperating agents, we combine sequence diagrams
with the notation of state diagrams for the specification of interaction protocols.



96

As an introductory example let us consider a surplus ticket market for flights. The
example is taken from the PTA application (see Section 5). The auctioning of such
tickets can be performed using, e.g. the FIPA English-Auction Protocol as shown in
Figure 1. The auctioneer initially proposes a price lower than the expected market
price, and then gradually raises the price. The auctioneer informs all participants that
the auction has started (represented by the

UML-AirIines / AuctionParticipants :
Auctioneer: Sefler Coneamer messages inform(start-auction, departure,
J%%_%D arrival) in Figure 1) and announces the
ime D 1 fp(initial-price) n T . . . .
; cplniierpice ; details of the flight. Each time a new price
{ 0} not- . . .
T st gron is announced (represented by cfp(intial-
L e ¢% n price) and cfp(new-price)), the auctioneer
| propose(price, K S‘a“fp"me'ﬁ waits until a given deadline to see if any

depariure, arrival) +1min

reiect-oronosallwrong-orice) - | w2 participants signal their willingness to pay
K D the proposed price (propose) for the ticket.

EL”—W Rrpsallconect >y If a participant does not understand the
ontology or syntax of the cfp it replies a
not-understood communicative act. The
diamond symbol with the ’x’ in it indicates

a decision resulting in zero or more
(0.1 [actualprie >= communications being sent (see Section
2lrequespay-price) LJ 4.2)). As soon as one participant indicates
Figure 1. English-Auction protocol for surplus Fhat it will accept the PI‘]CC, the auctlopeer
flight tickets issues a new call for bids (cfp(new-price))
with an incremented price. The auction
continues until no auction participants are prepared to pay the proposed price, at which
point the auction ends. If the last price accepted by a buyer exceeds the auctioneer’s
reservation price, the ticket is sold to that participant for the agreed price (otherwise
the auction fails). The participants are informed about the end of the auction and the
buyer is requested to pay the price for the ticket.

The diagram in Figure 1 provided a basic specification for a English Auction
protocol. In [20] we have shown how such a specification can be gradually refined
until the problem has been specified adequately to develop or generate code. Each
level can express intra-agent or inter-agent activity.

1 cfp(new-price)

1 1/inform(end-of-auction, n
departure, arrival)

—

T
(
0
{
L

1

4 Elements of Protocol diagrams

In the last chapter we gave an example how interaction protocols can be specified
using the UML extension. In this chapter we will have a closer look at the different
extensions.



97

4.1 Agent roles

In UML, role is an instance focused term. In the framework of agent oriented
programming by agent-role a set of agents satisfying distinguished properties,
interfaces, service descriptions or having a distinguished behavior are meant.

UML distinguishes between multiple classification (e.g., a retailer agent acts as a
buyer and a seller agent at the same time), and dynamic classification, where an agent
can change its classification during its existence.

Agents can perform various roles within one interaction protocol. E.g., in an
auction between an airline and potential ticket buyers, the airline has the role of a
seller and the participants have the role of buyers. But at the same time, a buyer in this
auction can act as a seller in another auction. IL.e., agents satisfying a distinguished role
can support multiple classification and dynamic classification.

Therefore, the implementation of an agent can satisfy different roles. An agent role
describes two variations, which can apply within a protocol definition. A protocol can
be defined at the level of concrete agent instances or for a set of agents satisfying a
distinguished role and/or class. An agent satisfying a distinguished agent role and class
is called agent of a given agent role and class, respectively. The general form of
describing agent roles in AGENT UML is

instance-1 ... instance-n / role-1 ... role-m : class

denoting a distinguished set of agent instances instance-1,..., instance-n satisfying the
agent roles role-1,..., role-m with n, m 0 and class it belongs to. Instances, roles or
class can be omitted, in the case that the instances are omitted the roles and class are
not underlined. In Fig. 1 the auctioneer is a concrete instance of an agent named UML-
Airlines playing the role of an Auctioneer being of class Seller. The participants of the
auctions are agents of role AuctionParticipants which are familiar with auctions and of
class Consumer.

4.2 Agent Lifelines and Threads of Interaction

The agent lifeline in protocol diagrams defines the time period during which an agent
exists, represented by dotted vertical lines. The lifeline starts when the agent of a
given agent role is created and ends when it is destroyed. For example, a user agent is
created when a user logs on to the system and the user agent is destroyed when the

| | | user logs off. The lifeline may split up into
——r -—é—. —¢—- two or more lifelines to show AND and OR

! ! o b+ '| parallelism and decisions, corresponding to

AND XOR OR branches in the message flow. Lifelines may
merge at some subsequent point. In Figure 1
the lifeline splits in order to describe the
different reaction of the agent depending on
the incoming messages, here to handle

Figure 2. Connector types



98

proposals and not-understoods respectively. Figure 2 shows the graphical
representations for the logical connectors AND, XOR, and OR.

The XOR can abbreviated by interrupting the threads of interaction as shown also
in Figure 3 (right). The thread of interaction, i.e. the processing of incoming messages,
is split up into different threads of interaction, since the behavior of an agent role

. depends on the incoming
| message. The lifeline of an
eaes | agent role is split accordingly

—~o—

request

and the thread of interaction
i XHMlj defines the reaction to different
| = kinds of received messages.
; notunderstood iy The thread of interaction
1 : : :
a gl shows the period during which
) o _ an agent role is performing
Figure 3 Full and abbreviated notation of XOR some task as a reaction to an
connection . .
incoming message. It only
represents the duration of the
action, but not the control relationship between the sender of the message and its
receiver. A thread of interaction is always associated with the lifeline of an agent role.
Supporting concurrent threads of interaction is another recommended extension to
UML .

\ query
X

not-understood

4.3 Nested and Interleaved Protocols

Because protocols can be codified as recognizable patterns of agent interaction, they
become reusable modules of processing that can be treated as first-class notions. For
example, Figure 4 depicts two kinds of protocol patterns. The left part defines a
nested protocol, i.e. a protocol within another protocol, and the right part defines an
interleaved protocol, e.g. if the participant of the auction requests some information
about his/her bank account before bidding. Additionally nested protocols are used for
the definition of repetition of a nested protocol according to guards and constraints.
The semantics of a nested protocol is the semantics of the protocol. If the nested
protocol is marked with some guard then the semantics of the nested protocol is the
semantics of the protocol under the assumption that the guard evaluates to true,
otherwise the semantics is the semantics of an empty protocol, i.e. nothing is
specified.

If the nested protocol is marked with some constraints the nested protocol is
repeated as long as the constraints evaluate to true. In addition to the constraint-

buyer-1 seller-1 | Auctioneer | | Buyer | | Bank | Condition used

3 in UML the
commitment r-linform(start-augtion,f deSCI‘lptlon .
: roquest-dood - i departure, arrival) | 7 ] request n”m’ del’lotlng
|_| Bequest | that the nested
| inf .
ruestony | e protocol is
equest Ij
[commit] i

Figure 4. nested protocol and interleaved protocol



99

repeated n up to m times with n , m { * }, the asterisk denotes arbitrary
times, is used as a constraint condition.

4.4 Extended Semantics of UML Messages

The main purpose of protocols is the definition of communicative patterns, i.e.,
patterns of messages sent from one agent role to another. This is described by various
parameters, such as different cardinalities, depending on some constraints, or using
AND / OR parallelism and decisions.

Sending a communicative act from one agent to another that conveys information
and entails the sender’s expectation that the receiver react according to the semantics
of the communicative act. The specification of the protocol says nothing about how
this reaction is implemented.

An asynchronous message is drawn as —>2. It shows the sending of the message
without yielding control. A synchronous message is shown as —. It shows the
yielding of the thread of control (wait semantics), i.e. the agent role waits until an
answer message is received and nothing else can be processed. Normally message
arrows are drawn horizontally. This indicates the duration required to send the
message is “atomic”, i.e. it is brief compared to the granularity of the interaction and
that nothing else can “happen” during the message transmission. If the messages
requires some time to arrive, e.g. for mobile communication, during which something
else can occur then the message arrow is shown as 7. The repetition of a part of a
protocol is represented by an arrow or one of its variations usually marked with some
guards or constraints ending at a thread of interaction which is, according to the time
axis, before or after the actual time point, like the cfp(new-price) in Fig. 1. This
repetition is another extension to UML messages

Each arrow is labeled with a message label’. The message label consists of the
following parts, which can also be found in Fig. 1. The communicative act which is
sent from one agent to another, like cfp(initial-price) with a list of arguments
representing additional information for the characterization of the communicative act.
The cardinality defines that a message is sent from one agent to n agents, like in the
cfp(new-price) case. Constraints and guards, like {m >= 0 } and [actualprice >=
reservedprice] respectively, can be added to define the condition when a message is
sent. In addition to the constraint-condition used in UML the description n..m,
denoting that the message is repeated n up to m times with n , m { *}, the
asterisk denotes arbitrary times, is used as a constraint condition.

Messages may be sent in parallel or exactly one message out of a set of different
messages should be sent. E.g., in Figure 1, exclusive sending is denoted as for the
reject-proposal and accept-proposal. inform(end-of-auction, departure, arrival) and
request(pay-price) are sent in parallel but inform is sent first (//inform-2) and the

2 Notation of UML v1.3.
3 The message label is a special case of the message label presented in the UML 1.1
specification section 8.9.2.



100

request is sent as the second message (2/request). The request is also sent zero or one
time {0..1}, depending on whether the reservation price was reached or not.

4.5 Input and Output Parameters for Nested Protocols

Nested Protocols can be defined either within or outside a protocol diagram where it is
used or outside another protocol diagram. The input parameters of nested protocols are

commitment

request-good :
Request

request-pay :
Request

e
i
1
1

Figure 5. Input/output of
nested protocols

threads of interaction which are carried on in the nested
protocol and messages which are received from other
protocols.

The output parameters are the threads of interaction
which are started within the nested protocol and are
carried on outside the nested protocol and the messages
which are sent from inside the nested protocol to agent
roles not involved in the actual nested protocol. A
message or thread of interaction ending at an input or
starting at an output parameter of a nested protocol
describes the connection of a whole protocol diagram
with the embedded nested protocol.

The input and output parameters for the threads of interaction of a nested protocol
are shown as in Figure 4 which is drawn over the top line and bottom line of the

nested protocol rectangle, respectively. The input and output message parameters are
shown as V—— and —@,

respectively.

The message arrows can be

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Auctioneer, Participant,
inform-start-of-auction : inform,
cfp-1: cfp,
not-understood* : not-understood,

accept-proposal* : accept-proposal,

marked like usual messages. In
this context the predecessor
denotes the number of the input
/ output parameter. The input /
output thread of interaction can
be marked with natural numbers
to define the exact number of
the parameter.

4.6 Protocol Templates

The purpose of protocol
templates is to create reausable
patterns for useful protocol
instances. E.g., Figure 6 shows
a template for the FIPA-
English-Auction Protocol from
Figure 1. It introduces two new
concepts represented at the top

FIPA-English-Auction-Protocol

1 inform-start-of-auction 0> Ij

n

reject-proposal* : reject-proposal,
cfp-2: cfp,

'
i

'

i

H

i propose* : propose,
'

i

1

! request* : request, inform* : inform
I

] 1

start cfp time - 1 cfp-1
]
i
1

11

¢

{m 0} not-understood

m

1 propose

X

k

1 cfp-2

reject-proposal
k
1
1
accept-proposal 1

n

\I deadline

cfp-2

1 1/inform-2

{0..1} [ actualprice >=
reserved_price]

1

T
1
|
|
A

2/request

i

Figure 6. A generic AIP expressed as a template



101

of the sequence chart. First, the protocol as a whole is treated as an entity in its own
right. The protocol can be treated as a pattern that can be customized for other
problem domains. The dashed box at the upper right-hand corner declares this pattern
as a template specification that identifies unbound entities (formal parameters) within
the package which need to be bound by actual parameters when instantiating the
package. A parameterized protocol is not a directly-usable protocol because it has
unbound parameters. Its parameters must be bound to actual values to create a bound
form that is a protocol. Communicative acts in the formal parameter list can be
marked with an asterisk, denoting different kinds of messages which can alternatively
be sent in this context. This template can be

OV Aimes / Auctioneer - Seller, AuctonPartipants : Consumer | instantiated for a special purpose as shown in
;L(”m}p{g)lmdpn artva, Figure 14. Figure 7 applies the FIPA English
not-understood(syntax-eror,not-understoad{ontology). Auction Protocol to a particular scenario
reect proposal(uron-rice), accept-proposacorrectprice, involving a specific auctioneer UML-Airlines
inform(end-of-action) request(pay-price, fetch-car) of role Auctioneer and Class Seller and
Figure 7. Instantiation of a template — AuctionParticipants of Class Consumer.

Finally, a specific deadline has been supplied
for a response by the seller. In UML terminology, the AIP package serves as a
template. A template is a parameterized model element whose parameters are bound at
model time (i.e., when the new customized model is produced).

Wooldridge et al suggest a similar form of definition with their protocol definitions
[25]. Here, they define packaged templates as “a pattern of interaction that has been
formally defined and abstracted away from any particular sequence of execution
steps." In contrast to their notation, we suggest a graphical approach that more closely
resembles UML, while expressing the same semantics.

5 Evaluation and Conclusion

The artifacts for agent-oriented analysis and design were developed and evaluated in
the German research project MOTIV-PTA (Personal Travel Assistant) [2, 23], aiming
at providing an agent-based infrastructure for travel assistance in Germany (see
www.motiv.de). MOTIV-PTA will run from 1996 to 2000. IT is a large-scale project
involving approx. 10 industrial partners, including Siemens, BMW, IBM,
DaimlerChrysler, debis, Opel, Bosch, and VW. The core of MOTIV-PTA is a
multiagent system to wrap a variety of information services, ranging from multimodal
route planning, traffic control information, parking space allocation, hotel reservation,
ticket booking and purchasing, meeting scheduling, and entertainment.

From the end user's perspective, the goal is to provide a personal travel assistant,
i.e., a software agent that uses information about the users' schedule and preferences in
order to assist them in travel, including preparation as well as on-trip support. This
requires providing ubiquitous access to assistant functions for the user, in the office, at

4 This template format is not currently UML-compliant but is a recommendation for future
UML extensions.



102

home, and while on the trip, using PCs, notebooks, information terminals, PDAs, and
mobile phones.

From developing PTA (and other projects with corporate partners within Siemens)
the requirements for artifacts to support the analysis and design became clear, and the
material described in this paper has been developed incrementally, driven by these
requirements. So far no empirical tests have been carried out to evaluate the benefits
of the AGENT UML framework. However, from our project experience so far, we see
two concrete advantages of these extensions: Firstly, they make it easier for users who
are familiar with object-oriented software development but new to developing agent
systems to understand what multiagent systems are about, and to understand the
principles of looking at a system as a society of agents rather than a distributed
collection of objects. Secondly, our estimate is that the time spent for design can be
reduced by a minor amount, which grows with the number of agent-based projects.
However, we expect that as soon as components are provided to support the
implementation based on AGENT UML specifications, this will widely enhance the
benefit.

Areas of future research include aspects such as

e description of mobility, planning, learning, scenarios, agent societies, ontologies
and knowledge

development of patterns and frameworks

consideration of events

real-time-constraints

support for different agent communication languages and content languages

At the moment we plan to extend the presented framework towards inclusion of these
topics. Moreover a project is on the way to refine the specification technique and
generate code from such a specification for different agent platforms, e.g. for the
MECCA system [2], based on a formal semantics of AGENT UML which is currently
being developed.

References

[1] B. Bauer. Extending UML for the Specification of Interaction Protocols. submission for the
6th Call for Proposal of FIPA and revised version part of FIPA 99, 1999.

[2] B. Bauer, M. Berger: Agent-Based Personal Travel Assistance, submitted to MAMA 2000,
2000.

[3] F. M. T. Brazier, C. M. Jonkers, and J. Treur. Principles of Compositional Multi-Agent
System Development. Proceedings 15th IFIP World Computer Congress, WCC?9S,
Conference on Information Technology and Knowledge Systems, IT&KNOWS98, pages
347-360, Chapman and Hall, 1998.

[4] J. Bryson, and B. McGonigle. Intelligent Agents IV: Agent Theories, Architectures, and
Languages. Proceedings ATAL 98, ed., Springer, 1998

[5] B. Burmeister, A. Haddadi, and K. Sundermeyer. Generic, Configurable, Cooperation
Protocols for Multi-Agent Systems. Proceedings Fifth European Workshop on Modelling



103

Autonomous Agents in a Multi-Agent World, MAAMAWY3, pages 157-171, Springer,
1993.

[6] B. Burmeister. Models and Methodology for Agent-Oriented Analysis and Design. ed., 1996.

[7] http://www fipa.org

[8] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns. Addison-Wesley, 1997.

[91 F. J. Garijo, and M. Boman. Multi-Agent System FEngineering. Proceedings of
MAAMAW99. Springer, ed., 1999.

[10] D. E. Herlea, C. M. Jonker, J. Treur, and N. J. E. Wijngaards. Specification of Behavioural
Requirements within Compositional Multi-Agent System Design. Proceedings of Ninth
European Workshop on Modelling Autonomous Agents in a Multi-Agent World, pages 8-27,
Springer, 1999.

[11] C. A. Iglesias, M. Garijo, and J. C. Gonzélez. A Survey of Agent-Oriented Methodologies.
Proceedings of Fifth International Workshop on Agent Theories, Architectures, and
Languages, pages 185-198, University Pierre et Marie Curie, 1998.

[12] N. R. Jennings, K. Sycara, and M.J.Wooldridge. A Roadmap of Agent Research and
Development. Journal of Autonomous Agents and Multi-Agent Systems. 1(1), pages 7-36.
July 1998.

[13] C. M. Jonker, and J. Treur. Compositional Verification of Multi-Agent Systems: a Formal
Analysis of Pro-activeness and Reactiveness. Proceedings of International Workshop on
Compositionality (COMPOS'97), Springer, 1997.

[14] D. Kinny, and M. Georgeff. Modelling and Design of Multi-Agent Systems. Intelligent
Agents III, Springer, 1996.

[15] D. Kinny, M. Georgeff, and A. Rao. A Methodology and Modelling Technique for Systems
of BDI Agents. Tth European Workshop on Modelling Autonomous Agents in a Multi-Agent
World MAAMAW'96)., pages 56-71. Springer, 1996.

[16] J. P. Miiller. The Design of Autonomous Agents : A Layered Approach, volume 1177 of
Lecture Notes in Artificial Intelligence. Springer-Verlag, Heidelberg, 1997.

[17] J. Odell and M. Fowler. Advanced object-oriented analysis and design using UML. SIGS
Books / Cambridge University Press, 1998.

[18] J. Odell. Agent Technology, green paper, produced by the OMG Agent Working Group,
ed., 1999.

[20] J. Odell, H. v. D. Paranuk, B. Bauer: Representing Agent Interaction Protocols in UML, in
this volume.

[21] H. V. D. Parunak. Visualizing Agent Conversations: Using Enhanced Dooley Graphs for
Agent Design and Analysis. Proceedings of Second International Conference on Multi-Agent
Systems, pages 275-282, 1996.

[22] H. V. D. Parunak, and J. Odell. Engineering Artifacts for Multi-Agent Systems, ERIM
CEC, 1999.

[23] Steiner D. MoTiV-PTA: Personal Travel Assistance for Germany, in Proceedings 4th
World Congress on Intelligent Transport Systems. Berlin. Germany. October 21-24, 1997.
[25] M. Wooldridge, N. R. Jennings and D. Kinny. The Gaia Methodology for Agent-Oriented
Analysis and Design. International Journal of Autonomous Agents and Multi-Agent

Systems, 3:Forthcoming, 2000.



