
www.elsevier.com/locate/datak

Data & Knowledge Engineering 51 (2004) 223–256
AGENTGENTWORKORK: a workflow system supporting rule-based
workflow adaptation

Robert M€uller, Ulrike Greiner *, Erhard Rahm

Department of Computer Science, University of Leipzig, Augustusplatz 10/11, Leipzig 04109, Germany

Received 22 March 2003; received in revised form 12 August 2003; accepted 31 March 2004

Available online 25 May 2004

Abstract

Current workflow management systems still lack support for dynamic and automatic workflow adap-
tations. However, this functionality is a major requirement for next–generation workflow systems to

provide sufficient flexibility to cope with unexpected failure events. We present the concepts and imple-

mentation of AGENTGENTWORKORK, a workflow management system supporting automated workflow adaptations

in a comprehensive way. A rule-based approach is followed to specify exceptions and necessary workflow

adaptations. AGENTGENTWORKORK uses temporal estimates to determine which remaining parts of running

workflows are affected by an exception and is able to predictively perform suitable adaptations. This helps

to ensure that necessary adaptations are performed in time with minimal user interaction which is especially

valuable in complex applications such as for medical treatments.
� 2004 Elsevier B.V. All rights reserved.

Keywords: Workflow management; Adaptive systems; Active rules; Temporal logics; Agents
1. Introduction

Workflow management is widely adopted as a core technology to support long-term applica-
tion processes in heterogeneous and distributed environments [2,17,21]. Main characteristics in-
clude the clear separation of application program code from the overall process logic and the
integration of automated and manual activities. Workflow technology is increasingly used to
* Corresponding author. Tel.: +49-341-97-32241; fax: +49-341-97-32209.

E-mail address: greiner@informatik.uni-leipzig.de (U. Greiner).

0169-023X/$ - see front matter � 2004 Elsevier B.V. All rights reserved.

doi:10.1016/j.datak.2004.03.010

mail to: greiner@informatik.uni-leipzig.de

224 R. M€uller et al. / Data & Knowledge Engineering 51 (2004) 223–256
manage complex processes in Internet-based e-commerce, virtual enterprises, or medical institu-
tions [33,49]. For example, due to precisely specified treatment procedures in many medical dis-
ciplines, workflow management systems can be used to implement diagnostic and therapeutic
processes [13,40,49]. Major goals include the improved and timely treatment of patients and a
significant workload reduction for the hospital personnel.

However, conventional workflow management systems do not provide sufficient flexibility to
cope with the broad range of failures that may occur during workflow execution. In particular,
not only system failures such as hardware or software crashes need to be dealt with but also
logical failures or exceptions. These logical failures refer to application-specific exceptional
events for which the control and data flow of a workflow is not adequate anymore and thus has
to be adapted [54]. The automatic treatment of such logical failures is the main subject of this
paper.

In the cancer chemotherapy workflow shown in Fig. 1, assume it is detected just before the
administration of drug C that the leukocyte count (i.e., the number of white blood cells) has
become critically low, so that there is the risk of a serious infection for the patient. As drug C is
known to reduce the leukocyte count additionally as a negative side effect, the activity
‘‘Administer drug C’’ dynamically has to be removed from the workflow while the execution of
the other activities can be continued without change. To protect the patient from an infection, it
may also be necessary to dynamically add an activity supporting the administration of an anti-
biotic drug after the cancer chemotherapy. Note that explicit conditional routing paths in the
workflow definition are not sufficient to deal with such exceptions. For example, checking the
condition ‘‘leukocyte count < 1000’’ before the ‘‘Administer drug C’’ activity would not help if this
condition is violated at different points in time possibly requiring different actions (e.g., dropping
drug A instead of drug C). Inserting conditional branches at any potentially relevant position
would significantly reduce workflow readability and maintainability. Thus a more flexible
exception handling is required to decide on how to best react to logical failures.

Previous work on dynamic workflow adaptation mostly focused on a manual approach where
the administrator or an authorized user has to decide which events constitute logical failures and
which adaptations have to be performed [45]. However, the manual approach can be time-con-
suming and error-prone thereby threatening the goals to be achieved with workflow management.
For example, during a therapy such as the one shown in Fig. 1, a physician is usually faced with
up to 20 patients and 10–30 findings per patient every day. With a manual failure handling, the
physician always would have to keep in mind which findings may induce which adaptations, or at
Perform
pre-

examination

AND-
SPLIT
AND-
SPLIT

Administer
drug A

Administer
drug B

AND-
JOIN
AND-
JOIN

ENDEND

Administer
drug C

STARTSTART

Administer
drug D

i++ < 5

i = 5i := 0

LOOP-
START
LOOP-
START

LOOP-
END

-

Administer
antibiotic

drug E
wait(1 day)

Drop activity
(because of leukocyte
count < 1000 #/mm3)

wait(1 day) wait(1 day)

Add activity
(to protect against
infection)

Fig. 1. Workflow adaptation example.

R. M€uller et al. / Data & Knowledge Engineering 51 (2004) 223–256 225
least would have to look it up in text books in a time-consuming manner. Hence, events con-
stituting logical failures may be overseen or detected too late.

Recent approaches supporting automated workflow adaptation typically limit adaptations to
the currently executed workflow activities [7,9]. Such an approach is only of limited usefulness as
all workflow parts not yet reached by the control flow are not adapted automatically. This may
also lead to situations where necessary adaptations are performed too late so that significant
problems can occur. For example, adding a new drug administration in a cancer therapy typically
requires ordering the necessary drugs one or two days before the scheduled administration to
prepare a patient-specific infusion. Thus, in order to allow a timely drug administration the
corresponding workflow adaptation should be performed as soon as possible. Similarly, the
dropping of a cancer drug (such as drug C in Fig. 1) should not be performed in a ‘‘last minute’’
manner but in advance to avoid that a very expensive drug infusion has to be poured away. Of
course, early scheduling of new activities and avoiding the unnecessary execution of originally
planned activities are of great importance in many workflow application domains, e.g., for
product delivery in supply chain management and writing reviews in evaluation processes.

To overcome the limitations of existing systems and comprehensively support automated
workflow adaptations, we designed and developed the workflow management prototype
AGENTGENTWORKORK. It is the first system we know of that can predictively adapt the yet unexecuted
parts of running workflows in a largely automated manner. The implementation of such a
capability poses many challenges, in particular support for a temporal model in the specification
and treatment of logical failures. This paper gives an overview of AGENTGENTWORKORK and its under-
lying concepts. The contributions of our work are as follows:

• We support two strategies for automatic workflow adaptation called reactive and predictive
adaptation. Predictive adaptation adapts workflow parts affected by a logical failure in advance
(predictively) based on temporal estimates of the affected workflow activities. The adaptation
typically takes place as soon as the failure is detected thereby often providing enough time
to meet organizational constraints for adapted workflow parts. Reactive adaptation is per-
formed when predictive adaptation is not possible. In this case, adaptation is performed when
the affected workflow part is to be executed. In particular, before an activity is executed it is
checked whether it is subject to a workflow adaptation such as dropping, postponement or
replacement. We provide mechanisms to decide whether reactive or predictive adaptation is
more suitable for a particular failure situation.

• We provide an ECA (Event/Condition/Action) rule model to automatically detect logical fail-
ures and to determine the necessary workflow adaptations. To support predictive workflow
adaptations, we use a temporal object-oriented logic that allows us to specify the valid time
interval for which an adaptation has to be performed. Furthermore, our approach supports
the integrity of ECA rule sets.

• We provide workflow estimation algorithms to determine which workflow part is affected by a
logical failure and needs to be adapted.

• We support a comprehensive set of operators for automatic workflow adaptation, including
control flow operators which for example allow us to add or delete workflow activities. Fur-
thermore, data flow operators are provided that adapt the data flow after a control flow adap-
tation, if necessary.

226 R. M€uller et al. / Data & Knowledge Engineering 51 (2004) 223–256
• Finally, we provide mechanisms to monitor adapted workflows by checking whether the used
time estimates are met when the adapted workflow is continued.

As a first application area, AGENTGENTWORKORK supports workflows for cancer treatment in an
interdisciplinary medical project at the University of Leipzig [39,40]. Though important con-
ceptual decisions are motivated by this medical workflow application, AGENTGENTWORKORK has been
designed to be usable in other workflow application domains as well (such as insurance business
or banking). In particular, the basic AGENTGENTWORKORK model only assumes generic events and
workflow activities. By sub-classing, these generic events and activities can be refined in a domain-
specific manner (e.g., for a business domain) without affecting the workflow adaptation model.

The paper is organized as follows. In the next section, we give an overview of the AGENTGENTWORKORK

system. Section 3 describes our ECA rule model. Section 4 presents the approaches for selecting
the adaptation strategy, workflow duration estimation, control and data flow adaptation, and
workflow monitoring. Finally, we discuss related work (Section 5), and summarize and sketch
future work (Section 6).
2. AGENTGENTWORKORK overview

In this section, we first sketch the architecture of the AGENTGENTWORKORK system. Then, we outline
the main model components (e.g., rules and workflows) and their principal interactions.

2.1. Architecture

Fig. 2 shows the three architectural layers of AGENTGENTWORKORK:
The workflow definition and execution layer provides components for the definition and exe-

cution of workflows. A workflow editor and a workflow engine form its main components. In
contrast to most other workflow management systems, the AGENTGENTWORKORK engine supports the
suspension or adaptation of currently executed workflows.

The adaptation layer implements the main concepts of AGENTGENTWORKORK and provides three agents
for the handling of logical failures. The components of this layer are called agents because they
have several properties which are associated with agent-oriented modeling and programming,
such as ‘‘intelligence’’, autonomy, and cooperation [28].

• The event monitoring agent decides which events constitute relevant logical failures. It uses ECA
rules specifying under which condition an event induces that a workflow becomes logically
inadequate, and which adaptation operations have to be performed on a workflow to cope with
this event (Section 3).

• The adaptation agent performs the adaptation. In particular, it decides which adaptation strategy
(reactive or predictive) is suitable, and applies the necessary control flow adaptations to the work-
flow. If necessary, it adjusts the data flow as well. In case of predictive adaptation, it performs a
workflow estimation. This estimation determines which workflow part will be executed during
the temporal interval for which adaptation operations have to be performed. All adaptations
are subject to a manual confirmation (Section 4).

Event
monitoring

agent

Workflow editor Workflow engine

AGENTWORK environment: Databases,
application programs, user interfaces

Workflow
monitoring

agent

Inter-workflow agent

Remote workflow systems

Adaptation
agent

Adaptation layer

Workflow definition and execution layer

Communication layer

Communication layer

Fig. 2. AGENTGENTWORKORK overview.

R. M€uller et al. / Data & Knowledge Engineering 51 (2004) 223–256 227
• The workflow monitoring agent checks whether the assumptions of the adaptation agent are met
when the adapted workflow is continued. In particular, it checks whether the estimated execu-
tion durations are met by the execution reality. If this is not the case, it induces a correction of
the estimation and a readaptation of the workflow (Section 4).

The communication layermanages the communication between AGENTGENTWORKORK components and
the environment, including remote workflow systems. It is based on the middleware CORBAORBA [4]
and uses an XML message format. Its inter-workflow agent determines whether a logical failure
occurring to a workflow has any implications for other workflows cooperating with this workflow,
and informs affected workflows. As we have already addressed such inter-workflow aspects in [41],
we do not further consider this agent here.

2.2. Model overview

Fig. 3 shows the main model components of AGENTGENTWORKORK. Workflow definitions and speci-
fications of ECA rules are based on a shared common metadata schema. This metadata schema
consists of a class hierarchy for cases, events, activities, and resources. A Case object represents a
person or institution for which an enterprise or organization provides its services. For example, if
patient John Miller is admitted to a hospital, he is represented by such a Case object. Objects of
class Event represent anything that may lead to logical workflow failures, such as the new leu-
kocyte laboratory value in the example of Fig. 1. The Activity class is used to represent activities
(e.g., a drug infusion) that are executed in workflows for cases. Activities are performed by Re-
source ‘‘objects’’, such as doctors, clerks, application programs, or devices.

In AGENTGENTWORKORK, we use a graph-oriented workflow definition model. Within a workflow def-
inition, activities are represented by activity nodes. An activity node has an associated activity
definition to specify the details of the activity (e.g., the dosage of a drug administration). An activity
definition is based on the Activity class of the metadata schema. The details of our logic-based

Shared metadata schema

used by

Case classes

Event classes Resource classes

Activity classes

Workflow

definitions

Control flow

Data flow

ECA rules

for

logical failures

Control actions

control
(e.g., drop

activities etc.)

used by

Workflow

instances

executed
as

Failure events

Resource
binding

trigger

Fig. 3. Workflows and ECA rules.

228 R. M€uller et al. / Data & Knowledge Engineering 51 (2004) 223–256
activity definition approach are described in Section 3, where the particular logic used by
AGENTGENTWORKORK is introduced.

The control flow is specified by edges and control nodes. AGENTGENTWORKORK provides control node
types for conditional branching (node types OR-SPLIT/OR-JOIN), for parallel execution (AND-
SPLIT/AND-JOIN), and loops (LOOP-START/LOOP-END). We use symmetrical blocks for
control flow definition, i.e., for every split node or LOOP-START node there must be exactly one
closing join node resp. LOOP-END node (Fig. 4). These symmetrical blocks may be arbitrarily
nested. This principle of symmetrical blocks, which supports readability and facilitates temporal
estimations, is known from structured programming and has recently also been applied to
workflow management [31,45]. We additionally support so-called synchronization edges [45] to
synchronize nodes belonging to parallel control flow paths of a block. In Fig. 4, the synchroni-
zation edge between X and Y means that Y must not be started before X has been processed
successfully, unless X cannot be reached anymore by the control flow (e.g., because the condition
of the OR-SPLIT path to which X belongs has been evaluated to false). We do not allow that a
synchronization edge has its source node within a LOOP-START/LOOP-END block and its
target node outside this block, or vice versa. This is because it then would be unclear for which
loop iteration the synchronization shall take place.

The data flow is represented by data flow edges. Internal data flow edges specify the data flow
between nodes within one workflow. External data flow edges specify the data flow between
activity nodes and external data sources such as databases or user interfaces. Based on [45],
AGENTGENTWORKORK supports several dataflow correctness constraints. For example, it is controlled
that for every input object of an activity there is an associated internal or external data flow edge
to provide the data.

As usual, the term workflow instance (or simply workflow) refers to an instantiation of a
workflow definition executed by the workflow engine to process cases. For simplicity, we assume

Workflow block

Conditional block

A
Loop block

D E

Parallel block

X

YB

STARTSTARTSTART
OR-

SPLIT
OR-

SPLIT
OR-

SPLIT

AND-
SPLIT
AND-
SPLIT
AND-
SPLIT

AND-
JOIN
AND-
JOIN

OR-
JOIN
OR-
JOIN

ENDEND

LOOP-
START
LOOP-
START
LOOP-
START

LOOP-
END

LOOP-
END

C

Legend Control flow edge Synchronization edge

Fig. 4. Symmetrical control flow blocks and synchronization edges.

R. M€uller et al. / Data & Knowledge Engineering 51 (2004) 223–256 229
in the following that a workflow runs for exactly one case (e.g., one patient or customer) and that
at most one workflow is executed for a case at a given point in time. Other possibilities, such as
that one workflow runs for different cases during its life span, can be mapped to this 1:1 rela-
tionship between cases and workflows [39].

Finally, AGENTGENTWORKORK uses ECA rules [44] to specify which events constitute logical failures and
how to deal with them. For the latter, ECA rules state which control actions have to be performed
for workflow adaptation, i.e., it is specified which activities have to be dropped, added, replaced
etc. (as illustrated in Fig. 1). Such a rule-based approach is highly flexible as rules are able to react
on events at any time during workflow execution without making assumptions about when these
events occur. This is in contrast to an approach based on adding conditional branches to a workflow
definition to test for logical failure events. These conditional branches would have to be inserted at
many places and reduce workflow readability and maintainability significantly. For the same
reasons, exception handling approaches from the field of programming languages, such as JAVAAVA’s
try& catch blocks, cannot be used. This is because they require that the relative point in time of the
failure event occurrence w.r.t. a particular position in the program (i.e., the workflow definition) is
known at definition time. However, this is not possible for most types of failure events.
3. Temporal ECA rule model

In this section, we first sketch the principal structure of our ECA rules (3.1). Then, we introduce
the temporal logic ACTIVECTIVETFL to specify on a formal level our ECA rules and the workflow
activities they refer to (3.2). Finally, we sketch rule integrity aspects (3.3). For simplicity, we
concentrate on events occurring to cases (e.g., patients). Logical failures concerning workflow
resources, such as a broken computer tomography device making it temporarily impossible to
execute some activities, can be treated analogously [39]. Furthermore, in the examples we omit
application-specific details such as the units of laboratory values and drug dosages.

230 R. M€uller et al. / Data & Knowledge Engineering 51 (2004) 223–256
3.1. Structure of ECA rules

In AGENTGENTWORKORK, ECA rules have the following basic structure:

The event-condition (WHEN/WITH) part specifies which event constitutes a failure event under
which condition. The action (THEN) part declaratively states on a high level of abstraction which
control action has to be performed on a workflow to cope with the event, e.g., which activities
may have to be dropped or added. In particular, a control action does not make any assumptions
about how the activities are spread over different workflow definitions. This has the advantage
that reorganizing activities within workflows has no or only minimal effects on ECA failure rules.
For example, if a drug administration node is placed at a different location within a workflow
definition, ECA rules dealing with this drug administration do not have to be changed (of course,
more comprehensive workflow definition changes may require the changing of ECA rules, too).
The VALID-TIME clause of the control action specifies the time period during which the control
action is valid, i.e., during which the respective adaptation needs to be applied. An (informal)
sample ECA rule is:

WHEN event
WITH condition

THEN control action
VALID-TIME time period
1 W

proce
WHEN new finding of patient P

WITH leukocyte count < 1000

THEN drop drug Etoposid for P

VALID-TIME during the next seven days

ð1Þ
If two rules refer to the same event, the union of the triggered control actions is valid.
3.2. ActiveTFL

To specify our adaptation model and in particular our ECA rules formally, we use a logic. In
particular, the well-defined declarative and unambiguous semantics and proof theory of logics are
suitable for automating workflow adaptation. As existing logics such as First-Order Logic [11],
Frame Logic [30], or Description Logic [19] either do not provide sufficient data specification
capacities (e.g., First-Order Logic) or temporal support (e.g., Frame Logic), we designed the logic
ACTIVECTIVETFL (Active Temporal Frame Logic). Basically, ACTIVECTIVETFL combines a powerful ob-
ject-oriented logic (namely Frame Logic) with elements from temporal logics and active rules
known from active databases (Fig. 5). 1
e have not selected Description Logic, as this logic focuses on terminological reasoning and natural language

ssing [19] which is not relevant for logical failure handling.

ActiveTFL

Temporal Frame Logic

Frame Logic
(Data and Rule Definition Core)

Extended
with

active rules

Extended
with

temporal logics
elements

Fig. 5. Structure of ActiveTFL.

R. M€uller et al. / Data & Knowledge Engineering 51 (2004) 223–256 231
3.2.1. Frame Logic
In the following, we introduce the relevant Frame Logic (FL) components by means of medical

examples. This includes FL classes, objects, object extensions, object patterns, predicates, for-
mulas, and rules. 2

FL class definitions have the general form

<class-name>[<attribute-name1>: <attribute-type1>, <attribute-name2>:<attribute-type2>,. . .].

The main classes in AGENTGENTWORKORK used for the representation of cases (e.g., patients), events
and activities are as follows:

Case [case-id: Integer, name: String, events: Set<Event>, activities: Set<Activity>]
Event[date: Date, time: Clock-Time, of: Case]
Blood-Finding[parameter: Enum { Leukocyte-Count,. . .}, value: Float]
Activity[date: Date, time: Clock-Time, activity-for: Case]
Drug-Administration[drug: String, dosage: Float]
Patient[social-num: Integer, diagnosis: String]
Physician[name: String,. . .,degree: Enum{Senior, Assistant,. . .}, speciality: String,
patients: Set<Patient>].

Patient IS-A Case Blood-Finding IS-A Event Drug-Administration IS-A Activity

‘‘IS-A’’ denotes the subclass relationship. For example, class Drug-Administration defines two
attributes drug and dosage of type String resp. Float and is a subclass of class Activity. The latter
class defines when (date and time) and for whom (Case object activity-for) the drug is adminis-
tered.
2 For better readability, we have adapted the FL syntax. Nevertheless, the language model is that of FL as described

in [30].

232 R. M€uller et al. / Data & Knowledge Engineering 51 (2004) 223–256
FL objects (i.e., class instances) are denoted as follows:
d : Drug-Administration½date ¼ 7=2=04; time ¼ 9:00 am; activity-for ¼ bob;

drug ¼ \Etoposid"; dosage ¼ 100�

(with bob denoting some Case instance). The symbol ‘‘denotes’’ the is-object-of relationship (e.g.,
d is an object of class Drug-Administration).

For storage purposes, objects can be collected persistently in so-called object extensions. Such
an extension has the structure
Extension < extension-name > ½< class-of -extension-objects >�:

For example
extension patientsðPatientÞ ð2Þ

defines an extension of Patient objects called patients. The mapping between these object exten-
sions and the physical data sources is the task of the communication layer (Fig. 2).

An FL object pattern constrains the structure of an object. It has the form
Class½constraints�

with Class being an FL class and constraints being a set of constraints w.r.t. the attributes of Class
objects. For example,
Drug-Administration½drug ¼ \Etoposid"; dosage > 50� ð3Þ

specifies the pattern of Drug-Administration objects representing ETOPOSIDTOPOSID dosages higher than
50. The type of an object pattern is denoted with Obj-Patt<Class>, e.g., Obj-Patt<Drug-
Administration> for our drug administration example. Patterns of type Obj-Patt<Activity> are
called activity patterns.

In AGENTGENTWORKORK, object and activity patterns are used to specify the details of workflow
activities and to constrain the input and output objects needed or produced by activities. For
example, the activity pattern shown in Fig. 6 specifies that the drug ETOPOSIDTOPOSID has to be
administered as an infusion with a dosage of 100 (the date/time/activity-for attributes are left
unspecified as their values cannot be determined before workflow execution time). Furthermore, it
is specified that two Blood-Finding objects, h1 and h2, are expected as input representing the
leukocyte resp. thrombocyte count. Furthermore, it is specified that a physician is needed as a
resource to perform this activity, and that a Chemo-Report object is produced as output. As a
“Administer Etoposid”
input output resource activity-pattern

h1 : Blood-Finding
[parameter = Leukocyte-Count]

h2 : Blood-Finding
[parameter = Thrombocyte-Count]

c: Chemo-Report p: Physician Drug-Administration

[drug = "Etoposid",
dosage = 100]

Activity name

Fig. 6. Activity definition example.

R. M€uller et al. / Data & Knowledge Engineering 51 (2004) 223–256 233
shorthand, we use the terms A-activity and A-node to denote an activity resp. activity node based
on an activity pattern A.

Furthermore, predicates can be defined in FL to express properties that hold for some objects.
In AGENTGENTWORKORK, predicates are primarily used to express control actions such as the drop control
action in Fig. 1, e.g., we can define the predicate
dropðA;CSÞ ð4Þ

with A being of type Obj-Patt(Activity) and CS being an object of class Case to state that any
activity executed for case CS and matching pattern A has to be dropped.

Analogously to first-order logic [11], FL formulas can be constructed inductively on base of FL
objects, predicates, Boolean operators, and quantifiers [30].
Rules in FL are used to express which formulas imply other formulas. For example, if A is the

activity pattern Drug-Administration[drug¼ ‘‘ETOPOSIDTOPOSID’’], then the rule
WHEN critical-blood-statusðP Þ
THEN dropðA; P Þ ð5Þ
states that whenever a patient P has a critical blood status (e.g., leukocyte count < 1000)––ex-
pressed by some predicate critical-blood-status(P)––that then ETOPOSIDTOPOSID has to be dropped for P .
Note that such a rule is not yet an ECA rule as it has no notion of ‘‘data events’’ such as inserting
blood data into an extension. This will be described in 3.2.3, where we introduce our notion of
active rules.

3.2.2. Temporal FL

So far, an FL rule such as (5) does not specify the valid time of the derived control action, i.e.,
for how long the activity specified by A shall be dropped for patient P . To restrict the validity of a
statement to some period of time, ACTIVECTIVETFL supports so-called temporal frames and temporal
formulas allowing us to assign a valid time to a formula.

A temporal frame ðT ; <Þ consists of a non-empty discrete set T of ‘‘points in time’’ (i.e., the
‘‘time axis’’), ordered by a non-reflexive binary relation < of precedence (‘‘earlier than’’) [6]. A
frequently used temporal frame is the set of points in time of the Gregorian calendar.

On base of a temporal frame ðT ; <Þ, valid times can be assigned to formulas. We support two
principal types, fixed and conditional valid time, covering a broad range of time periods considered
sufficient for most application areas.
Fixed valid time. A fixed valid time is any set S � T which is described by an explicit listing of

points in time or by temporal functions. For example, [2 March 2004:8 pm, 2 March 2004:
8pm+(72,hour)] specifies the set of points in time starting at 2 March 2004: 8 pm and ending after
72 h (i.e., at 5 March 2004: 8 pm). Expressions of the structure (amount,time-unit) specify an
amount of time, e.g., (72,hour) for 72 h. The interval [now, now+ (72, hour)] specifies the set of
points in time starting at the current system time now (rounded to the closest point in time of T)
and ending after 72 h.

Such a fixed valid time S then can be assigned to any FL formula via the VALID-TIME
statement, i.e.,
F VALID-TIME S

234 R. M€uller et al. / Data & Knowledge Engineering 51 (2004) 223–256
states that F holds at every t 2 S. An example for a rule with such a VALID-TIME state-
ment is
WHEN critical-blood-statusðP Þ VALID-TIME½now� ð5; dayÞ; now�
THEN dropðA; PÞ VALID-TIME½now; nowþ ð7; dayÞ�:

ð6Þ
This rule states that whenever the predicate critical-blood-status(P) has been valid during the last
five days, that then dropðA; PÞ is valid for the next seven days.
Conditional valid time. To describe a valid time conditionally by a termination condition, we use

the temporal operators Until and Unless [12,36]. With these operators, it can be stated how the
valid time of an FL formula is related to the valid time of another formula. In the following, F
and G are FL formulas while t, t0, t00 denote points in time.

• Until. This operator is used to express that a formula G eventually will be valid in the future and
that a formula F is valid at least until G (first) becomes valid, i.e.,

A typical medical example for the Until operator is the rule

WHEN critical-blood-statusðPÞ VALID-TIME½now� ð3; dayÞ; now� AND
present-in-further-workflowðDrug-Administration½drug ¼ \Etoposid"�; PÞ

THEN add � repetitivelyðDrug-Administration½drug ¼ \Doxycyclin"�; ð1; dayÞ; P Þ
Until dropðDrug-Administration½drug ¼ \Etoposid"�; P Þ
VALID-TIME now

This rule is triggered whenever a patient P has had a critical blood status during the last three
days and is receiving the drug ETOPOSIDTOPOSID during further workflow execution (the latter ex-
pressed by the predicate present-in-further-workflow). Then, P must get the drug DOXYCYCLINDOXYCYCLIN

repetitively every day until the drug ETOPOSIDTOPOSID is dropped. Note that this rule does not specify
at which workflow position a new Drug-Administration node shall be inserted. This is because
this position depends on when the exception occurs which must be determined at runtime (see
4.3). The Until line states that the add-repetitively predicate holds until drug ETOPOSIDTOPOSID is
dropped, i.e., the drop predicate is here used as a condition (not as an action).

• Unless (Waiting-for). As F Until G by definition requires that G will eventually occur, some-
times weaker statements are needed stating that F is valid either until G becomes valid, or is
valid forever in case that G will never become valid in the future. This is done by the Unless
operator which is defined as

It holds: iff it holds:
ðF Until GÞ
VALID-TIME t

It exists t0 > t with:

G VALID-TIME t0 and for all t00 with
t, t00 < t0 it holds:
F VALID-TIME t00 AND NOT

(G VALID-TIME t00)

R. M€uller et al. / Data & Knowledge Engineering 51 (2004) 223–256 235
With Unless we can express statements such as that ETOPOSIDTOPOSID has to be dropped when a
patient has had a critical blood status for the last five days, and that ETOPOSIDTOPOSID can only be given
again when the blood status becomes normal again (leukocyte count >1000):

WHEN critical-blood-statusðP ÞVALID-TIME½now� ð5; dayÞ; now� AND
present-in-further-workflowðDrug-Administration½drug ¼ \Etoposid"�; P Þ

THEN dropðDrug-Administration½drug ¼ \Etoposid"�; PÞ
Unless normal-blood-statusðP Þ
VALID-TIME now

Note that in contrast to fixed valid times, the duration of such a conditional valid time typically
is not known beforehand. This difference between the two valid time types will be of particular
importance for the adaptation strategy as we will see in Section 4.

3.2.3. ActiveTFL

We now describe the principals of ACTIVECTIVETFL, which extends Temporal FL with the notion of
primitive and composite events, actions, and active rules. Basically, ACTIVECTIVETFL is a data-driven
(or forward chaining) rule model. This means, that––similar to triggers in relational databases––
whenever an event occurs (e.g., when data is inserted into a database) it is checked whether
ACTIVECTIVETFL rules qualify for execution as their WHEN/WITH part evaluates to true.

A primitive event is the occurrence of a basic operation on an object extension. ACTIVECTIVETFL
supports the primitive event types INSERT, REMOVE, and UPDATE corresponding to the
respective operations on extensions. In our context, especially the insertion, removing or updating
of an Event object is important, as such an Event object can trigger a logical failure.

To filter relevant events, a condition can be assigned to a primitive event in the WITH part of a
rule. This condition may consist of any temporal FL formula f on the object referenced in the
WHEN part. The symbols new and old refer to the new resp. old object after the INSERT,
UPDATE, or REMOVE operation. An example is

It holds: iff it holds
ðF Unless GÞVALID-TIME t
(at point in time t,
F is valid unless G is valid)

ðF Until GÞ VALID-TIME t OR
ðF VALID-TIME ½t;1)
WHEN INSERT ON blood-findings

WITH new:parameter ¼ Leukocyte-Count AND new:value < 1000
ð7Þ
with blood-findings(Blood-Finding) being an extension of Blood-Finding objects. This primitive
event is triggered whenever a new Blood-Finding object is inserted in the extension blood-findings,
for which the measured parameter is a leukocyte count less than 1000.
Composite events can be constructed from already defined events. ACTIVECTIVETFL supports the

composite event types conjunction, disjunction, negation, and time series [8,38]. As the definition of
conjunctions, disjunctions, and negations is straightforward, we only describe time series which

236 R. M€uller et al. / Data & Knowledge Engineering 51 (2004) 223–256
are of particular importance especially for medical domains (e.g., temporal course of laboratory
findings) or business domains (e.g., stock exchanges). For example, a single critical finding such as
a low leukocyte value does not necessarily induce a logical failure but often only the repetitive
occurrence of critical findings.

Given some (primitive) event E, we say that a time series event over E with length n, minimal
and maximal temporal distances dmin and dmax occurs during the temporal interval I, if E occurs
repetitively during I at a sequence of n points in time with a minimal distance of dmin and a
maximal distance of dmax between two successive points of the sequence, i.e.

The point in time at which an instance of TIME-SERIESðE; n; dmin; dmax; IÞ occurs is tn (as then

TIME-SERIESðE; n; dmin; dmax; IÞ occurs iff it exist t1 < t2 < � � � < tn; ti 2 I with:
dmin 6 jti � ti�1j 6 dmax, i ¼ 2; . . . ; n
E occurs at every ti.
the last instance of E establishing the time series occurred).
A typical medical example for a time series event is the following: Let E be the (primitive) event

that the leukocyte count of a patient is less than 1000 as defined in (7). Then,
3 N
WHEN TIME-SERIESðE; 3; ð2; dayÞ; ð4; dayÞ; ½now; nowþ ð2;weekÞ�Þ ð8Þ

occurs if during two weeks the leukocyte count of a patient is less than 1000 at three points in time
with a minimal distance of 2 days and a maximal distance of 4 days between two leukocyte
measurements. The possibility to specify dmin respectively, dmax is helpful as often occurrences of E
being too close together or too far away from each other have a limited significance. For example,
two leukocyte count measurements at two subsequent days do not mean more information than
one measurement, as the leukocyte value usually does not change significantly during two days.

In ACTIVECTIVETFL, the action part of a rule consists of a single control action in order to reduce
language complexity and to facilitate the handling of control flow failures. Still, the AGENTGENTWORKORK

editor allows to define rules with n AND-connected control actions in the THEN part (n ¼ 1;
2; 3; . . .). Such a rule is then internally translated into n rules with one control action each and the
sameWHEN/WITH part. 3 For example, the conjunction of two control actions is translated into
two rules, which are both triggered by the same event and where each rule triggers one of the two
actions.

Two main types of control actions are supported, namely global and local control actions:
Global control actions state that a workflow is not adequate anymore as a whole. We support the

global control actions abort and suspend for the entire abortion resp. suspension of a workflow. In
the latter case a valid time statement assigned to the suspension control action has to specify for
how long the workflow shall be suspended.
Local control actions state that only some activities of a workflow are not adequate anymore.

Thus, the workflow can be continued but has to be adapted locally. AGENTGENTWORKORK supports the
following local control actions which are motivated by the fact that activity nodes cover the main
semantics of a workflow, and that nodes can either be dropped, replaced, added, or postponed
ote that due to Horn clause theory, we have to forbid the disjunction of control actions to keep rules satisfiable.

R. M€uller et al. / Data & Knowledge Engineering 51 (2004) 223–256 237
(A and A0 denote activity patterns, and CS denotes a case). The question which control action pairs
are compatible is discussed in Section 3.3.1.

• dropðA;CSÞ: For CS, A-activities must not be executed anymore.
• replaceðA;A0;CSÞ: For CS, every A-activity execution has to be replaced by an A0-activity.
• addðA;CSÞ: For CS, an A-activity has additionally to be executed exactly once.
• add-repetitivelyðA; d;CSÞ: Additional A-activities have to be performed repetitively for CS. The

duration between two subsequent A-activity executions is specified by d.
Both for addðA;CSÞ and add-repetitivelyðA; d;CSÞ the particular insertion position of a new A-
node is determined at workflow execution time (see 4.3) and is restricted by the valid time
specification of the corresponding ECA rule.

• postponeðA; d;CSÞ: For CS, every A-activity execution has to be postponed by duration d (rel-
ative to its control flow position at the point in time the control action has been triggered).
Postponing activities may be a sufficient reaction compared to applying the global control
action suspend. For example, for a treatment workflow it may be sufficient to postpone only the
patient’s drug administrations while the diagnostic activities may be continued as specified in
the original workflow definition.

• reviewðA;CSÞ: For CS, every execution of an A-activity has to be reviewed by a user (manual
control).

3.3. Rule integrity

In the following, we discuss several aspects of rule integrity, in particular rule incompatibility
(3.3.1), and rule termination (3.3.2).

3.3.1. Rule incompatibility

In our context, the term rule incompatibility refers to the situation that two rules trigger
incompatible control actions at the same point in time. For example, it has to be avoided that two
rules trigger a dropðA;CSÞ and an addðA;CSÞ control action with the same activity pattern A for
the same case CS with overlapping valid time intervals. To cope with this, AGENTGENTWORKORK uses
incompatibility tables which we explain now.

Let
ca1ðA1; ½B1; d1; p1; f1; �C1Þ VALID-TIME VT1
and
ca2ðA2; ½B2; d2; p2; f2; �C2Þ VALID-TIME VT2
denote the control actions of the THEN part of two rules R1 and R2 with overlapping event
patterns (the parameters Bi, di, pi and fi are only needed for cai ¼ replace, postpone or add-
repetitively). Then R2 is said to be incompatible with R1 (w.r.t. VT1 \ VT2), if the following con-
ditions hold:

• C1 and C2 refer to the same case, and the valid time intervals VT1 and VT2 overlap.
• A1 subsumes A2 , i.e. performing an activity based on activity pattern A2 means that implicitly

an activity based on pattern A1 is performed. For example, if we have

238 R. M€uller et al. / Data & Knowledge Engineering 51 (2004) 223–256
A1:¼Drug-Administration[drug¼ ‘‘ETOPOSIDTOPOSID’’, dosage> 100, unit¼mg]
A2:¼Drug-Administration[drug¼ ‘‘ETOPOSIDTOPOSID’’, dosage> 150, unit¼mg]

then A1 subsumes A2 as every ETOPOSIDTOPOSID administration with more than 150 mg is also an
ETOPOSIDTOPOSID administration of more than 100 mg.

• The control actions ca1 and ca2 are incompatible according to Table 1.

For selected control action pairs in Table 1, we explain why they are viewed as incompatible or
compatible (for the other pairs analogous arguments hold). In the following, for a pair ði; jÞ, i
refers to the row and j to the column of Table 1. Furthermore, to avoid an overlapping of the
different cells of Table 1, we agree on the convention that for any cell above the grey diagonal the
equality of the patterns A1 and A2 is allowed, but forbidden for any other cell (i.e., the equality case
for A1 and A2 is covered by the cells above the grey diagonal). Note further, that the matrix of
Table 1 is not symmetrical due to the subsumption relationship between A1 and A2 (i.e., in general
A1 and A2 are not identical patterns).

• Pair (1,3) dropðA1Þ, postponeðA2; d2Þ. This pair is viewed as incompatible, as on one side it is
specified that A2-activities shall be postponed, but on the other side shall be dropped due to
dropðA1Þ (as A1 subsumes A2).

• Pair (3,1) postponeðA1; d1Þ, dropðA2Þ. This pair is viewed as compatible. It is specified that A1-
activities shall be postponed, but only some of them (i.e., the A2-activities) shall be dropped.
For example, let us assume

A1:¼Drug-Administration[drug¼ ‘‘ETOPODSIDTOPODSID’’]
A2:¼Drug-Administration[drug¼ ‘‘ETOPOSIDTOPOSID’’, dosage> 150, unit¼mg].

Then, postponeðA1; d1Þ and dropðA2Þ mean that the ETOPOSIDETOPOSID administrations principally
have to be postponed but that some of them (i.e., those with a dosage higher than 150 mg)
have to be dropped. From a medical point of view, such a combination makes sense and
thus should not generally be forbidden. Therefore, AGENTGENTWORKORK informs the rule modeler
about such combinations but does not force the rule modeler to drop or re-edit such
rules.

• Pair (3,4) postponeðA1; d1Þ; addðA2Þ. This pair is viewed as compatible, as an A2-activity can be
added to A1-activities that shall be postponed. However, the order in which the two control ac-
tions shall be processed has to be determined at execution time, i.e., whether the A2-activity
shall be first added and then postponed with all A1-activities, or whether the A2-activity shall
be added after the A1-activities have been postponed. The order of the control action typically
depends on the event constellation triggering the two control actions and thus cannot be fixed
at definition time.

• Pair (1,4) dropðA1Þ, addðA2Þ. This pair is viewed as incompatible, as on one side it is specified
that an A2-activity shall be added, but on the other side also shall be dropped due to dropðA1Þ
(as A1 subsumes A2).

• Pair (4,1) addðA1Þ, dropðA2Þ. This pair is viewed as compatible as adding a more general activity
(i.e., an A1-activity) does not exclude that more specific activities are dropped from a workflow.

Table 1

Incompatibility table for control actions (with A1 subsuming A2)

1 2 3 4 5

ca1

ca2 dropðA2Þ replaceðA2;BÞ postponeðA2; d2Þ addðA2Þ add�
repetitivelyðA2; d2Þ

1 dropðA1Þ CP CPa ICP ICP ICP

ICP if A1 � Bb

2 replaceðA1;BÞ CP CP ICP ICP ICP

3 postponeðA1; d1Þ CP CP CP ðICP only for

d1 6¼ d2Þ
CPc CPc

4 addðA1Þ CP CP CP CP CP

5 add�repetitivelyðA1; d1Þ CP CP CP CP

CP (ICP only for

d1 6¼ d2)

ICP¼ Incompatible, CP¼Compatible.

The Ci-parameters for the cases have been omitted as conflicts only occur if control actions refer to the same case (e.g., the same patient). The review

control action is not listed as it has to be manually transformed to one of the other control actions.
a It is not viewed as incompatible that a subset of the A1-activities to be dropped (namely the A2-activities) shall be replaced by B-activities.
b As the new B-activities would directly have to be dropped due to dropðA1Þ.
c Order to be determined (manually) at execution time.

R
.
M
€u
ller

et
a
l.
/
D
a
ta
&
K
n
o
w
led
g
e
E
n
g
in
eerin

g
5
1
(
2
0
0
4
)
2
2
3
–
2
5
6

2
3
9

Table 2

Excerpt from autorization table for a medical application (cancer therapy)

Staff Member Pattern (Obj-Patt<Physician> according to 3.2.1) Allowed operations

Physician[degree¼ Senior; speciality¼ ‘‘Oncology’’]; MANUAL_RESOLVEMENT_OF

INCOMPATIBLE_CONTROL_ACTIONS

240 R. M€uller et al. / Data & Knowledge Engineering 51 (2004) 223–256
For example, if we have
A1:¼Radiodiagnostic-Activity[focus¼ ‘‘Liver’’]
A2:¼MRT-Examination[focus¼ ‘‘Liver’’] 4

this would mean that a radiodiagnostic activity shall be added (e.g., a computer tomography
examination), but that any MRT examination shall be dropped.

If incompatible control actions have been triggered simultaneously, an ‘‘authorized’’ user has to
be informed and has to resolve the situation manually. To decide which users are authorized in a
particular context an authorization table is used. An excerpt of the authorization table for our
project at the University of Leipzig is shown in Table 2. In this excerpt, it is specified that any
physician instance that fulfills the pattern in the topmost row (i.e., a physician being a senior
oncologist) is allowed to resolve incompatible control actions manually. Such authorization tables
are also used in the following to specify which staff members are allowed to interact w.r.t. to other
workflow-related actions, such as the local dropping or adding of workflow activities.

Note that the sketched incompatibility situations generally cannot be detected at build time.
This is because two of the main criteria stating whether two rules produce an incompatibility––i.e.
the criterion that the two case variables C1 and C2 of the two rules refer to the same case, and the
criterion that the two valid time intervals VT1 and VT2 of the rules overlap––can only be deter-
mined at run time.

3.3.2. Rule termination
Generally, for a rule base it should be guaranteed that for any data constellation rule processing

cannot continue forever, i.e., that rules cannot activate each other indefinitely. Though our failure
rules have a very restricted structure (e.g., only one control action in the THEN part), the problem
of rule termination also has to be considered for our rule base of failure rules. This is because
control actions may also appear in the WHEN part of a rule, as they formally are predicates and
thus F-Logic formulas. Thus, cycles principally can occur. For example, if we have
4 A

Activ
A1 :¼ Drug-Administration½drug ¼ \Etoposid"� and
A2 :¼ Drug-Administration½drug ¼ \Doxycyclin"�
there may be the rule
WHEN dropðA1;CÞVALID-TIME½now; nowþ ðn; dayÞ�
THEN dropðA2;CÞVALID-TIME½now; nowþ ðn; dayÞ�
ssuming that MRT-Examination (MRT¼Magnet Resonance Tomography) is a subclass of Radiodiagnostic-

ity.

R. M€uller et al. / Data & Knowledge Engineering 51 (2004) 223–256 241
stating that whenever the drug ETOPOSIDTOPOSID is dropped for n days, the drug DOXYCYCLINOXYCYCLIN can also
be dropped for the same time. The rationale for this is that often an antibiotic drug is given in
parallel to immunsupressive drugs such as ETOPOSIDTOPOSID to prevent bacterial infections. Thus, when
the immunsupressive drug is dropped the antibiotic drug can also be dropped. If a second rule
triggered by a dropðA2;CÞ control action then would trigger a dropðA1; sCÞ control action, these
two rules together can induce a cycle which should be avoided.

As in ACTIVECTIVETFL the action part of a rule consists of only one control action and thus is rather
simple, we use a straightforward static analysis approach to detect cycles [44]. A triggering graph
is built where the nodes stand for rules in the rule set and the edges express which rule may trigger
which other rules. If the graph has no cycles, termination of rule execution is guaranteed. If a cycle
is detected, it has to be resolved manually.
4. Workflow adaptation and monitoring

We now describe how AGENTGENTWORKORK processes triggered control actions. As the global control
actions abort and suspend do not require workflow adaptations, we concentrate on local control
actions. The technical challenges that have to be faced in this context are the following:

• First, decision criteria are needed to decide which adaptation strategy (reactive or predictive) is
suitable.

• Second, based on the temporal model introduced in Section 3, mechanisms for the estimation of
a workflow’s future execution behavior have to be provided, in particular for predictive adap-
tation.

• Third, control actions have to be translated into structural workflow adaptations taking into
account the current execution state of running workflows. Furthermore, the respective adapta-
tions of a workflow’s node and edge set have to maintain the structural consistency of the
workflow. In addition, structural adaptations such as adding new activities should minimally
delay workflow execution.

• Fourth, workflow monitoring is necessary for predictive adaptation to control whether the ac-
tual execution of an adapted workflow matches the temporal estimates. Deviations may require
to modify the original adaptations.

The section is organized as follows: we first characterize the principal adaptation strategies
(reactive or predictive) that can be performed to handle a triggered control action (4.1). We
then describe workflow duration estimation for predictive adaptation (4.2). In 4.3 and 4.4, we
outline control flow and data flow adaptation, in particular the use of adaptation operators to
translate control actions into structural workflow changes. Section 4.5 describes workflow
monitoring.

4.1. Adaptation strategies

To support automated workflow adaptations for a broad range of failure situations,
AGENTGENTWORKORK supports both reactive and predictive adaptation. AGENTGENTWORKORK tries to use

OR-
SPLIT
OR-

SPLIT
OR-
JOIN

-

19

... 2015 (A)14

6 75... OR-
SPLIT
OR-

SPLIT
OR-
JOIN
OR-
JOIN ...

IF liver metastases
= YES

IF liver metastases
= NO

Activity node will be
executed during VT 10

?

?
10

?

?

8
?

?
8

?

?

?
?

?
?

Not decidable whether
activity node will be
executed during VT

16
no

no

no

no
17

no

no

no
no

Activity node will not be
executed during VT

IF current leukocyte count
<= 2500

IF current leukocyte
count

> 2500

12

21

1818

AND-
SPLIT
AND-
SPLIT

4

... 13

Activity node
already committed

11
?

?
11

?

?

9
?

?
9

?

?

Failure event (moment at which drop(A,CS)
has been triggered by ECA rule)

Valid time VT of drop(A,CS)

Time axis

drop

Node with identifier n and
activity pattern A

n (A)

...

Workflow running for case CS

Synchronization edge

Fig. 7. Workflow estimation and adaptation.

242 R. M€uller et al. / Data & Knowledge Engineering 51 (2004) 223–256
predictive adaptation whenever possible and to correct running workflows as soon as possible to
avoid the execution of unnecessary activities, reduce delays for new activities, etc.

To illustrate the two strategies, we use the workflow example shown in Fig. 7. For this
workflow running for case CS, two parallel paths are executed when a logical failure event occurs
after nodes 4 and 13 have committed. The ECA rule for this event is assumed to trigger the
control action dropðA;CSÞ with valid-time VT .

Fig. 8 shows how selection of the adaptation strategy is performed. Principally, predictive
adaptation can be selected if a fixed valid time VT is assigned to the control action. Then, the
Triggered control action

Fixed valid time

Reactive
adaptation

Failure event

Iterative
predictive
adaptation

“One-shot”
predictive
adaptation

Valid time does
not exceed threshold

Valid time exceeds
threshold

Conditional valid time

Fig. 8. Strategy selection.

R. M€uller et al. / Data & Knowledge Engineering 51 (2004) 223–256 243
temporal interval during which the control action is valid is exactly known already at the moment
of the failure event. Thus, AGENTGENTWORKORK can estimate which workflow part PVT will be executed
during VT . This is done by using temporal meta information about the duration of workflow
activities (see 4.2). For example, if VT in Fig. 7 is a fixed valid time, AGENTGENTWORKORK can estimate
which workflow part PVT starting at nodes 5 and 14 will be executed during VT . This would result
in predictively dropping A-node 15 during the processing of the ECA rule and before continuing
with the execution of nodes 5 and 14.

We differentiate between two subtypes of predictive adaptation depending on whether or not
the fixed valid time interval exceeds some specified threshold value (Fig. 8). Normally, a ‘‘one-
shot’’ predictive adaptation is applied where the workflow part corresponding to the full valid
time interval is estimated at once. For long time intervals exceeding the threshold, the accuracy of
the workflow estimates is likely reduced so that an iterative approach with multiple predictions is
applied. For this purpose, the valid time VT is divided into several sub-intervals VT1; VT2; . . . ; VTn
whose durations do not exceed the threshold. Then, it is first estimated which workflow part P1
will be executed during VT1, and the adaptation is only applied to P1. After P1 has been executed,
the procedure is continued for VT2 and so on. Suitable values for the time threshold depend on the
application domain and the quality of workflow estimation; the threshold is thus a configuration
parameter of AGENTGENTWORKORK.

The strategy of reactive adaptation is selected whenever predictive adaptation is not possible. In
particular, if a conditional valid time is assigned to a control action, it is not possible to derive
which part of the remaining workflow will be executed during the corresponding valid time
interval. The reactive strategy is also selected, if a fixed valid time has been assigned to the control
action, but if an estimation is not possible, e.g., for some conditional parts of the workflow such as
conditional OR-SPLIT or LOOP-END 5 nodes (see 4.2). For example, if VT in Fig. 7 would be a
conditional valid time, reactive adaptation would be selected, and it would be checked for every
node n that is reached by the control flow during VT whether n is an A-node. As node 15 is such an
A-node, it would be dropped after node 14 has committed.

For both predictive and reactive adaptation, the data flow may have to be adapted as well after
the control flow adaptation, e.g., by removing or adding data flow edges. For example, if a node n
of the remaining control flow in Fig. 7 needs output data from the dropped A-node 15, it may be
necessary to compensate the dropping of the A-node by generating a data flow edge for n which
retrieves the needed data from external data sources (see 4.4).

4.2. Workflow duration estimation

In this section, we sketch our approach of estimating workflow execution durations for pre-
dictive adaptation.

To estimate which workflow part PVT will be executed during a valid time interval VT we use
temporal meta information about the estimated duration for each node and edge type. For sim-
plicity we assume a negligible duration of control nodes, control edges, external writing and
5 In AGENTGENTWORKORK, a loop termination condition is specified at the LOOP-END node as loops have a repeat/until

semantics.

244 R. M€uller et al. / Data & Knowledge Engineering 51 (2004) 223–256
internal data flow edges. On the other hand, duration estimates are needed for the execution of
activity nodes, for data flow edges reading external data and for synchronization edges.
AGENTGENTWORKORK supports two ways to obtain such duration estimates: They can either be specified
at workflow definition time or they are derived from actual measurements during workflow
execution. To support high estimation accuracy the durations can be grouped according to dif-
ferent dimensions. Thus we can have different values per activity type, user type and data source,
e.g., to account for that a beginner may need substantially more time for an activity than a
sophisticated user. The measurement-based estimates can also consider queuing effects such as
execution delays due to a lack of resources.

In the current implementation, estimations are based on average duration values. Worst-case
durations using the maximal duration are viewed as too pessimistic as not enough adaptations
may be performed, frequently requiring additional adaptations. Best-case durations using the
minimal duration cause the opposite effect so that too many adaptations are triggered that may
have to be revoked later on. Using average durations may also require reconsidering adaptations
based on monitoring (see 4.4) but it is expected that this is needed in fewer cases. 6 Moreover,
workflow applications often specify precise execution durations, e.g. medical workflows based on
therapy guidelines (e.g., [25]) precisely specify the duration of drug infusions to maximize the
therapeutic effect and minimize side-effects. With such specifications and measured execution
durations we expect to be able to correctly estimate the workflow part PVT in many cases.
Estimation of PVT . To estimate the workflow part PVT to be executed during the valid time

interval VT it is first determined which running workflow is affected by the logical failure and
which of its nodes are activated, i.e. would have to be executed next (e.g., nodes 5 and 14 in
Fig. 7). These nodes form the failure node set. The execution durations of all paths starting at
these nodes are estimated. This is done by estimating and adding the durations of the blocks the
paths consist of. Estimation of one path stops if VT is ‘‘consumed’’ by that path or if there are
irresolvable conditions at OR-SPLIT or LOOP-END nodes (see below). PVT then consists of all
nodes and edges of the estimated paths which are assumed to be executed during VT . In the sequel
we discuss how the execution duration of blocks is estimated.

The duration of a sequence of activity nodes (e.g., nodes 5, 6, 7 in Fig. 7) is estimated by
summing up the average execution durations of all its activities, data flow and synchronization
edges.

In the case of an AND-SPLIT/AND-JOIN block implying the parallel execution of multiple
paths, each of the paths starting at the AND-SPLIT node is separately estimated. Since the AND-
JOIN node delays further execution until the slowest path is finished we take the maximum of the
estimated (average) path durations as an estimate of the block duration.

For OR-SPLIT/OR-JOIN blocks the duration of the individual paths can be estimated as for
AND-SPLIT/AND-JOIN blocks. If all paths do not significantly differ in their estimated dura-
tion, the average path duration is used as an estimate for the block duration. Otherwise, it is tried
to predict which paths will be executed. This is difficult because the split decision depends on
current data values. If the data needed for the decision is already available when the control action
6 Note that even a more complex temporal constraint model using time intervals (e.g., [14]) to capture the uncertainty

about the actual execution durations would face similar problems as only a minimal and a maximal workflow part PVT
may be estimated. So the exact part PVT is not known and a monitoring is required.

R. M€uller et al. / Data & Knowledge Engineering 51 (2004) 223–256 245
has been triggered, AGENTGENTWORKORK uses this data to determine the corresponding path. For the
example of Fig. 7, if it is known at estimation time (e.g., from former examinations) that the
patient has liver metastases it is predicted that for the lower OR-SPLIT only the lower path
(sequence of nodes 18 and 19) has to be considered. If some split conditions cannot be evaluated
in advance AGENTGENTWORKORK excludes the entire OR-SPLIT/OR-JOIN block (and all later workflow
parts of that path) from predictive adaptation and switches to reactive adaptation. For example,
the split decision for the upper OR-SPLIT in Fig. 7 cannot be predicted if the current leukocyte
count is unknown. Note that the availability of older blood values is of no help here as leukocyte
counts may change significantly within a few days.

The estimation of loops faces similar difficulties than for OR-SPLITs since the exact number of
loop iterations mostly depends on current data which may be produced during an loop iteration.
For the estimation of a loop duration, we distinguish two cases. If the control action has been
triggered before the LOOP-START node has been reached the duration of a loop is estimated by
determining the duration of the loop’s body and multiplying it with the estimated number of loop
iterations. In AGENTGENTWORKORK, the estimated number of iterations is either specified at workflow
definition time (based on heuristics such as ‘‘On average, the radiotherapy unit of type A has to be
repeated three times until the tumor vanishes’’) or on the measured average number of iterations
of the respective loop during previous workflow executions. If the control action has been trig-
gered during loop execution, estimation of this path stops at the LOOP-END node and
AGENTGENTWORKORK switches to reactive adaptation for the further loop iterations and all later parts of
this path.

Recently, several other workflow estimation approaches have been suggested to support tasks
such as deadline management and scheduling for workflows [16,29,37]. However, they differ from
our approach as they do not use execution duration measurements and do not try to resolve
conditional splits predictively.

4.3. Control flow adaptation

To translate control actions of ECA rules into structural control flow adaptations on spe-
cific workflow nodes and edges, AGENTGENTWORKORK provides a structural control flow operator for
each control action. Note that these structural control flow operators have to be distinguished
from control actions of the rules, which are not linked to specific workflows. Control actions,
e.g. for adding or dropping activities, cannot consider the current state of running workflows
and do not specify which structural changes to the workflow definition, such as adding and
removing nodes and edges, need to be performed to implement the respective workflow
adaptation. This is the task of the structural control flow operators described now. We only
sketch the operators drop-node, add-node and add-node-loop (implementing the drop, add and
add-repetitively control actions, respectively), as the other operators can be mapped to varia-
tions and combinations of these ones. For instance, a node replacement is achieved by
dropping a node and adding another one at the same position, while postponement is achieved
by dropping a node and inserting it at a later position of the workflow. An update of activity
attributes is currently handled as a replacement, but this solution may be improved if the
operation turns out to be frequently used. The operators are used for both predictive and
reactive adaptation.

246 R. M€uller et al. / Data & Knowledge Engineering 51 (2004) 223–256
Node dropping. For dropping a node, the operator drop-node(n: Integer) is provided. This
operator takes as input the identifier n of an activity node to be dropped. Note that the shift from
activity definitions and patterns (i.e., the activity semantics) to the specific node identifiers is al-
ready done by the mechanisms described in Section 4.1. The mechanisms described there decide
whether or not a node with identifier n is affected by a control action such as drop.

The effect of the drop-node operator depends on the particular structure of the workflow part to
which the affected node n belongs:

(a) If n is located in a sequence, it is simply removed from the control flow. Incoming and out-
going control flow edges are merged, and incoming and outgoing data flow edges are re-
moved.

(b) If n is the only node of a path p in an AND-SPLIT/AND-JOIN block, p is removed. If there is
only one remaining path after p has been removed, the AND-SPLIT and the AND-JOIN
node are removed as well, as they are not needed anymore.

(c) If n is the only node of a path p in an OR-SPLIT/OR-JOIN block, n is removed, but p is left
within the block as an empty path. This is necessary to keep the conditional semantics of the
workflow.

Node adding. For adding a node, the operator add-nodeðA : Activity-Pattern; n : IntegerÞ is
provided. The first parameter specifies the activity pattern A that shall be assigned to the new
node. As this node has not been present in the workflow so far, its activity semantics has to be
specified initially (in contrast to a node to be dropped). The semantics of the second parameter n is
that the new A-node shall be inserted either directly after n or parallel to n, if possible. By default,
AGENTWORKAGENTWORK selects a node just committed or currently executed for n, but the user can specify
any other node.

We distinguish two principal mechanisms to add an A- node, namely sequential and parallel
add.
Sequential add. The straight-forward way to insert the new A-node is to insert it directly behind

node n (Fig. 9a). If n identifies an AND-SPLIT node any path can be chosen for node adding as
all paths will be executed. If n identifies an OR-SPLIT node it is either estimated which of the
conditional paths will be executed (if possible), or the addition is delayed until the conditional
branching is executed so that the new A-node can be inserted into a qualifying path.
Parallel add. Sequential add has the disadvantage that it typically delays the execution of

successor nodes of n (e.g., node 2 in Fig. 9a). Parallel add aims at minimizing such execution
delays by inserting the new node into a new parallel path. In the example of Fig. 9b, a new A0-node
4 has been inserted into a new path, within a new AND-SPLIT/AND-JOIN block, parallel to
nodes 1 and 2. AGENTGENTWORKORK tries to use temporal estimates to find an optimal AND-SPLIT/
AND-JOIN block so that the new parallel path does not take longer to execute than the other
parallel path consisting of already existing nodes. For this reason, in Fig. 9b the AND-JOIN node
was not inserted directly after node 1 but after node 2, to avoid that the new A0-node 4 (which is
assumed to take longer than node 1 but less than nodes 1 and 2 together) delays the execution of
node 2.

By default AGENTGENTWORKORKuses parallel add for implementing add-node. Sequential add is only
applied when the temporal optimization for parallel add is not possible. This is the case when the

add-node(A, 1)

4 (A) 21... ... 4 (A) 21... ...

2 31... ... 2 31... ...

3

4 (A’)

AND-
SPLIT
AND-
SPLIT

AND-
JOIN
AND-
JOIN1 2... ...

add-node(A‘, 1)

Node with
identifier n
and activity
pattern A

n (A)

(a)

(b)

2 31... ... 2 31... ...

Fig. 9. Application of control flow operator add-node. (Node rectangle length proportional to execution duration.).

R. M€uller et al. / Data & Knowledge Engineering 51 (2004) 223–256 247
needed temporal estimations cannot be performed due to loops or OR-SPLIT/OR-JOIN blocks
with unpredictable paths (as discussed in 4.2).
Operator for repetitive node adding. To add nodes for repetitive activity executions, AGENT-GENT-

WORKORK provides the control flow operator add-node-loopðA : Activity-Pattern; p : Duration;
cond : ConditionÞ.

The first parameter specifies the activity pattern A that shall be assigned to the new node to be
executed repetitively. The second parameter specifies the duration between two subsequent exe-
cutions of the A-node. The third parameter specifies the termination condition of the loop.
Add-node-loop realizes the repetitive execution of an A-node by inserting a loop with an A-node

and a termination condition cond into the workflow. In contrast to add-node, add-node-loop does
not try to find a temporally optimized AND-SPLIT/AND-JOIN block since this would require a
reliable estimation for the execution duration of the loop. As already discussed in 4.2, such loop
estimations are difficult in particular when the loop is terminated by a qualitative condition such as
‘‘until leukocyte count higher than 2500’’. To still avoid temporal delays, AGENTGENTWORKORK follows
the simple approach of inserting the loop within a ‘‘maximal’’ AND-SPLIT/AND-JOIN block, as
shown in Fig. 10. Hence, a new AND-SPLIT node is directly inserted after the START node and
the new AND-JOIN node directly before the END node. Moreover, a loop of the structure
LOOP -START ! A-node! LOOP -END
is inserted into the new empty path. The loop duration specified by p is translated into a waiting
condition with min ¼ max ¼ p which is assigned to the edge between the LOOP-END node and
the LOOP-START node. The termination condition specified by parameter cond is assigned to the
edge between the LOOP-END node and the new AND-JOIN node.

As dropping or adding activities such as drug administrations may have significant influence
on a workflow, workflow adaptations are viewed as suggestions that have to be confirmed by

15
(AND-
SPLIT)

15
- 16

(AND-
JOIN)

16
(AND-
JOIN)

add-node-loop(A, p, cond)

4
(AND-
SPLIT)

4
(AND-
SPLIT)

13 1412

5

8
(AND-
JOIN)

8
(AND-
JOIN)

932 10

1
(OR-

SPLIT)

1
(OR-

SPLIT)

11
(OR-

JOIN)

11
(OR-

JOIN)

17 (A)

6

BC = cond

7

STARTSTART
ENDEND

18
(LOOP-
START)

18
(LOOP-
START)

19
(LOOP-

END)

19
(LOOP-

END)

WC: min= max = p

...

Legend

WC: Waiting condition

BC: Branching condition

Fig. 10. Application of control flow operator add-node-loop.

248 R. M€uller et al. / Data & Knowledge Engineering 51 (2004) 223–256
a user. For example, a physician may reject the dropping of a drug administration node despite
some negative side-effects, if he thinks that the drug administration is important for the pa-
tient.

4.4. Data flow adaptation

A data flow adaptation is required if a control flow adaptation results in activity nodes for
which at least one input object is not provided by the data flow anymore. For example, the output
of a dropped node may be needed by a remaining activity node or the input for a newly added
node may have to be provided. Thus, appropriate data flow edges have to be generated to provide
necessary input objects.

Analogously to control flow adaptation, data flow adaptation can be done reactively or pre-
dictively. Reactive data flow adaptation means that the input object completeness of a node n is
checked directly before n is executed. If at least one input object is missing, the data flow is
adapted. Reactive data flow adaptation strategy can be combined both with reactive and pre-
dictive control flow adaptation. That is, even if the control flow is handled predictively, the
necessary data flow adaptations may be delayed until the respective activity nodes are to be
executed.
Predictive data flow adaptation means that directly after a control flow adaptation input object

completeness is checked for all nodes that still have to be executed. If at least one input object is
missing, the data flow is adapted predictively. Note that predictive data flow adaptation can also
be used for a reactive control flow adaptation. For instance, when reactively dropping a node n, it
can be checked whether this leaves a successor node of n without an input object (as this input
object has been provided by n). In this case, it may be possible to predictively adapt the data flow
to provide the input object in a different way.

Analogously to control flow adaptation, the predictive approach is used whenever possible
since reactive data flow adaptation can result in significant delays. For example, if a new thera-

R. M€uller et al. / Data & Knowledge Engineering 51 (2004) 223–256 249
peutic node requiring an X-ray finding as input is added to a medical workflow, the new node may
have to be delayed until the X-ray examination has been performed.

Data flow adaptation is based on constraints that can be specified in the activity definition for
input and output objects. In addition to value constraints on these objects we also support
temporal constraints, in particular to specify the currentness of input data. These constraints are
used to decide whether a missing input object can be provided by activity nodes in the workflow.
We illustrate this by the example of Fig. 11 where a data flow adaptation is needed to provide the
input object h for a newly added node n. According to the activity pattern of n, h has to meet the
value constraint that it should represent the leukocyte count. Furthermore, the temporal NOT-
OLDER-THAN constraint requires that the leukocyte count must not be older than 2 days when
n is executed.

To perform data flow adaptation in this case, the temporal neighborhood of n is explored first.
This means that by workflow estimations it is checked whether there is any output object o of an
activity node m meeting the constraints, i.e.,

• o is of the same type (e.g.,Blood-Finding in Fig. 11) and attribute values (e.g., parameter¼Leuko-
cyte-Count) as the input object h of n, and

• is provided not earlier than the point in time when n needs the input object hminus the distance
specified by the respectively NOT-OLDER-THAN constraint of h, and not later than the point
in time when n needs h.

If these conditions are fulfilled, an internal data flow edge is generated that maps o to h. In the
example of Fig. 11, it has been determined that node m belongs to the relevant neighborhood
w.r.t. h, and provides an output object o with the same type and attribute values as h. Therefore,
an internal data flow edge mapping o to h is generated.
“Administer Etoposid”

input

h : Blood-Finding
[parameter = Leukocyte-Count]
NOT-OLDER-THAN (2, day)

...

Internal data flow edge
o → h

Control flow

Data flow

i (A) j (A’)...

distance = (2, day)

Added activity node nActivity node m

Start of n
Commitment

of m

Time axis

“Blood Examination”

output

... o : Blood-Finding
[parameter =Leukocyte-Count]

“Blood Examination”

output

... o : Blood-Finding
[parameter =Leukocyte-Count]

add-node(“Blood Examination“, j)

Node with identifier j
and activity pattern Aj (A)

Fig. 11. Generation of data flow edges.

250 R. M€uller et al. / Data & Knowledge Engineering 51 (2004) 223–256
If the local temporal neighborhood of the workflow does not provide such a suitable output
object o, AGENTGENTWORKORK inserts an activity node providing the needed data object (due to the
activity node’s output specification). For example, in Fig. 11 an additional blood examination
node would be inserted by the add-node operator (with the blood examination activity pattern as
first parameter and the activity identifier of the predecessor node of n (i.e., j) as the second
parameter of add-node).

For details about data flow generation we refer to [39].

4.5. Workflow monitoring

Workflow monitoring is needed to supervise predictive adaptation and is performed by a
monitoring agent. It continuously checks whether the temporal estimation on which an adapta-
tion is based matches the actual execution of the adapted workflow. For example, estimations
may be imprecise or be invalidated by technical errors or subsequent workflow adaptations which
PVT

PVT

(a) Temporal
acceleration

(b) Temporal
delay

Time axis

...

exec-time(PVT)

...

exec-time(PVT)

VTVT

VT

...

Additional adaptations
necessary

Taking back
of adaptations

11

10

...
9

(AND-
SPLIT)

12
(AND-
JOIN)

11

10

...
9

(AND-
SPLIT)

9
-

12
(AND-
JOIN)

12
(AND-
JOIN)

4

2

5

3

6

8
1

(AND-
SPLIT)

7
(AND-
JOIN)

4

2

5

3

6

8
1

(AND-
SPLIT)

1
-

7
(AND-
JOIN)

7
-

4

2

5

3

6

8
1

(AND-
SPLIT)

-
7

(AND-
JOIN)

7
(AND-
JOIN)

Fig. 12. Temporal mismatches and workflow monitoring.

R. M€uller et al. / Data & Knowledge Engineering 51 (2004) 223–256 251
add or drop nodes. Detected deviations from the original estimates may require to perform
additional adaptations or to take back some of the planned adaptations.

We distinguish two principal mismatch types between estimations on one side and the actual
execution on the other side, namely temporal acceleration and temporal delay (Fig. 12). Let PVT
again denote the workflow part that is assumed to be executed during a valid time VT , and let
exec-timeðPVT Þ denote the interval actually needed to execute PVT .
Temporal acceleration. PVT is executed faster than it has been estimated. This means that

workflow parts which have not been considered so far are now additionally to be executed during
VT. For example, in Fig. 12a nodes 1–8 are assumed to have executed faster than estimated so
that the workflow part consisting of nodes 9–11 may now be executed during VT as well. Hence,
this part may have to be additionally adapted to satisfy control actions that are valid during VT .
Temporal delay. The execution of PVT is delayed. This means that parts of PVT that have been

assumed to be executed during VT will not be executed anymore during VT . For example, in
Fig. 12b the execution of the nodes 1–5 has taken longer than estimated causing that a part of PVT
(nodes 6–8) cannot be executed during VT . Hence, adaptations for this part may have to be taken
back.
5. Related work

In this section we discuss related work from the fields of commercial workflow management,
advanced transaction models, adaptive workflow management, and artificial intelligence.

Several vendors and researchers have addressed failure and exception handling in workflow
management systems [7,10,22,26,27,35,45–48]. However, only a few commercial systems such as
PROROMINANNAND, [26], INNCONCERTONCERT [48], ACTIONCTION REQUESTEQUEST SYSTEMYSTEM [46], LOTUS DOMINOLOTUS DOMINO

WORKFLOWWORKFLOW [22] or ENSEMBLENSEMBLE [27] provide some support for workflow adaptation. For example,
ACTIONCTION REQUESTEQUEST SYSTEMYSTEM [46] is able to derive by ECA rules that an additional activity has to
be executed. However, the user has to select an appropriate insertion point in the workflow
manually. Furthermore, ECA rules with a valid time dimension and predictive adaptation are not
supported by any commercial system.

Several studies focused on workflow recovery from system failures, typically guided by an
advanced transaction model supporting compensation and forward recovery [3,23,43,53]. These
approaches do not deal with changing the structure of running workflows to handle logical
failures.

Due to their formal capabilities, Petri nets have been applied to workflow management [1] and
especially to dynamic workflow changes [18,51]. For example, in [18] a special subtype of Petri
nets, so-called flow nets, is used for workflow modeling and control. At execution time, each flow
net can control several workflow instances. With a graphical editor, structural adaptations of a
flow net can be performed, such as that two activities which have been executed sequentially so far
now have to be executed in parallel. The correctness of the adapted networks is guaranteed in
terms of reachability analysis of the Petri net theory. However, the authors do not provide a set of
predefined adaptation operators or a high-level adaptation interface, so that the person per-
forming the adaptations has to know the syntactical details. Furthermore, as a flow net usually
controls several workflow instances, the direct adaptation of single workflow instances is not

252 R. M€uller et al. / Data & Knowledge Engineering 51 (2004) 223–256
possible. In addition to this, the authors do not consider the adjustment of data flows that may
become necessary when a flow net is adapted.

In [51], the authors describe an approach where every workflow instance is controlled by ex-
actly one so-called workflow net, which is a workflow-oriented Petri net subtype. Thus, ad hoc
adaptation of single instances becomes possible. For this, a number of predefined transformation
rules is provided, e.g., to refine an activity with a subworkflow, or to split up sequences to several
paths executed in parallel or conditional, and to join them again. However, the limitation of this
approach is that data flow aspects are neglected, and that the handling of loops remains unclear.

The TAM 7 system [35,55] provides constructs to specify interaction dependencies between
activities in an application-dependent manner. These dependencies can dynamically be restruc-
tured if exceptions occur. Furthermore, any activity may be dynamically split into subactivities.
Thus, manual reactive adaptation can be achieved by splitting activities, but automation of failure
handling via ECA rules and predictive adaptation are not supported.

Several recent research approaches have used ECA rules to specify which actions have to be
performed on workflows when failures occur [7,10]. For example, in CHIMERAHIMERA-EXCXC [7] Datalog-
based rules can be defined to monitor events and to derive appropriate actions. In [10], ECA rules
are used in combination with a nested transaction model to consider data dependencies between
sub-workflows. However, these approaches do not consider the valid time dimension of triggered
workflow adaptations and do not support predictive adaptation.

The ADEPTflex system [45] provides an operator set for workflow adaptation (e.g., for dropping
and inserting nodes and edges) by preserving correctness and consistency of adapted workflows.
Temporal implications of workflow adaptations such as deadline violations for workflow activ-
ities are considered, too [13]. However, no algorithms are specified that decide automatically
under which circumstances which structural adaptations should be applied. The operator appli-
cations have to be selected by a user. Thus, automated and predictive workflow adaptation is not
supported.

In [47], partially defined workflows can be executed that contain so-called ‘‘pockets of flexi-
bility’’ with a set of workflow fragments and rules stating how these fragments may be refined at
runtime. Thus, a workflow can only be adapted at predefined places. In particular, the temporal
dimension of adaptations such as ‘‘drop this activity for the next 5 days’’ is not supported.

In a medical project, we have used workflow refinement for dynamic workflow adaptation [40].
At execution time, when all patient data is available, it is decided automatically which particular
sub-workflow shall be selected to treat the patient in an optimal manner. However, in this ap-
proach predictive and event-oriented adaptation is not supported.

Recently, techniques from the field of artificial intelligence have been applied to workflow
management, in particular planning techniques [5,24,34,42,50] and cooperative agent approaches
[15,28,32,43,52]. However, the usage of planning techniques for our specific problem of predictive
workflow adaptation is limited. This is because these approaches typically do not support the
temporal dimension of failures sufficiently and do not consider operational aspects such as the
consequences of an control flow adaptation for the data flow. Cooperative agent approaches
7 TAM¼Transactional Activity composition Model.

R. M€uller et al. / Data & Knowledge Engineering 51 (2004) 223–256 253
provide a sophisticated way to detect and handle failures (e.g., [32]), but do not address the
structural consequences of failure handling on the graph level.
6. Summary and future work

In this paper, we have given an overview of the workflow management prototype AGENT-GENT-

WORKORK which provides a comprehensive support for automated workflow adaptation. AGENT-GENT-

WORKORK uses ECA rules based on a temporal logic to automatically cope with logical failures
occurring during workflow execution. AGENTGENTWORKORK supports both reactive and predictive
adaptation of workflows and tries to apply predictive adaptations whenever possible. This is
achieved by suitable estimation algorithms based on pre-specified or measured execution dura-
tions of activities and for external data access. In addition to control flow adaptations, predictive
and reactive data flow adaptations are supported.

We believe that the timely and largely automated handling of logical failures can significantly
improve the flexibility and quality of workflow executions, in contrast to currently available
solutions. In the considered application area of cancer therapies these advantages are of critical
importance. They cannot only reduce the administrative burden for the personnel but also im-
prove the treatment of patients.

Within a research project funded by the German Research Association (DFG), we have
implemented a prototype of the AGENTGENTWORKORK system. As a core, we use the ADEPTflex workflow
management system [45] for the workflow definition and execution layer of AGENTWORKAGENTWORK.
ADEPTflex has been selected, as it––in contrast to most commercial workflow management sys-
tems and research prototypes––supports the specification of execution durations for activities and
provides basic operators for dropping and adding nodes in workflow instances during runtime
which can be invoked via a JAVAAVA API (Application Programming Interface).

For the event monitoring agent we could not use existing F-Logic implementations (e.g., [20]),
mainly because of their insufficient API capabilities. Therefore, we map active rules specified in
ACTIVECTIVETFL to database triggers. Control actions derived by these database triggers are then sent
to the adaptation agent using XML (eXtensible Markup Language) messages. We decided to use
XML as it is a widespread data interchange format for which various communication infra-
structures exist (e.g., XML-RPC). The algorithms for workflow estimation as described in 4.2
have been implemented in JAVAAVA in a straightforward manner using the activity execution dura-
tions provided by the ADEPTflex workflow model. The adaptation itself has been realized by
directly invoking the ADEPTflex control and data flow operators using ADEPTflex API. The
workflow monitoring agent has been implemented in JAVAAVA, too.

The implementation has shown the feasibility of our failure handling approach. We plan
empirical studies on the usability of AGENTGENTWORKORK and the quality of temporal estimations for
real-world workflows. Furthermore, we plan to consider other factors than ‘‘time’’, such as
cost and ‘‘quality of service/product’’. Future work also has to concentrate on ‘‘schema evo-
lution’’ aspects, such as the problem how to deal with changes of an ECA rule which pre-
viously led to a predictive change, and on a more elaborated rule termination approach. We
will also evaluate the applicability of the approach in different application domains such as e-
business.

254 R. M€uller et al. / Data & Knowledge Engineering 51 (2004) 223–256
Acknowledgements

We thank the Database Section (Head: Prof. Dr. Peter Dadam) of the Department of Com-
puter Science, University of Ulm, Germany, for kindly providing us the ADEPTflex prototype.
The work of Ulrike Greiner has been supported by the German Research Association. Fur-
thermore, we thank the two anonymous reviewers for their detailed and helpful remarks.
References

[1] N.R. Adam, V. Atluri, W.-K. Huang, Modeling and analysis of workflows using Petri nets, Journal of Intelligent

Information Systems 10 (2) (1998) 131–158.

[2] G. Alonso, C. Mohan, WFMS: the next generation of distributed processing tools, in: S. Jajodia, L. Kerschberg

(Eds.), Advanced Transaction Models and Architectures, Kluwer, Dordrecht, 1997, pp. 35–62.

[3] V. Atluri, W.-K. Huang, E. Bertino, A semantic based execution model for multilevel secure workflows, Journal of

Computer Security 8 (1) (2000) 3–41.

[4] S. Baker, CORBA distributed objects, Addison Wesley, Reading, MA, 1997.

[5] C. Beckstein, J. Klausner, A meta level architecture for workflow management, Journal of Integrated Design and

Process Science 3 (1) (1999) 15–26.

[6] J. Benthem, Temporal logic, in: D.M. Gabbay, C.J. Hogger, J.A. Robinson (Eds.), Handbook of logic in artificial

intelligence and logic programming, Epistemic and Temporal Reasoning, vol. 4, Oxford University Press, Oxford,

UK, 1995.

[7] F. Casati, S. Ceri, S. Paraboschi, G. Pozzi, Specification and implementation of exceptions in workflow

management systems, ACM TODS 24 (1999) 405–451.

[8] S. Chakravarthy, V. Krishnaprasad, E. Anwar, S.-K. Kim, Composite events for active databases: semantics

contexts and detection, in: Proc. VLDB’94, Morgan Kaufmann, Los Altos, 1994, pp. 606–617.

[9] D.K.W. Chiu, Q. Li, K. Karlapalem, Web interface-driven cooperative exception handling in ADOME workflow

management system, Information Systems 26 (2001) 93–120.

[10] D.K.W. Chiu, A three-layer model for workflow semantic recovery in an object-oriented environment, in:

Proceedings of ER 2001, Lecture Notes in Computer Science, vol. 2224, Springer, Berlin, 2001 pp. 541–554.

[11] J. Chomicki, G. Saake, Logics for databases and information systems, Kluwer, New York, 1998.

[12] J. Chomicki, D. Toman, Temporal logic in information systems, in: J. Chomicki, G. Saake (Eds.), Logics for

Databases and Information Systems, Kluwer, New York, 1998, pp. 31–70.

[13] P. Dadam, M. Reichert, K. Kuhn, Clinical workflows––the killer application for process-oriented information

systems? in: Proceedings of the International Conference on Business Information Systems, Springer, Berlin, 2000,

pp. 36–59.

[14] R. Dechter, I. Meiri, J. Pearl, Temporal constraint networks, Journal of Artificial Intelligence 49 (1991) 61–95.

[15] S.M. Deen, Cooperating agents for holonic manufacturing, in: Proceedings of the Multi-Agent-Systems and

Applications, 2001, pp. 119–136.

[16] J. Eder, E. Panagos, M. Rabinovich, Time constraints in workflow systems, in: Proceedings of the CAiSE 1999,

Springer, Berlin, 1999, pp. 286–300.

[17] E. Ehud Gudes, M.S. Olivier, R.P. van de Riet, Modeling, specifying and implementing workflow security in

cyberspace, Journal of Computer Security 7 (4) (1999).

[18] C.A. Ellis, K. Keddara, W. Wainer, Modeling workflow dynamic changes using timed hybrid flow nets, in:

Proceedings of the ICATPN, 1998, pp. 109–128.

[19] E. Franconi, Description logics for natural language processing, in: F. Baader, D.L. McGuinness, D. Nardi, P.F.

Patel-Schneider (Eds.), Description Logics Handbook, Cambridge University Press, Cambridge, 2002.

[20] F. Frohn, R. Himmer€oder, P.-Th. Kandzia, G. Lausen, C. Schlepphorst, FLORID––a prototype for F-Logic, in:

Proceedings of the 7th Bi-Annual German Database Conference (BTW’97), Springer, Berlin, 1997, pp. 100–117.

[21] D. Georgakopoulos, M. Hornick, A. Sheth, An overview of workflow management: from process modeling to

infrastructure for automation, Journal on Distributed and Parallel Database Systems 3 (1995) 119–153.

R. M€uller et al. / Data & Knowledge Engineering 51 (2004) 223–256 255
[22] G. Giblin, R. Lam, Programming workflow applications with Domino, R&D Publications, 2000.

[23] P.W.P.J. Grefen, J. Vonk, P.M.G. Apers, Global transaction support for workflow management systems: from

formal specification to practical implementation, VLDB Journal 10 (4) (2001) 316–333.

[24] K.J. Hammond, Explaining and repairing plans that fail, Artificial Intelligence 45 (1990) 173–228.

[25] K. Havemann, H. K€oppler, U. Haag, Integratives Konzept zur Behandlung Hoch-Maligner Non-Hodgkin-

Lymphome. Studie A, Marburg, Germany, 1994.

[26] IABG, Reference manuals of ProMInanD, IABG Company, Munich, 1999.

[27] InterSystems Corporation, Ensemble. Available from <http://www.intersystems.com/ensemble/index.html>.

[28] N.R. Jennings, P. Faratin, T.J. Norman, P. O’Brien, B. Odgers, Autonomous agents for business process

management, International Journal of Applied Artificial Intelligence 14 (2) (2000) 145–189.

[29] E. Kafeza, K. Karlapalem, Temporally constrained workflows, in: Proceedings of the ICSC 1999, Lecture Notes in

Computer Science, vol. 1749, Springer, Berlin, 1999, pp. 246–255.

[30] M. Kifer, G. Lausen, J. Wu, Logical foundations of object-oriented and frame-based languages, Journal of the

ACM 42 (1995) 741–843.

[31] B. Kiepuszewski, A.H.M. ter Hofstede, C. Bussler, On structured workflow modeling, in: Proceedings

of the CAiSE’2000, Lecture Notes in Computer Science, vol. 1789, Springer, Berlin, 2000, pp. 431–

445.

[32] M. Klein, C. Dellarocas, A knowledge-based approach to handling exceptions in workflow systems, Journal of

Computer-Supported Collaborative Work 9 (3/4) (2000) 399–412.

[33] A. Lazcano, H. Schuldt, G. Alonso, H.-J. Schek, WISE: process based e-commerce, IEEE Data Engineering

Bulletin 24 (1) (2000) 46–51.

[34] C. Liu, R. Conradi, Automatic replanning of task networks for process model evolution in EPOS, in: Proceedings

of the ESEC’93, 1993, pp. 434–450.

[35] L. Liu, C. Pu, Methodical restructuring of complex workflow activities, in: Proceedings of the ICDE 1998, IEEE

Computer Society Press, Silver Spring, MD, 1998, pp. 342–350.

[36] Z. Manna, A. Pnueli, The temporal logic of reactive and concurrent systems, Springer, Berlin, 1992.

[37] O. Marjanovic, M.E. Orlowska, On modeling and verification of temporal constraints in production workflows,

Knowledge and Information Systems 1 (1999) 157–192.

[38] I. Motakis, C. Zaniolo, Temporal aggregation in active database rule, in: Proceedings of the SIGMOD 1997,

SIGMOD Record 26 (2) (1997) 440–451.

[39] R. M€uller, Event-oriented dynamic adaptation of workflows, Ph.D. Thesis, Department of Computer Science,

University of Leipzig, 2002.

[40] R. M€uller, B. Heller, A petri net-based model for knowledge-based workflows in distributed cancer therapy, in:

Proceedings of the EDBT’98 Workshop on Workflow Management Systems, 1998, pp. 91–99.

[41] R. Muller, E. Rahm, Dealing with logical failures for collaborating workflows, in: Proceedings of the CoopIS 2000

Lecture Notes in Computer Science, Proceedings of the CoopIS 2000 Lecture Notes in Computer Science, vol.

1901, Springer, Berlin, 2000, pp. 210–223.

[42] K. Myers, Towards a framework for continuous planning and execution, in: Proceedings of the AAAI Symposium

on Distributed Continual Planning, 1998.

[43] K. Nagi, J. Nims, P.C. Lockemann, Transactional support for cooperation in multiagent-based information

systems, in: Proceedings of vertIS2001, 2001, pp. 177–191.

[44] N. Paton (Ed.), Active Rules in Database Systems, Springer, Berlin, 1999.

[45] M. Reichert, P. Dadam, ADEPTflex––supporting dynamic changes of workflows without losing control, Journal of

Intelligent Information Systems 10 (1998) 93–129.

[46] Remedy Corporation, Action request system 4.0 reference manuals, Remedy Corporation, 2000.

[47] S.W. Sadiq, W. Sadiq, M.E. Orlowska, Pockets of flexibility in workflow specification, in: Proceedings of the ER

2001, Lecture Notes in Computer Science, vol. 2224, Springer, Berlin, 2001, pp. 513–526.

[48] S.K. Sarin, Workflow and data management in InConcert, in: Proceedings of the Twelfth International Conference

on Data Engineering ICDE 1996, IEEE Computer Society, Silver Spring, MD, 1996, pp. 497–499.

[49] A. Sheth, K. Kochut, et al., Supporting state-wide immunization tracking using multi-paradigm workflow

technology, in: Proceedings of the VLDB 1996, Morgan Kaufmann, Los Altos, 1996, pp. 263–273.

http://www.intersystems.com/ensemble/index.html

256 R. M€uller et al. / Data & Knowledge Engineering 51 (2004) 223–256
[50] M.P. Singh, M.N. Huhns, Automating workflows for service order processing, integrating AI and database

technologies, IEEE Expert 9 (5) (1994).

[51] M. Voorhoeve, W. van der Aalst, Ad-hoc workflow: problems and solutions, in: Proceedings of the 8th DEXA,

1997, p. 3641.

[52] W. de Vries, F.S. de Boer, W. van der Hoek, J.-J.Ch. Meyer, A truly concurrent model for interacting agents, in:

Proceedings of PRIMA 2001, Lecture Notes in Computer Science, vol. 2132, Springer, Berlin, 2001, pp. 16–30.

[53] H. W€achter, A. Reuter, The ConTract model, in: A.K. Elmagarmid (Ed.), Database Transaction Models for

Advanced Applications, Morgan Kaufmann, Los Altos, CA, 1992, pp. 219–263.

[54] D. Worah, A. Sheth, Transactions in transactional workflows, in: S. Jajodia, L. Kerschberg (Eds.), Advanced

Transaction Models and Architectures, Kluwer, Dordrecht, 1997, pp. 3–34.

[55] T. Zhou, L. Liu, C. Pu, TAM: a system for dynamic transactional activity management, in: Proceedings of the

SIGMOD Conference 1999, 1999, pp. 571–573.

Robert Müller received his doctoral degree on a dissertation on workflow management from the University of
Leipzig, Germany, in 2002. From 1994 to 1996, he was a research scientist at the University Hospital of Mainz
at the Department of Medical Informatics. Since 1996, he has been working at the Department of Computer
Science, Database group, of the University of Leipzig, Germany. After having hold a deputy professorship for
databases at the Department of Computer Science of the University of Munich in the summer term 2003, he is
now a professor at the Leipzig University of Applied Sciences.
Ulrike Greiner received her diploma in computer science from the University of Leipzig, Germany, in 2000.
Since then, she has been a research scientist at the Department of Computer Science, Database group, of the
University of Leipzig. Her current research topics include workflow management and e-services.
Erhard Rahm received his Ph.D. degree in Computer Science from University of Kaiserslautern, Germany, in
1988. From 1988 to 1989, he has been a visiting scientist at the IBM T.J. Watson Research Center, Haw-
thorne, NY, USA. Being an assistant professor at the Department of Computer Science, University of
Kaiserslautern from 1989 to 1994, he received his habilitation degree in Computer Science in 1993 (habili-
tation thesis on ‘‘Architecture of high-performance transaction systems’’). Since 1994, he is a full professor for
Computer Science and the head of the Database group at the University of Leipzig, Germany. His current
research topics include XML data management, adaptive workflow management, metadata management, web
usage mining, data warehouses, and bioinformatics.

	AgentWork: a workflow system supporting rule-based workflow adaptation
	Introduction
	AgentWork overview
	Architecture
	Model overview

	Temporal ECA rule model
	Structure of ECA rules
	ActiveTFL
	Frame Logic
	Temporal FL
	ActiveTFL

	Rule integrity
	Rule incompatibility
	Rule termination

	Workflow adaptation and monitoring
	Adaptation strategies
	Workflow duration estimation
	Control flow adaptation
	Data flow adaptation
	Workflow monitoring

	Related work
	Summary and future work
	Acknowledgements
	References

